

NOTE: $\mathcal{O}_n \subseteq \mathbb{R}^n$ open subset.

- (1) Discuss the differentiability of $f : \mathbb{R}^n \rightarrow \mathbb{R}$, where $f(x) = \sum_{i=1}^n |x_i|$.
- (2) Prove that if f is a function that is differentiable on a convex set \mathcal{O}_2 , and has bounded partial derivatives on \mathcal{O}_2 , then f is uniformly continuous on \mathcal{O}_2 .
- (3) Compute the derivative of f at $(0, -\ln 6, \ln 2, 1)$ (if exists), where

$$f(x, y, z, w) = (xe^y, ze^{-w}, e^x).$$

- (4) Define $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ by

$$f(x, y) = \begin{cases} \frac{x^2 y^4}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

Prove that f has first order partial derivatives on \mathbb{R}^2 . Is f continuously differentiable on \mathbb{R}^2 (that is, $f \in C^1(\mathbb{R}^2)$)?

- (5) Define $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ by

$$f(x, y) = \begin{cases} x^3 \sin \frac{1}{x} + y^2 & \text{if } x \neq 0 \\ y^2 & \text{if } x = 0. \end{cases}$$

Prove that f is differentiable at $(0, 0)$ and f_x is not continuous at $(0, 0)$.

- (6) Let $g : \mathcal{O}_n \rightarrow \mathbb{R}$ has first-order partial derivatives, and suppose

$$\frac{\partial f}{\partial x_i} \equiv 0 \quad (i = 1, \dots, n),$$

on \mathcal{O}_n . Prove that there exists a constant c such that $f \equiv c$.

- (7) For what differentiable mappings $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is $[(Df)(a)]$ a diagonal matrix (w.r.t. standard bases) for all $a \in \mathbb{R}^n$?
- (8) Define $f : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ by

$$f(x, y, z) = (x + y + z, x^2 + y^2 + z^2, x^3 + y^3 + z^3).$$

Compute $J_f(x, y, z)$ (the Jacobian of f at (x, y, z)). Prove that the Jacobian is nonsingular unless two of the three variables are equal. Describe the locus of the singularities.

- (9) True or False (with justification): if $f : \mathcal{O}_n \rightarrow \mathbb{R}^m$ is a differentiable function and $(Df)(x) = 0$ for all $x \in \mathcal{O}_n$, then f is a constant function.
- (10) Let $f : (a, b) \rightarrow \mathbb{R}^n$ be a differentiable function. Prove that

$$\frac{d}{dt}(\|f(t)\|^2) = 2\langle f(t), Df(t) \rangle \quad (t \in (a, b)).$$