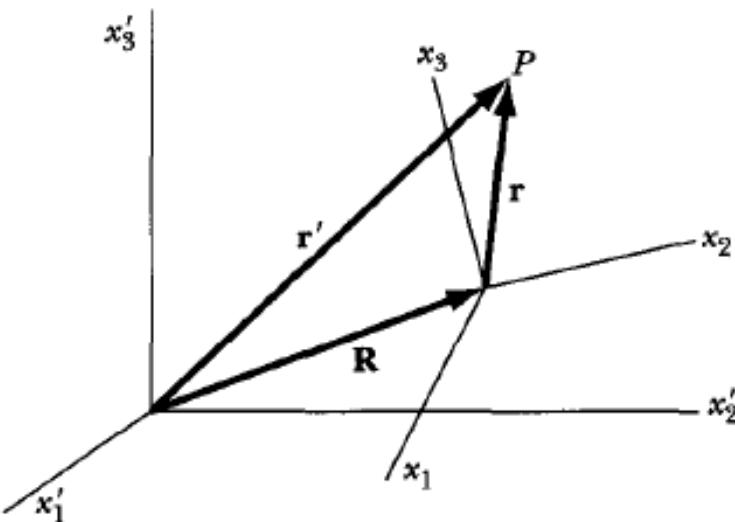


Physics I

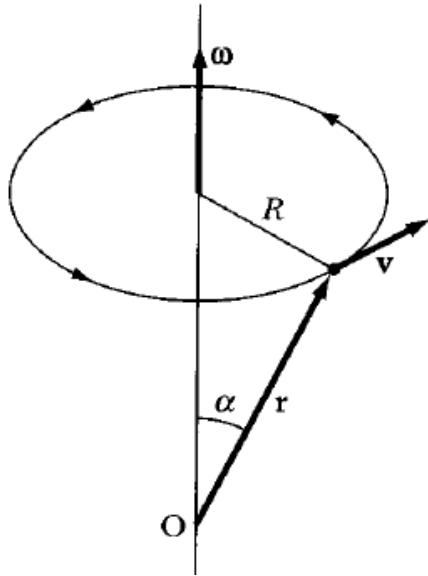
Lecture 27

Rotating Coordinate Systems



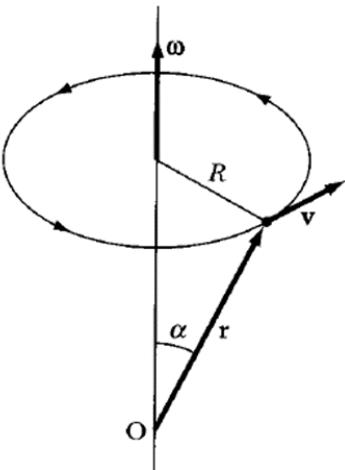
The x'_i are coordinates in the fixed system, and x_i are coordinates in the rotating system. The vector \mathbf{R} locates the origin of the rotating system in the fixed system.

$$\vec{r}' = \vec{R} + \vec{r}$$



Recall, we had learnt that a particle moving arbitrarily in space, can be considered , **at a given instant** to be moving in a **plane, circular path** about a given axis. An arbitrary infinitesimal displacement,(which can be a combination of translation and rotation) can always be represented by a “ pure rotation” about some axis called the instantaneous axis of rotation.

The line passing through the centre of the circle and perpendicular to the instantaneous direction of motion is called the instantaneous axis of rotation.



Rate of change of angular position $= \omega$ = angular velocity

$$\omega = \frac{d\theta}{dt} = \dot{\theta} \quad \text{--- (2)}$$

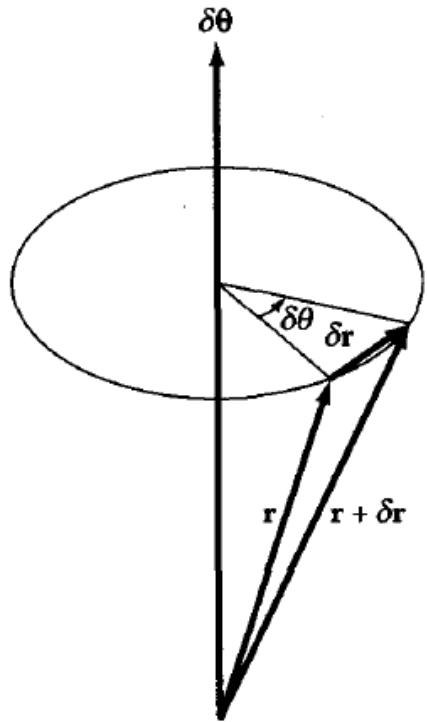
linear velocity $\vec{v} = \vec{r}$

$$v = R \frac{d\theta}{dt} = R\omega \quad \text{--- (3)}$$

$$\vec{v} \perp \vec{r}$$

$$v = r\omega \sin \alpha \quad \text{--- (5)}$$

$$\boxed{\vec{v} = \vec{\omega} \times \vec{r}} \quad \text{--- (6)}$$



$$\vec{\delta r} = \vec{\delta\theta} \times \vec{r} \quad \text{--- (7)}$$

Getting back to our fixed vs rotating system
 If x_i coordinate system undergoes infinitesimal rotation $\delta\theta$, for the motion P (at rest σ in x_i system)

$$(\vec{dr})_{\text{fixed}} = \vec{d\theta} \times \vec{r} \quad \text{--- (8)}$$

$$\left(\frac{d\vec{r}}{dt} \right)_{\text{fixed}} = \frac{d\vec{\theta}}{dt} \times \vec{r} - ⑨$$

→ essentially same as ⑥

$$\left(\frac{d\vec{r}}{dt} \right)_{\text{fixed}} = \vec{\omega} \times \vec{r} - ⑩ \quad [P \text{ fixed in } x_i \text{ system}]$$

Now if the point P has velocity $\left(\frac{d\vec{r}}{dt} \right)$ w.r.t rotating the x_i system, this must be added to $\vec{\omega} \times \vec{r}$ to obtain $\left(\frac{d\vec{r}}{dt} \right)_{\text{fixed}}$

$$\left(\frac{d\vec{r}}{dt} \right)_{\text{fixed}} = \left(\frac{d\vec{r}}{dt} \right)_{\text{rotating}} + \vec{\omega} \times \vec{r} \quad \boxed{11}$$

Although we have derived 11 w.r.t \vec{r} , i.e the displacement vector, this holds for any arbitrary vector \vec{Q}

$$\left(\frac{d\vec{Q}}{dt} \right)_{\text{fixed}} = \left(\frac{d\vec{Q}}{dt} \right)_{\text{rotating}} + \vec{\omega} \times \vec{Q} \quad \boxed{12}$$

In particular, $\vec{Q} = \vec{\omega}$

$$\left(\vec{\omega} \right)_{\text{fixed}} = \left(\vec{\omega} \right)_{\text{rotating}} + \vec{\omega} \times \vec{\omega} = \left(\vec{\omega} \right)_{\text{rotating}} \quad \boxed{13}$$

Let us seek transformation of velocities

$$\vec{r}' = \vec{R} + \vec{r}$$

$$\left(\frac{d\vec{r}'}{dt} \right)_{\text{fixed}} = \left(\frac{d\vec{R}}{dt} \right)_{\text{fixed}} + \left(\frac{d\vec{r}}{dt} \right)_{\text{fixed}} = 14$$

Now using 12

$$\left(\frac{d\vec{r}'}{dt} \right)_{\text{fixed}} = \left(\frac{d\vec{R}}{dt} \right)_{\text{fixed}} + \left(\frac{d\vec{r}}{dt} \right)_{\text{rotating}} + \vec{\omega} \times \vec{r} = 15$$

Define

$$\left(\frac{d\vec{r}'}{dt}\right)_{\text{fixed}} = \vec{v}_f \equiv \overset{\circ}{\vec{r}}_f \quad - (16a)$$

$$\left(\frac{d\vec{R}}{dt}\right)_{\text{fixed}} = \vec{V} = \overset{\circ}{\vec{R}}_f \quad - (16b)$$

$$\left(\frac{d\vec{r}}{dt}\right)_{\text{rotating}} = \vec{v}_r = \overset{\circ}{\vec{r}}_r \quad - (16c)$$

Can rewrite 15 as

$$\boxed{\vec{v}_f = \vec{V} + \vec{v}_r + \vec{\omega} \times \vec{r}} \quad - 17$$

\vec{v}_f : vel. w.r.t fixed axis

\vec{V} : Linear vel of moving origin

\vec{v}_r : vel. w.r.t rotating axis

$\vec{\omega} \times \vec{r}$: vel. due to rotation of moving axis

- $\vec{F} = m \vec{a}$ valid only in inertial reference frame
in this case \rightarrow fixed frame

- $\vec{F} = m \vec{a}_f = m \left(\frac{d \vec{v}_f}{dt} \right)_{\text{fixed}} \quad \text{--- (18)}$

Recall eqn. (17)

$$\vec{v}_f = \vec{V} + \vec{v}_r + \vec{\omega} \times \vec{r}$$

Differentiating, we get

$$\left(\frac{d \vec{v}_f}{dt} \right)_{\text{fixed}} = \left(\frac{d \vec{V}}{dt} \right)_{\text{fixed}} + \left(\frac{d \vec{v}_r}{dt} \right)_{\text{fixed}} + \vec{\omega} \times \vec{r} + \vec{\omega} \times \left(\frac{d \vec{r}}{dt} \right)_{\text{fixed}}$$

--- (19)

Recall eqn. 12

$$\left(\frac{d\vec{Q}}{dt} \right)_{\text{fixed}} = \left(\frac{d\vec{Q}}{dt} \right)_{\text{rot}} + \vec{\omega} \times \vec{Q}$$

Define $\ddot{\vec{R}}_f = \left(\frac{d\vec{V}}{dt} \right)_{\text{fixed}} \quad \text{--- (20)}$

$$\begin{aligned} \left(\frac{d\vec{v}_r}{dt} \right)_{\text{fixed}} &= \left(\frac{d\vec{v}_r}{dt} \right)_{\text{rot}} + \vec{\omega} \times \vec{v}_r. \quad \text{--- (21)} \\ &= \vec{a}_r + \vec{\omega} \times \vec{v}_r. \end{aligned}$$

$$\vec{\omega} \times \left(\frac{d\vec{r}}{dt} \right)_{\text{fixed}} = \vec{\omega} \times \left(\frac{d\vec{r}}{dt} \right)_{\text{rotating}} + \vec{\omega} \times \vec{\omega} \times \vec{r} \quad \text{--- (22)}$$

Putting it all together 18 becomes .

$$\vec{F} = m\vec{a}_f = m\overset{\text{..}}{\vec{R}_f} + m\vec{a}_r + m\overset{\text{..}}{\vec{\omega} \times \vec{r}} + m(\vec{\omega} \times (\vec{\omega} \times \vec{r})) + 2m\vec{\omega} \times \vec{v}_r$$

- 23

To an observer in the rotating coordinate system
the "effective" force on the particle is

$$\vec{F}_{\text{eff}} = m\vec{a}_r \quad - 24$$

$$= \vec{F} - m\overset{\text{..}}{\vec{R}_f} - m\overset{\text{..}}{\vec{\omega} \times \vec{r}} - m\vec{\omega} \times (\vec{\omega} \times \vec{r}) - 2m\vec{\omega} \times \vec{v}_r$$

- 25

$-m \ddot{\overrightarrow{R}}_f^o \Rightarrow$ results from translational accln. of
 x_i system w.r.t x_i' system .

$-m (\ddot{\vec{\omega}} \times \vec{r}) \Rightarrow$ results from rotational accln. of
 x_i system w.r.t x_i' system .

$-m \vec{\omega} \times (\vec{\omega} \times \vec{r}) \Rightarrow$ centrifugal force term, familiar
 $m \vec{\omega}^2 \vec{r}$ $\vec{\omega} \perp \vec{r}$, -ve sign indicates
direction outward .

$-2 m \vec{\omega} \times \vec{v}_r \Rightarrow$ Coriolis force .

$$\vec{F} = m\vec{a}_f \quad \text{valid in inertial frame}$$

let \vec{R}_f and $\vec{\omega}$ be zero for simplicity.

$$\vec{F}_{\text{eff}} = m\vec{a}_r$$

then

$$\vec{F}_{\text{eff}} = m\vec{a}_f + \text{(non-inertial terms)}$$

↓
centrifugal + Coriolis