

(1) Fix $n \in \mathbb{N}$. Consider the partition $P = P^1 \times P^2 \in \mathcal{P}([0, 1] \times [0, 2])$, where

$$P^1 : \frac{j}{n}, \quad 0 \leq j \leq n, \quad \text{and} \quad P^2 : \frac{2j}{n}, \quad 0 \leq j \leq n.$$

Compute $L(f, P)$, where $f(x, y) = x + y$.

(2) Compute $\int_{B^2} x^2 y^3 dx dy$, where $B^2 = [a_1, b_1] \times [a_2, b_2]$.
(3) Compute $\int_0^1 \int_{-1}^1 x e^{xy} dx dy$.
(4) Define $f : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ by

$$f(x, y) = \begin{cases} \frac{1}{q} & \text{if } (x, y) \in \mathbb{Q} \times \mathbb{Q} \text{ and } x = \frac{p}{q} \text{ in lowest terms} \\ 0 & \text{otherwise.} \end{cases}$$

(i) Prove that $f \in R([0, 1] \times [0, 1])$. (ii) Compute $\overline{\int_0^1} f(x, y) dx$ and $\underline{\int_0^1} f(x, y) dx$ for all $y \in [0, 1]$. Prove that they are unequal for all $y \in \mathbb{Q}$. (iii) Prove that $\int_0^1 \int_0^1 f(x, y) dy dx$ exists, but $\int_0^1 \int_0^1 f(x, y) dx dy$ does not.

(5) Define $f : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ by

$$f(x, y) = \begin{cases} 1 & \text{if } \frac{1}{2^n} \leq x, y \leq \frac{1}{2^{n-1}} \text{ for some } n \in \mathbb{N} \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

Prove that $f \in R([0, 1] \times [0, 1])$. Also compute $\int f$.