

(1) Show that the set $\{(x, y) : x^2 + 4y^2 = 16\}$ has content zero.
 (2) Suppose $f : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ has continuous second partial derivatives. Suppose $f(0, 0) = 1, f(0, 1) = 2, f(1, 0) = 3$ and $f(1, 1) = 5$. Find

$$\iint_{[0,1] \times [0,1]} \frac{\partial^2 f}{\partial x \partial y}.$$

(3) Evaluate

$$(i) \iint_{[0,1] \times [1,2]} \frac{1}{2x+y}, \quad (ii) \iint_{[1,2] \times [1,2]} \ln(x+y), \quad (iii) \iint_{[0,1] \times [0,1]} x \exp(yx).$$

(4) Evaluate

$$(i) \int_0^{\frac{\pi}{2}} \int_0^{\cos y} x \sin y \, dx \, dy, \quad (ii) \int_{-1}^1 \int_0^{|x|} dy \, dx, \quad (iii) \int_0^2 \int_1^3 |x-2| \sin y \, dx \, dy.$$

(5) Let $f \in C([0, 1])$. Prove that

$$\left(\int_0^1 f(x) \, dx \right)^2 \leq \int_0^1 (f(x))^2 \, dx.$$

[Hint: Consider $\int_0^1 \int_0^1 (f(x) - f(y))^2 \, dy \, dx$.]

(6) Evaluate $\iint_{\Omega} \sin(y^2)$, where Ω is the triangle bounded by the lines $x = 0$, $y = x$, and $y = \sqrt{\pi}$.
 (7) Reverse the order of integration $I = \int_1^2 \int_{2-x}^{\sqrt{2x-x^2}} f(x, y) \, dy \, dx$, that is, express I as $\int_?^? \int_?^? f(x, y) \, dx \, dy$.
 (8) Evaluate $\iint_{\Omega} |xy|$, where Ω is the disk of radius 1 centered at the origin.
 (9) Evaluate $\iint_{\Omega} x^3 \exp(y^3)$, where $\Omega = \{(x, y) : 0 \leq x \leq 3, x^2 \leq y \leq 9\}$.
 (10) Evaluate $\iint_{\Omega} 3x^2 + 2y + z$, where

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : |x-y|, |y-z|, |x-z| \leq 1\}.$$

(11) Evaluate the volume of the solid bounded by the planes $x = 0$, $y = 0$, and $z = 0$, and $x + y + z = 1$.
 (12) Find the area of the region bounded by $y = x$ and $y = x^2$.
 (13) Find the volume of the region in \mathbb{R}^3 lying above the triangle with vertices $(-1, 0)$, $(0, 1)$, and $(1, 0)$ and under the graph of the function $f(x, y) = x^2 y$.
 (14) If $\Omega = \overline{B_1((0, 0))}$, then prove that

$$\frac{\pi}{3} \leq \int_{\Omega} \frac{1}{\sqrt{x^2 + (y-2)^2}} \leq \pi.$$

(15) Prove that the volume of the solid ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is $\frac{4\pi abc}{3}$.
 (16) Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the xy -plane, and inside the cylinder $x^2 + y^2 = 2x$.
 (17) Compute $\iint_{\Omega} \frac{y}{x} \, dA$, where Ω is the region bounded by the curves $x^2 - y^2 = 1$, $x^2 - y^2 = 4$, $y = 0$ and $y = \frac{1}{2}x$.

(18) Compute $\int_{\Omega} \exp\left(\frac{x-y}{x+y}\right) dA$, where $\Omega = \{(x, y) : x, y \geq 0, x + y \leq 1\}$.

[Hint: Use the substitution: $u = x + y$ and $v = x - y$.]

(19) Find the volume generated by the cone $z = \sqrt{x^2 + y^2}$ and $0 \leq z \leq 3$.

(20) Compute $\int_0^1 \int_0^{\sqrt{x}} y \exp(\sqrt{x}) dy dx$. [Hint: Use $x \mapsto x^2$ and $y \mapsto y$.]

(21) Evaluate $\int_0^1 \int_0^z \int_0^y \exp\left((1-x)^3\right) dx dy dz$.

(22) Evaluate

$$\int_{x^2+y^2+z^2 \leq 1} \exp\left((x^2 + y^2 + z^2)^{\frac{3}{2}}\right).$$