

- (1) Find the area of the surface  $\langle v \cos u, v \sin u, u \rangle$ , for  $0 \leq u \leq \pi$  and  $0 \leq v \leq 1$ .
- (2) Find the area of (i) the portion of  $2x + 4y + z = 0$  inside  $x^2 + y^2 = 1$ ; (ii)  $z = \sqrt{x^2 + y^2}$  that lies below  $z = 2$ ; (iii) the cone  $z = k\sqrt{x^2 + y^2}$ ,  $k > 0$ , that lies over a region  $R$  with area  $a$ .
- (3) An object moves from  $(1, 0, 0)$  to  $(-1, 0, \pi)$  along the curve  $r(t) = \langle \cos t, \sin t, t \rangle$ , subject to the force field  $\langle y^2, y^2, xz \rangle$ . Find the work done.
- (4) Evaluate the surface integral  $\int_S xy \, dS$ , where  $S$  is the triangular region with vertices  $(1, 0, 0)$ ,  $(0, 2, 0)$  and  $(0, 0, 2)$ . [Ans:  $\frac{1}{\sqrt{6}}$ . Here the region of parametrization is given by the plane  $z = 2 - 2x - y$ .]
- (5) Let  $F$  and  $G$  be two  $C^1$ -vector fields on  $\mathbb{R}^3$ . Prove that

$$\operatorname{div}(F \times G) = \operatorname{curl}(F) \cdot G + F \cdot \operatorname{curl}(G).$$

- (6) Use Green's theorem to prove that

$$\int_C -x^2 y \, dx + xy^2 \, dy = 8\pi,$$

where  $C$  is the circle  $x^2 + y^2 = 4$  (with counterclockwise orientation).

- (7) Recall that the area of a (suitable) region  $R$  is given by

$$\operatorname{area}(R) = \frac{1}{2} \int_C \langle -y, x \rangle \cdot dr,$$

where  $C$  is the boundary of  $R$ . Explain this relation geometrically.

- (8) For the field  $F = \langle x, y, z \rangle$  and the cylinder  $V$  given by  $x^2 + y^2 \leq 1$ ,  $0 \leq z \leq 1$ ;
  - (i) Compute  $\nabla \cdot F$  and  $\int_V \nabla \cdot F$ .
  - (ii) Compute  $\int_{\partial V} F \cdot dS$  (outward normal direction). Is this supposed to match (i)?
- (9) Determine whether or not  $F = \langle z \sec^2 x, z, y + \tan x \rangle$  is conservative. If  $F$  is conservative, find a potential function for  $F$ .
- (10) For the gravitational field  $F(x) = -k \frac{x}{\|x\|}$  in  $\mathbb{R}^3$  and the sphere  $V = \{x \in \mathbb{R}^3 : \|x\| \leq 1\}$ ;
  - (i) Compute  $\nabla \cdot F$  and  $\int_V \nabla \cdot F$ .
  - (ii) Compute  $\int_{\partial V} F \cdot dS$  (outward normal direction). Is this supposed to match (i)?
- (11) Find the flux of  $F(x, y, z) = (x, y, 3)$  out of the region bounded by the paraboloid  $z = x^2 + y^2$  and the plane  $z = 4$ .
- (12) (i) Prove that  $\operatorname{curl} \circ \nabla = 0$  and  $\operatorname{div} \circ \operatorname{curl} = 0$ . (ii) Prove that the curl through all closed surfaces in  $\mathbb{R}^3$  has zero flux. That is, if  $S$  is a closed surface in the domain of a field  $F$ , then

$$\int_S (\nabla \times F) \cdot dS = 0.$$

- (13) Explain why the surface  $z = x^2 \cos y$  is orientable.
- (14) If  $R = \{(x, y) : |x| \leq 2, |y| \leq 1\}$ , then compute  $\int_{\partial R} e^{2x+3y} \, dx + e^{xy} \, dy$ .
- (15) If  $R = \{(x, y) : |x| \leq 1, x^2 \leq y \leq 1\}$ , then compute  $\int_{\partial R} \sqrt{1+x^2} \, dy$ .
- (16) Let  $F(x, y, z) = \langle y, z, -2x \rangle$ , and let  $C$  be a simple closed curve contained in the plane  $x + y + z = 1$ . Prove that  $\int_C F \cdot dr = 0$ .

(17) Verify Stokes's theorem for the field  $F = -yi + xj + e^z \ln(1 + z)k$  and the surface  $z = \sqrt{4 - x^2 + y^2}$ . (Find separately the path integral around the edge and the flux of the curl. You must decide which sense of the normal to pick.)

(18) Compute the outward flux  $\int_S F \cdot dS$ , where  $S$  is the sphere  $x^2 + y^2 + z^2 = 4$  and  $F(x, y, z) = (x^2 + y^2 + z^2)(xi + yj + zk)$ . [Hint: Divergence theorem]