
Statistics II: Statistical Inference

Prerequisites: Statistics I; Probability I and II

References:
1. Casella, G. and Berger, R. Statistical Inference
2. Bickel, D. and Doksum, K. Mathematical Statistics

3. Hogg and Craig. Introduction to Mathematical Statistics

Grading (Tentative): 40 marks for assignments; 20 marks for class test;
40 marks for final exam

Lectures: Online lectures will be on Zoom; Time: Monday, Wednesday,
Friday, 3:15 – 4:15 pm

Lecture Notes: Lecture notes will be posted on Moodle. Attempt will be
made to post recording of lectures on Moodle too

Assignments: Assignments will also be posted on Moodle. Answers to
these must be submitted by uploading to Moodle.

Contact e-mail: mohan.delampady@gmail.com

1



What is statistical inference? Why is a probability model needed? Infer-
ence based on modeling data or observations using probability models is of
interest. Consider this example.

Example 1. In fisheries and ecology, one uses capture-recapture methods
to estimate the size of a population. Let N = total size; this is unknown.
First N1 of the individuals in this population are caught, tagged and then
released. In the next step n out of N are caught again. If n1 out of n have
tags on them, what is an estimate for N? Let X = number of tagged fish
out of n. Assuming that the tagged individuals had mixed well with the
others in the entire population before sampling and that all individuals in
the population have the same chance of being caught, we can write down a
probability model for X:

P (X = x|N) =

(

N1

x

)(

N−N1

n−n1

)

(

N

n

) , x = 0, 1, . . . n; x ≤ N1;n− x ≤ N −N1.

Thus, a statistical model is an approximate but simple theoretical framework
to work with.

Statistical inference is mathematical but not mathematics itself, because
statistics is inductive reasoning, not deductive as in mathematics. In math-
ematics, one states certain axioms and then proves (or deduces) certain
conclusions, such as theorems. In statistics, one uses observations or data,
which are instances of events or occurences. From these one generalizes to
other situations (which is induction). The data may be compatible with
many models which are just mathematical structures for the generation of
data. So, this is a one-to-many problem. Consider an experiment where one
tosses a coin 10 times and observes it coming up heads 8 times. What is
θ = P ( coin comes up heads on any toss )? Any 0 < θ < 1 can produce the
outcome X = 8 in n = 10 tosses.

It is important to have a theory which can show that statistical inference is
valid, consistent and leads to correct conclusions under appropriate assump-
tions. This is provided by the mathematical theory of probability.

Since statistical inference involves picking a model from a collection of mod-
els, it is necessary to study the properties of such classes of models. Opti-
mality results of statistical procedures will be established later for some such
classes.

First a few definitions needed in the discussion.

As mentioned previously, a probability model is a structure assumed to model
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the realization of random observables or data. Simple models involve a few
unknown quantities which are used to index or label the distributions in the
family of models. These labels are called parameters. The set of all parameter
values in a family is called the parameter space. Usually, parameters are
associated with important features of the distribution, such as mean and
variance.

If P denotes the family of probability models under consideration, then
P = {Pθ : θ ∈ Θ}, θ is the unknown parameter and Θ is the parameter space.

Example 2. X = number of times a coin comes up heads when tossed 10
times, θ = P ( coin comes up heads on any toss ). ThenX ∼ Binomial(10, θ).
So,
P = { all Binomial(10, θ), 0 < θ < 1}. Note Θ = (0, 1) ⊂ R1.

Example 3. Suppose X denotes the length of time required for a ran-
domly chosen person to recover from common cold, and we model it as
X ∼ N(µ, σ2). Then P = { all N(µ, σ2),−∞ < µ < ∞, σ2 > 0.}. Here
Θ = {(µ, σ2), µ ∈ R1, σ2 ∈ R+} = R1 × R+ ⊂ R2. Note that recovery
time cannot be negative, but this approximation is reasonable if almost all
the probability lies on the positive region.

The idea of a parameter is for it to specify the distribution.

Identifiability. For any θ1 and θ2 in Θ, whenever θ1 6= θ2, we must have
Pθ1

6= Pθ2
.

Example 4. Suppose N is the number of tigers in a reserve forest, and
we assume N |λ ∼ Poisson(λ). Let S be the number of tigers sighted by a
team of investigators in a study here. Since this involves detection, prob-
ability of which is usually less than 1, we can assume, S|(N = n), p ∼
Binomial(n, p) and therefore, S|λ, p ∼ Poisson(λp). (Show this as an exer-
cise.) If S1, S2, . . . , Sk are i.i.d Poisson(λp) can we make inferences about
both λ and p? The model for S, {Poisson(λp), λ > 0, 0 < p < 1}, is not
identifiable. Here θ = (λ, p) and Pθ = Poisson(λp). Take θ1 = (10, 0.4) and
θ2 = (20, 0.2). Then θ1 6= θ2, but Pθ1

= Pθ2
.
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Symmetric distribution. Z is distributed symmetrically about 0 if Z
and −Z have the same distribution. If Z has density fZ , then note, in the
presence of symmetry, fZ(z) = fZ(−z) for all z. X is symmetric about µ
if X − µ is symmetric about 0, or X − µ and −(X − µ) have the same
distribution. If X has density fX , then we need fX(µ + x) = fX(µ − x)
for all x. (fX(µ + x) = fZ(µ + x − µ) = fZ(x) = fZ(−x); fX(µ − x) =
fZ(µ− x− µ) = fZ(−x) = fZ(x))

A statistical model can arise in two different ways, and hence may have two
different interpretations.
(i) Measurement error model: Suppose we want to determine the length µ of
a table by measuring it using a tape measure. Then any measurement X can
be represented as X = µ+ ǫ, where ǫ stands for the deviation from the true
length µ due to measurement error. If ǫ ∼ N(0, σ2), then X ∼ N(µ, σ2). σ
provides a measure of how large a typical deviation from µ can be.
(ii) Sampling from a population: Consider collecting a random sample (in-
dependent and identically distributed or i.i.d.) of observations from a popu-
lation to determine certain features such as height, weight or family income.
Now there is variation within the population. Therefore, if we model an ob-
servation X as X ∼ N(µ, σ2), then µ represents the population average and
σ measures the deviation or spread of the population around µ.

The statistical inferential procedure will be the same, irrespective of how the
model is arrived at. i.e., it is for µ and σ2 of N(µ, σ2) whether the observation
came from (i) or (ii).

Location-Scale Families Consider U ∼ U(−1, 1) with density fU(u) =
1
2
I(−1,1)(u), and let X = µ + U . Then X ∼ U(µ − 1, µ + 1) with density

fX(x) = 1
2
I(µ−1,µ+1)(x) = 1

2
I(−1,1)(x − µ) = fZ(x − µ). In other words, the

location of X is a translation by µ of the location of U . The family of
distributions for X indexed by µ is called a location family with location
parameter µ. Note that µ is location for X if X−µ has a distribution which
is free of µ.

Similarly, if Z ∼ N(0, 1) with density fZ(z) = 1
√

2π
exp(−z2/2), then X =

σZ, σ > 0, then X ∼ N(0, σ2) with density fX(x) =
1

√

2πσ
exp(−(x− µ)2/(2σ2)) = 1

σ
1

√

2π
exp(−((x− µ)/σ)2/2) = 1

σ
fZ(

x−µ

σ
).

In this case, X is scaled by σ, and the family of distributions for X indexed
by σ is called a scale family with scale parameter σ. It is important to note
that σ is scale for X if X/σ has a distribution which is free of σ. Combining
location and scale gives the location-scale family.
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Definition Let X be a real-valued random variable, with density

f(x|µ, σ) =
1

σ
g

(

x− µ

σ

)

,

where g is also a density function, −∞ < µ < ∞, σ > 0. The parameters µ
and σ are called location and scale parameters.

With X as above, Z = (X − µ)/σ has density g. The normal N(µ, σ2) is a
location-scale family with Z being the standard normal, N(0, 1). Exponential
is a scale family with µ = 0, σ = θ. We can make it a location-scale family
if we set

f(x|µ, σ) =

{

1
σ
exp

(

−x−µ

σ

)

for x > µ;
0 otherwise.

Bernoulli, binomial, and Poisson are not location-scale families.

Example. Let X have uniform distribution over (θ1, θ2) so that

f(x|θ1, θ2) =

{

1
θ2−θ1

if θ1 < x < θ2;

0 otherwise.

This is also a location-scale family, with a reparameterization.

Example. The Cauchy distribution specified by the density

f(x|µ, σ) =
1

π

σ

σ2 + (x− µ)2
, −∞ < x < ∞

is a location-scale family. It has several interesting properties. As |x| → ∞,
it tends to zero but at a much slower rate than the normal.

One can verify that E(|X|r) = ∞ for r = 1, 2, . . . under any µ, σ. So Cauchy
has no finite moment. However, Figure 1.1 shows remarkable similarity be-
tween the normal and Cauchy, except near the tails. The Cauchy density
is much flatter at the tails than the normal, which means x’s that deviate
quite a bit from µ will appear in data from time to time. Such deviations
from µ would be unusual under a normal model and so may be treated as
outliers by a data analyst. It provides an important counter-example to the
law of large numbers or central limit theorem when one has infinite moments.
It also plays an important role in robustness studies.

Result. Any location-scale family of models is closed under location-scale
transformations.
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Figure 1: Densities of Cauchy(0, 1) and normal(0, 2.19).

Proof. Let F be a location-scale family. Then,

F =

{

f(x|µ, σ) =
1

σ
g

(

x− µ

σ

)

,−∞ < µ < ∞, σ > 0

}

,

where g is a density function. Let Y = aX + b. Take a > 0 for convenience.
Then X = (Y − b)/a, so dx = dy/a, and hence

fY (y) =
1

aσ
g

(

y−b

a
− µ

σ

)

=
1

aσ
g

(

y − (aµ+ b)

aσ

)

.

Therefore, fY ∈ F .

Location-scale family is a special case of a Group family, a family of models
which is closed under a group of transformations.

In our discussion we will confine ourselves to parametric models, in which
case the parameter space is a nice subset of Rk for some k. Nonparametric
models deal with much larger classes of models, such as all symmetric dis-
tributions or all symmetric unimodal distributions. Nonparametric methods
(such as histograms) are quite different from what we discuss here. Even
among parametric models, we restrict ourselves to models which satisfy the
regularity conditions.
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Regular models. Either (i) all Pθ are continuous with density f(.|θ), or
(ii) all Pθ are discrete with mass function p(x|θ) and there exists a countable
set S = {x1, x2, . . .} independent of θ such that

∑∞
i=1 p(xi|θ) = 1.

For example, the following models are not regular under our definition.

Example. Let X be the weight of a randomly chosen product from a pop-
ulation, and assume X ∼ N(θ, 102). However the weighing device cannot
show weights above a certain level c, so it fixes (censors) such weights at c.

Then the observed weight, Y has the distribution, Y =

{

X if X < c;
c if X ≥ c.

.

Then Y has a continuous part as well as a point mass (at c).

Example. Let X be discrete with pmf p(x|θ) =

{

1/2 if x = θ;
1/2 if x = θ + 1,

where θ ∈ R. Here S is not countable.

Sufficient Statistics

Statistical inference is our objective, i.e., making inferences about unknown
parameters in the model. The first step in this direction is data reduction
or compression – condensing all the useful information and removing all the
irrelevant pieces. This will allow modeling only the informative parts of the
data. For example, suppose the mean yield of fruit in a farm is of interest,
and a random sample of trees is investigated for this purpose. Note that the
sample data may look different depending on the order in which one records
the yields from the trees in the sample, but this order of observations is not
relevant for inferential purposes.

LetX denote sample data or the list of observations. Then any real or vector-
valued function T (X) is called a statistic. Examples are:
T (X1, . . . , Xn) = X̄,
T (X1, . . . , Xn) =

∑n

i=1(Xi − X̄)2,
T (X1, . . . , Xn) = (X̄,

∑n

i=1(Xi − X̄)2).
Intuitively, a statistic T (X) is sufficient if it contains all the useful information
about the quantities of interest. We will suppress the boldface for vectors
unless there is ambiguity.

Definition. A statistic T (X) is called sufficient for a parameter θ, or
sufficient for a family of distributions Pθ indexed by θ if the conditional
distribution of X given T (X) = t does not involve θ. i.e.,
Pθ(a < X ≤ b|T (X) = t) is independent of θ for all a, b if X is a random
variable.
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Note. When T (X) is sufficient, if you know its value, you don’t care what
X is anymore.

Example. Suppose X1, . . . , Xn are i.i.d. Poisson(λ).
Claim: S =

∑n

i=1 Xi is sufficient for λ.
Note that

fX1,...,Xn
(x1, . . . , xn|λ) =

n
∏

i=1

exp(−λ)
λxi

xi!
= exp(−nλ)

λ
∑n

i=1
xi

∏n

i=1 xi!
, and

fS(s|λ) = exp(−nλ)
(nλ)s

s!
.

Therefore,

f(X1,...,Xn)|S=s(x1, . . . , xn|λ) =
Pλ(X1 = x1, . . . , Xn−1 = xn−1, Xn = xn, S = s)

Pλ(S = s)

=
Pλ(X1 = x1, . . . , Xn−1 = xn−1, Xn = s−

∑n−1
i=1 xi)

Pλ(S = s)
if
∑n

i=1 xi = s

=
exp(−nλ) λ

∑n
i=1

xi
∏n

i=1
xi!

exp(−nλ) (nλ)s

s!

if
∑n

i=1 xi = s

=
s!

∏n

i=1 xi!

(

1

n

)s

if
∑n

i=1 xi = s ,

which is free of λ. In fact, the conditional distribution above is
Multinomial(s; 1

n
, . . . , 1

n
).

One needs to guess T for using the above definition. Instead, there is the
following useful and important result.

Factorization Theorem (Neyman-Fisher). Let f(x|θ) be the density
of X under the probability model Pθ, θ ∈ Θ. Then, if the model is regular,
a statistic T (X) is sufficient for θ iff there exists a function g(t, θ) and a
function h(x) such that

f(x|θ) = g(T (x), θ)h(x).

i.e., one is able to factor f into two parts, one involving θ and data through
T , and the other involving data only. If x ∈ Rn, then we have
T : Rn → I ⊆ Rk, k ≤ n,
g : I ×Θ → R+,
h : Rn → R+. g and h are not unique.
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Proof. For the discrete case only. The continuous case is similar, but a
rigorous proof requires measure theoretical arguments.

Let S = {x1, x2, . . .} be the (countable) sample space, the set of all possible
values of X. Let ti = T (xi). Then T = T (X) is discrete and
∑∞

i=1 fT (ti|θ) = Pθ(T = ti, 1 ≤ i < ∞) = 1 for all θ.
if part: There exist g and h such that f(x|θ) = g(T (x), θ)h(x). Need to show
that T is sufficient. i.e., show that Pθ[X = xj|T (X) = ti] does not involve θ
for each i and j. Since Pθ[X = xj|T (X) = ti] is defined when Pθ[T = ti] > 0
only, it is enough to show that Pθ[X = xj|T (X) = ti] is independent of θ
when θ ∈ Ωi = {θ : Pθ[T = ti] > 0}, i = 1, 2, . . . Now, note

Pθ[T = ti] =
∑

{x:T (x)=ti}

f(x|θ) = g(ti, θ)
∑

{x:T (x)=ti}

h(x).

If θ ∈ Ωi, then

Pθ[X = xj|T (X) = ti] =
Pθ[X = xj, T (X) = ti]

Pθ[T = ti]

=

{

f(xj |θ)

Pθ[T=ti]
if T (xj) = ti;

0 if T (xj) 6= ti.

Note that Pθ[X = xj, T (X) = ti] = 0 if T (xj) 6= ti. Using the fact that
f(x|θ) = g(T (x), θ)h(x), whenever T (xj) = ti, we get

f(xj|θ)

Pθ[T = ti]
=

g(ti, θ)h(xj)

g(ti, θ)
∑

{x:T (x)=ti}
h(x)

=
h(xj)

∑

{x:T (x)=ti}
h(x)

,

which is independent of θ. Thus T = T (X) is sufficient for θ.

only if: Now we have that T = T (X) is sufficient for θ. We want to find
functions, g and h such that f(x|θ) = g(T (x), θ)h(x). Define g(ti, θ) =
Pθ[T = ti] and h(x) = Pθ[X = x|T = T (x)]. Then h(x) is independent of θ
by definition (of sufficiency). Also,

f(x|θ) = Pθ[X = x] = Pθ[X = x, T = T (x)]

= Pθ[X = x|T = T (x)]Pθ[T = T (x)]

= h(x)g(T (x), θ),

noting that Pθ[T = T (x)] is a function of T (x) and θ only.
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Example. Suppose X1, . . . , Xn is a random sample (i.i.d.) from Poisson(λ),
λ > 0. Is T (X) =

∑n
i=1 Xi sufficient for λ? Note that

f(x1, . . . , xn|λ) =
n
∏

i=1

exp(−λ)
λxi

xi!
= exp(−nλ)

λ
∑

n

i=1
xi

∏n
i=1 xi!

=
(

exp(−nλ)λ
∑

n

i=1
xi

) 1
∏n

i=1 xi!
.

Take g(t, λ) = exp(−nλ)λt and h(x1, . . . , xn) =
1∏

n

i=1
xi!

to satisfy the factor-

ization theorem.

Example. Let X1, . . . , Xn be a random sample (i.i.d.) from N(µ, σ2). What
are jointly sufficient for µ and σ2? We have,

f(x1, . . . , xn|µ, σ2) =
n
∏

i=1

1√
2πσ

exp

(

− 1

2σ2
(xi − µ)2

)

= (2π)−n/2σ−n exp

(

− 1

2σ2

n
∑

i=1

(xi − µ)2

)

= (2π)−n/2σ−n exp

(

− 1

2σ2

{

n
∑

i=1

x2
i + nµ2 − 2µ

n
∑

i=1

xi

})

= σ−n exp

(

−nµ2

2σ2
− 1

2σ2

n
∑

i=1

x2
i +

µ

σ2

n
∑

i=1

xi

)

(2π)−n/2.

Note that T (X1, . . . , Xn) = (
∑n

i=1 Xi,
∑n

i=1 X
2
i ) is sufficient since we can take

g((t1, t2), (µ, σ
2)) = σ−n exp

(

−nµ2

2σ2 − 1
2σ2 t2 +

µ
σ2 t1

)

and h(x) = (2π)−n/2.

Also, the map (
∑n

i=1 Xi,
∑n

i=1 X
2
i ) → (X̄,

∑n
i=1(Xi − X̄)2) is one-one, so

(X̄, S2) is another set of sufficient statistics.

Example. Let X1, . . . , Xn be a random sample from the population with
density, f(x|θ) = 1

2
exp(−|x − θ|), −∞ < θ < ∞. Then f(x1, . . . , xn|θ) =

1
2n

exp(−∑n
i=1 |xi−θ|). What is sufficient for θ? Not much reduction of data

is possible here, except for noting that the joint density can be written as
f(x1, . . . , xn|θ) = 1

2n
exp(−

∑n
i=1 |x(i)− θ|), where x(1) < x(2) < · · · < x(n) are

the ordered observations. Therefore T (X1, . . . , Xn) = (X(1), X(2), . . . , X(n))
is sufficient. Order statistics provide data reduction whenever data is a ran-
dom sample from a continuous distribution. Some models permit further
reduction.

Interpretation of sufficiency. Observing X = (X1, . . . , Xn) is equivalent
to observing T (X) as far as information on θ is concerned. Given T (X) (the
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distribution of which depends on θ), one can generate X′ = (X ′

1, . . . , X
′

n)
from P (X|T ) (which does not require θ, being uninformative). Then the
probability distributions of X and X′ are the same. Note that if two random
quantities have the same probability distribution then they contain the same
amount of information.

Example. X1, . . . , Xn i.i.d Poisson(λ). Then S =
∑n

i=1 Xi is sufficient.
If S = s is given from Poisson(nλ), then simply generate (X ′

1, . . . , X
′

n) from
Multinomial(s; 1

n
, . . . , 1

n
). It is clear that the joint distribution of (X ′

1, . . . , X
′

n)
is the same as that of (X1, . . . , Xn), which is i.i.d Poisson(λ).

Definition. Two statistics S1 and S2 are said to be equivalent if S1(x) =
S1(y) iff S2(x) = S2(y).

Note that, if S1 and S2 are equivalent, then
(i) they give the same partition of the sample space,
(ii) they provide the same reduction,
(iii) they provide the same information.

Example. S1(X1, . . . , Xn) = X̄, S2(X1, . . . , Xn) =
∑n

i=1 Xi. S1(x1, . . . , xn) =
S1(y1, . . . , yn) iff

1
n

∑n
i=1 xi =

1
n

∑n
i=1 yi iff

∑n
i=1 xi =

∑n
i=1 yi iff S2(x1, . . . , xn) =

S2(y1, . . . , yn).

Data is a realization of the random observable X. It is a point in the sam-
ple space. The values of X form the finest partition of the sample space.
Any statistic T (X) also gives a partition of the sample space. For example,
(X1, . . . , Xn) are points in Rn. T1(X1, . . . , Xn) = (X(1), X(2), . . . , X(n)) par-
titions Rn into sets where the points are permutations of each other. This is
coarser than Rn. T2(X1, . . . , Xn) =

1
n

∑n
i=1 Xi partitions Rn into sets where

the points have the same average. This partition is coarser than the one
provided by T1 since permutations do not change the average.

In the figure above, the dashed, red partition is coarser than the blue parti-
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tion.

Sufficient statistics gives a partition (of the sample space) which retains all
the information about the parameters. Therefore, maximum possible reduc-
tion of data, or the coarsest possible partition of the sample space is desirable.
How does one choose sufficient statistics?

Example. X1, . . . , Xn i.i.d N(0, σ2). Then

f(x1, . . . , xn|λ) = (2π)−n/2σ−n exp

(

− 1

2σ2

n
∑

i=1

x2
i

)

.

Note from this joint density that
(i) T1(X1, . . . , Xn) = (X1, . . . , Xn) is sufficient for σ2;
(ii) T2(X1, . . . , Xn) = (X2

1 , . . . , X
2
n) is sufficient for σ2;

(iii) T3(X1, . . . , Xn) = (X2
1 + · · ·+X2

m, X
2
m+1 + · · ·+X2

n) is sufficient for σ2;
(iv) T4(X1, . . . , Xn) = (X2

1 + · · ·+X2
n) is sufficient for σ2.

Observe that T4 = g1(T3) = g1(g2(T2)) = g1(g2(g3(T1))). i.e., if T is sufficient
and T = H(U), then U is also sufficient. Knowledge of U implies knowledge
of T and hence permits reconstruction of the original data. T provides greater
reduction or coarser partition unless H is one-one.

Minimal sufficiency. T = T (X) is minimal sufficient if it provides the
maximal amount of data reduction. i.e., for any sufficient statistics U =
U(X), there exists a function H such that T = H(U).
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Minimal sufficiency. T = T (X) is minimal sufficient if it provides the
maximal amount of data reduction. i.e., for any sufficient statistics U =
U(X), there exists a function H such that T = H(U).

Usually, one can find minimal sufficient statistics applying the factorization
theorem and inspection. However, there are some techniques to find them
also.

Theorem. P is a family of probability models with common support and
P0 ⊂ P . If T is minimal sufficient for P0 and sufficient for P , then it is
minimal sufficient for P also.

Proof. Let U be any sufficient statistic for P . Then it is sufficient for P0.
But T is minimal sufficient for P0. Therefore T = H(U). Now consider P . T
is minimal sufficient for P and for any other sufficient statistic U , T = H(U).
Therefore, T is minimal sufficient.

Theorem. Let f(x|θ) be pmf or pdf of X. Suppose there exists a function
T (x) such that, for two sample points x and y the ratio f(x|θ)/f(y|θ) is a
constant function of θ iff T (x) = T (y). Then T (X) is minimal sufficient for
θ.

Example. X1, . . . , Xn i.i.d Poisson(λ). Then

f(x1, . . . , xn|λ) = exp(−nλ)
λ
∑

n

i=1
xi

∏n

i=1 xi!
.

Therefore,
f(x1, . . . , xn|λ)

f(y1, . . . , yn|λ)
= λ(

∑
n

i=1
xi−

∑
n

i=1
yi)

∏n

i=1 yi!
∏n

i=1 xi!

is a constant function of λ > 0 iff
∑n

i=1 xi =
∑n

i=1 yi. Therefore,
T (X1, . . . , Xn) =

∑n

i=1 Xi is actually minimal sufficient for λ.

Proof (of Theorem). Assume f(x|θ) > 0 for all x ∈ X and θ ∈ Θ.
Suppose there exists T such that f(x|θ)/f(y|θ) is a constant function of θ iff
T (x) = T (y). We show then that T (X) is minimal sufficient for θ. First, let
us show that it is sufficient. The map T is
T : X → T = {t : t = T (x) for some x ∈ X }. Let At = {x ∈ X : T (x) = t}.
Then {At}t∈T is a partition of X . For each At, fix one element xt ∈ At. For
any x ∈ X , we have that x ∈ AT (x), and hence xT (x) is the fixed element
which belongs to the same partitioning set as x does. T (x) = T (xT (x)) since
x and xT (x) belong to AT (x). Hence f(x|θ)/f(xT (x)|θ) is a constant function
of θ. Then h(x) = f(x|θ)/f(xT (x)|θ) is independent of θ and h : X → R+.
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Define g by g(t, θ) = f(xt|θ) and g : T ×Θ → R+. Then

f(x|θ) =
f(x|θ)

f(xT (x)|θ)
f(xT (x)|θ) = h(x)g(T (x), θ).

Therefore, T (X) is sufficient for θ. Let T ′(X) be any other sufficient statis-
tics. Then there exist g′ and h′ such that f(x|θ) = g′(T ′(x), θ)h′(x). Let x
and y be any two sample points such that T ′(x) = T ′(y). Then

f(x|θ)

f(y|θ)
=

g′(T ′(x), θ)h′(x)

g′(T ′(y), θ)h′(y)
=

h′(x)

h′(y)
,

which is independent of θ. We already have that T (x) = T (y) whenever
f(x|θ)/f(y|θ) is a constant function of θ. Therefore, T ′(x) = T ′(y) implies
T (x) = T (y). This means that T is coarser than T ′ or T (x) = q(T ′(x)) for
some function q. Therefore T is minimal sufficient.

Example. Let X1, . . . , Xn be i.i.d Exp(θ), θ > 0 with density f(x|θ) =
θ exp(−θx) for x > 0. Then

fX1,...,Xn
(x1, . . . , xn|θ) =

n
∏

i=1

(θ exp(−θxi)) = θn exp(−θ
n

∑

i=1

xi), xi > 0, θ > 0.

f(x|θ)

f(y|θ)
=

θn exp(−θ
∑n

i=1 xi)

θn exp(−θ
∑n

i=1 yi)
= exp(−θ{

n
∑

i=1

xi −
n

∑

i=1

yi})

is a constant function of θ in the interval θ > 0 iff
∑n

i=1 xi =
∑n

i=1 yi.
Therefore,

∑n

i=1 Xi is minimal sufficient for θ.

Example. Suppose X − θ ∼ Exp(θ), −∞ < θ < ∞. Then

f(x|θ) =

{

exp(−(x− θ)) x > θ;
0 otherwise.

Then Θ = R and the common support is X = R also. Consider a random
sample, X1, . . . , Xn from this distribution. Then

f(x1, . . . , xn|θ) =

{

exp(−(
∑n

i=1 xi − nθ)) xi > θ for all i;
0 otherwise.

=

{

exp(−(
∑n

i=1 xi − nθ)) x(1) > θ ;
0 otherwise.
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Since f(x1, . . . , xn|θ) = exp(−
∑n

i=1 xi) exp(nθ)I(x(1) > θ), X(1) is sufficient.
Further,

f(x|θ)

f(y|θ)
=

exp(−
∑n

i=1 xi) exp(nθ)I(x(1) > θ)

exp(−
∑n

i=1 yi) exp(nθ)I(y(1) > θ)

=















exp(−(
∑n

i=1 xi −
∑n

i=1 yi)) if θ < min{x(1), y(1)};
0 if x(1) < θ < y(1);
∞ if y(1) < θ < x(1);

undefined elsewhere.

This is a constant function of θ iff x(1) = y(1). Therefore, X(1) is minimal
also.
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Exponential Families

Definition. {Pθ, θ ∈ Θ} with density (pdf or pmf) is a single-parameter
exponential family if there exist real valued functions c(θ), d(θ) on Θ and
T (x) and S(x) on Rn and a set A ⊂ Rn such that

f(x|θ) = exp [c(θ)T (x) + d(θ) + S(x)] IA(x),

where A must not depend on θ.

Example. X ∼ Poisson(λ), λ > 0. Then f(x|λ) = exp(−λ)λ
x

x!
, x =

0, 1, 2, . . .. Take A = {0, 1, 2, . . .} and write the density as

f(x|λ) = exp (x log(λ)− λ− log(x!)) IA(x).

Choosing c(λ) = log(λ), d(λ) = −λ, T (x) = x and S(x) = − log(x!) shows
that Poisson(λ), λ > 0 is a single-parameter exponential family of distribu-
tions.

Example. X ∼ U(0, θ), θ > 0. Then

f(x|θ) =
{

1
θ

if 0 < x < θ;
0 otherwise.

Is U(0, θ), θ > 0 exponential family? Note that f(x|θ) = exp(− log(θ))IA(x),
where the support of the density, A = (0, θ) depends on θ. It is not possible
to express the density in the required exponential form on a common support
of the entire family, so U(0, θ), θ > 0 is not exponential family.

Example. X ∼ N(θ, 1). Then

f(x|θ) = 1√
2π

exp(−1

2
(x− θ)2)IA(x), A = (−∞,∞),

which can be written as

f(x|θ) = exp

(

−1

2
[x2 + θ2 − 2θx]− log(

√
2π)

)

IA(x)

= exp

(

θx− θ2

2
− [

x2

2
+ log(

√
2π)]

)

IA(x).

Choosing c(θ) = θ, d(θ) = −θ2/2, T (x) = x and S(x) = −(x2/2+ log(
√
2π))

we can show that N(θ, 1), −∞ < θ < ∞ is a single-parameter exponential
family.

1



Consider X1, . . . , Xm i.i.d Pθ with density f(x|θ). Suppose {Pθ, θ ∈ Θ} is
exponential family. i.e., f(x|θ) = exp(c(θ)T (x) + d(θ) + S(x))IA(x). Then

fX1,...,Xm
(x1, . . . , xm|θ) =

m
∏

i=1

exp(c(θ)T (xi) + d(θ) + S(xi))IA(xi)

= exp(c(θ)
m
∑

i=1

T (xi) +md(θ) +
m
∑

i=1

S(xi))IAm(x1, . . . , xm).

Therefore, (X1, . . . , Xm) has distribution belonging to a single-parameter ex-
ponential family.

Result. If {Pθ, θ ∈ Θ} is a single-parameter exponential family with density
f(x|θ) = exp(c(θ)T (x) + d(θ) + S(x))IA(x), then T (X) is sufficient for θ.
(Actually minimal sufficient if Θ contains an open interval, as shown later.)

Simply note that

f(x|θ) = exp(c(θ)T (x) + d(θ)) exp(S(x))IA(x).

Thus we have g(t, θ) = exp(c(θ)t + d(θ)) and h(x) = exp(S(x))IA(x). Com-
bining this result with above we get the following.

Corollary. If X1, . . . , Xm are i.i.d Pθ with density f(x|θ) = exp(c(θ)T (x) +
d(θ) + S(x))IA(x), the

∑m

i=1 T (Xi) is sufficient for θ.

Example. X ∼ Bernoulli(θ). Then

f(x|θ) = θx(1− θ)1−xI{0,1}(x)

= exp

(

x log

(

θ

1− θ

)

+ log(1− θ)

)

I{0,1}(x),

so T (X) = X is sufficient for θ. Now consider X1, . . . , Xn i.i.d Bernoulli(θ).
Then using the Corollary (or otherwise) observe that

∑n

i=1 T (Xi) =
∑n

i=1 Xi

is sufficient for θ.

Theorem. Let {Pθ, θ ∈ Θ} be a one-parameter exponential family with
density f(x|θ) = exp(c(θ)T (x) + d(θ) + S(x))IA(x). Suppose that either
Pθ is discrete, or T (X) has a continuous distribution. Then the family of
distributions {Qθ} for T (X) is also a one-parameter exponential family, and
has density q(t|θ) = exp(c(θ)t+ d(θ) + S∗(t))IA∗(t).
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Proof. Discrete case:

q(t|θ) = Pθ (T (X) = t) =
∑

{x:T (x)=t}

f(x|θ)

=
∑

{x:T (x)=t}

exp(c(θ)T (x) + d(θ) + S(x))IA(x)

= exp(c(θ)t+ d(θ))







∑

{x∈A:T (x)=t}

exp(S(x))







IA∗(t),

where A∗ = {t : t = T (x), x ∈ A}. Now define

S∗(t) =

{

log
∑

{x∈A:T (x)=t} exp(S(x)) if t ∈ A∗;

0 otherwise.

The continuous case is similar.
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One-parameter exponential family in natural form.

In the usual form, we have the density as: f(x|θ) = exp(c(θ)T (x) + d(θ) +
S(x))IA(x). Define η = c(θ) for θ ∈ Θ. Let Γ = {η : η = c(θ), θ ∈ Θ}. Then
we get

f ∗(x|η) = exp(ηT (x) + d0(η) + S(x))IA(x),

where d0(η) = d(c−1(η)) if c is one-one. Otherwise, since we must have

1 =

∫

A

f ∗(x|η) dx =

∫

A

exp(ηT (x) + d0(η) + S(x)) dx

= exp(d0(η))

∫

A

exp(ηT (x) + S(x)) dx,

d0(η) = log
(∫

A
exp(ηT (x) + S(x)) dx

)

−1

or log (
∑

A
exp(ηT (x) + S(x)) dx)−1.

Let H = {η : |d0(η)| <∞}. Whenever θ ∈ Θ, note that

∫

A

exp(c(θ)T (x) + S(x)) dx =

∫

A

exp(ηT (x) + S(x)) dx <∞

since

1 =

∫

A

f(x|θ dx = exp(d(θ))

∫

A

exp(c(θ)T (x) + S(x)) dx.

Therefore, whenever θ ∈ Θ, |d0(η)| <∞ and η ∈ H.

f ∗(x|η) = exp(ηT (x) + d0(η) + S(x))IA(x),

η ∈ H is called exponential family in natural form. H can be shown to be
an interval.

Theorem. If X has density

f(x|η) = exp(ηT (x) + d0(η) + S(x))IA(x),

and η is an interior point of H (i.e., (η − ǫ, η + ǫ) ⊂ H), the mgf of T (X)
exists and is

ψ(s) = E(exp(sT (X)) = exp(d0(η)− d0(s+ η))

for s in some neighbourhood of 0. Also,

E [T (X)] = −
d

dη
d0(η),

V ar [T (X)] = −
d2

dη2
d0(η).

1



Proof. Note that

E(exp(sT (X)) =

∫

A

exp(sT (x) + ηT (x) + d0(η) + S(x)) dx

= exp(d0(η))

∫

A

exp((s+ η)T (x) + S(x)) dx.

Since η is an interior point of H, s+ η ∈ H if s is small enough. Therefore,
∫

A
exp((s + η)T (x) + S(x)) dx < ∞. But then f(x|s + η) is also a density.

Thus,

exp(d0(s+ η))

∫

A

exp((s+ η)T (x) + S(x)) dx = 1

or
∫

A

exp((s+ η)T (x) + S(x)) dx = exp(−d0(s+ η)).

Therefore,

E [T (X)] =
d

ds
E [exp(sT (X)] |s=0

= exp(d0(η)− d0(s+ η)) (−d′
0
(s+ η)) |s=0 = −d′

0
(η),

E
[

T 2(X)
]

=
d2

ds2
E [exp(sT (X)] |s=0

=
d

ds

{

d

ds
E [exp(sT (X)]

}

|s=0

=
d

ds
{− exp(d0(η)− d0(s+ η))d′

0
(s+ η)} |s=0

=
{

exp(d0(η)− d0(s+ η)) (d′
0
(s+ η))

2
− exp(d0(η)− d0(s+ η))d′′

0
(s+ η)

}

|s=0

= (d′
0
(η))

2
− d′′

0
(η).

Therefore,

V ar [T (X)] = E
[

T 2(X)
]

− E2 [T (X)]

= −d′′
0
(η) + (d′

0
(η))

2
− (−d′

0
(η))

2

= −d′′
0
(η).

Example. X ∼ Binomial(n, p), 0 < p < 1, n fixed. Then E(X) = np,
V ar(X) = np(1 − p) and E(exp(sX)) = [p exp(s) + (1 − p)]n. Derive these
using the result above. You will note that these formulas are not especially
useful for such purposes. They are useful for deriving certain theoretical
results instead.
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k-parameter exponential family

A family of distributions, {Pθ, θ ∈ Θ} with density f(x|θ) is called a k-
parameter exponential family if there exist real-valued functions c1(θ), . . . , ck(θ)
and d(θ), real-valued functions T1(x), . . . , Tk(x) and S(x) onRn, and A ⊂ Rn

such that

f(x|θ) =

{

exp

(

k
∑

j=1

cj(θ)Tj(x) + d(θ) + S(x)

)}

IA(x).

By the Factorization Theorem, (T1(X), . . . , Tk(X)) is sufficient for θ. Note
that, in a k-parameter exponential family, (T1, . . . , Tk) is the k-dimensional
sufficient statistics for θ. The parameter here is θ, and not (c1(θ), . . . , ck(θ)).

Example. X ∼ N(µ, σ2). Then

f(x|µ, σ2) = (2π)−1/2σ−1 exp

(

−
(x− µ)2

2σ2

)

I(−∞,∞)(x)

= (2π)−1/2σ−1 exp

(

−
x2

2σ2
+

µ

σ2
x−

µ2

2σ2

)

I(−∞,∞)(x)

= exp

(

µ

σ2
x−

1

2σ2
x2 +−

µ2

2σ2
− log(σ)−

1

2
log(2π)

)

I(−∞,∞)(x).

We can take T1(x) = x, T2(x) = x2, c1(µ, σ
2) = µ

σ2 , c2(µ, σ
2) = − 1

2σ2 ,

d(µ, σ2) = − log(σ) − µ2

2σ2 , S(x) = −1
2
log(2π), A = R to see that it is a 2-

parameter exponential family. Now consider X1, . . . , Xm i.i.d from N(µ, σ2).
Then (

∑m
i=1 Xi,

∑m
i=1 X

2
i ) is sufficient for (µ, σ2).

Note that in a k-parameter exponential family, θ need not be k-dimensional.
For example, consider N(θ, θ2), which is a 2-parameter exponential family,
but the parameter is θ ∈ R1.

Ancillary Statistics

There are various results in classical statistics that show a sufficient statis-
tic contains all the information about θ in the data X. At the other end
is a statistic whose distribution does not depend on θ and so contains no
information about θ. Such a statistic is called ancillary.

Definition. Let X ∼ Pθ. A statistic S(X) whose distribution does not
depend on the parameter θ is called an ancillary statistic.

Alone, ancillary statistic contains no information about the parameter. How-
ever, combination of ancillaries may be informative. For example, consider

1



(X, Y ) which is bivariate normal, with both means equal to 0, both vari-
ances equal to 1, and covariance of ρ. Then both X and Y are ancillary by
themselves, but together they are informative about ρ. Ancillary statistics
are easy to exhibit if X1, . . . , Xn are i.i.d. with a location-scale family of
densities.

Example. X1, . . . , Xn are i.i.d. N(θ, 1), −∞ < θ < ∞. Then X̄ is minimal
sufficient. (Show this directly by checking when f(x|θ)/f(y|θ) is free of θ.
A different method will be given later.) Now note that S(X1, . . . , Xn) =
∑n

i=1(Xi − X̄)2 is ancillary. Either because, S2 ∼ χ2
n−1 which is free of θ, or

because Xi − X̄ = (Xi − θ) − (X̄ − θ) = Zi − Z̄ where Zi = Xi − θ. Since
θ is location parameter for Xi, distribution of Zi is free of θ. Similarly, if
X1, . . . , Xn are i.i.d. N(0, σ2), then V 2 =

∑n
i=1 X

2
i is sufficient and T = X̄/V

is ancillary. Either, note that

nT 2 =
nX̄2

nX̄2 +
∑n

i=1(Xi − X̄)2
∼ Beta(

1

2
,
n− 1

2
),

which is free of σ, or that

T =
X̄

V
=

X̄/σ

V/σ
=

Z̄

VZ

,

where Zi = Xi/σ and V 2
Z =

∑n
i=1 Z

2
i ; Zi is free of σ since it is a scale

parameter of Xi.

In fact, here is a general result. Let X1, . . . , Xn be i.i.d from a location-scale
distribution with location µ and scale σ. Then, for any four integers a, b, c,
and d (between 1 and n), the ratio

X(a) −X(b)

X(c) −X(d)

=
Z(a) − Z(b)

Z(c) − Z(d)

is ancillary because the right-hand side is expressed in terms of order statistics
of Zi’s where Zi = (Xi − µ)/σ, i = 1, . . . , n are i.i.d. with a distribution free
of µ and σ.

Example. Let X1, . . . , Xn be i.i.d U(θ, θ + 1), −∞ < θ < ∞. Then

fX1,...,Xn
(x1, . . . , xn|θ) =

{

1 if θ < x(1) < · · · < x(n) < θ + 1;
0 otherwise.

=

{

1 if x(n) − 1 < θ < x(1);
0 otherwise.

,

2



implying that (X(1), X(n)) is sufficient for θ. For two sample points x and y

(they must satisfy x(1) < x(n) < x(1) + 1 and similar property for y), con-
sider the ratio f(x|θ)/f(y|θ). This is a constant equal to 1 if x(1) = y(1)
and x(n) = y(n). If these equalities do not hold, then there will exist θ for
which f(x|θ) > 0 and f(y|θ) = 0 and some other θ for which f(x|θ) = 0 and
f(y|θ) > 0. Then the ratio above will not be a constant function of θ. There-
fore, (X(1), X(n)) is minimal sufficient for θ. Then ((X(1)+X(n))/2, X(n)−X(1))
which is a one-one function is also minimal sufficient. (Note they are equiv-
alent statistics and provide the same partition of the sample space.) Now
note that R = X(n) − X(1) = (X(n) − θ) − (X(1) − θ) = Z(n) − Z(1), where
Zi = Xi − θ ∼ U(0, 1). Thus we see that R is ancillary even though it
is part of the minimal sufficient statistics. Note from the following that
R ∼ Beta(n− 1, 2), which shows once again that it is free of θ.

P (X(1) > x(1), X(n) ≤ x(n)) = P (x(1) < Xi ≤ x(n) ∀ i)

= (x(n) − x(1))
n if θ < x(1) < x(n) < θ + 1; so

FX(1),X(n)
(x(1), x(n)) = P (X(1) ≤ x(1), X(n) ≤ x(n))

= P (X(n) ≤ x(n))− P (X(1) > x(1), X(n) ≤ x(n))

= g(x(n))− (x(n) − x(1))
n if θ < x(1) < x(n) < θ + 1.

Therefore,

fX(1),X(n)
(x(1), x(n)) =

∂2

∂x(1)∂x(n)

FX(1),X(n)
(x(1), x(n))

= n(n− 1)(x(n) − x(1))
n−2 if θ < x(1) < x(n) < θ + 1.

Taking R = X(n) − X(1), M = (X(1) + X(n))/2, we get X(1) = (2M − R)/2
and X(n) = (2M +R)/2, with the Jacobian of the transformation equal to 1

(since

∣

∣

∣

∣

−1
2

1
1
2

1

∣

∣

∣

∣

= −1), and hence

fR,M(r,m) =

{

n(n− 1)rn−2 if 0 < r < 1, θ + r
2
< m < θ + 1− r

2
;

0 otherwise, and

fR(r) =

∫ θ+1− r

2

θ+ r

2

n(n− 1)rn−2 dm = n(n− 1)rn−2(1− r), 0 < r < 1.

Let us state this as a general result.

Result. Let X1, . . . , Xn be i.i.d from a location parameter family with cdf
FX(x|θ) = F0(x− θ), −∞ < θ < ∞. Then R = X(n) −X(1) is ancillary.
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Proof. Let Zi = Xi − θ. Then Zi has location 0 and cdf FZ(z) = F0(z).
Further,

FR(r|θ) = Pθ(R ≤ r) = P (X(n) −X(1) ≤ r)

= P ((Z(n) + θ)− (Z(1) + θ) ≤ r) = P (Z(n) − Z(1) ≤ r),

which is free of θ.

Result. Let X1, . . . , Xn be i.i.d from a scale parameter family with cdf

FX(x|σ) = F1(x/σ), σ > 0. Then any statistic, h
(

X1

Xn

, · · · , Xn−1

Xn

)

is ancillary.

Proof. Let Zi = Xi − σ. Then Zi has scale 1 and cdf FZ(z) = F1(z). Note
that

h

(

X1

Xn

, · · · ,
Xn−1

Xn

)

= h

(

X1/σ

Xn/σ
, · · · ,

Xn−1/σ

Xn/σ

)

= h

(

Z1

Zn

, · · · ,
Zn−1

Zn

)

,

which is free of σ.
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Estimation and Optimality

Estimation of features of interest of many populations is very important in
many areas. Average or median family income, average yield of an agricul-
tural crop, proportion of eligible voters who favour a certain candidate and
so on are some examples. In many fields this is done without making use
of probabibility models for the data. With the use of appropriate models,
efficient procedures can be developed for this. The first thing to realize then
is that it becomes a model fitting problem where unknown parameters of
the model are to be determined. This is parametric estimation. In other
words, we assume that the data X comes from the model {Pθ, θ ∈ Θ}. The
first project is model fitting, which means we want to fit the best model to
the data: choose θ ∈ Θ which best describes the realization of X. This is
also known as point estimation to distinguish it from other procedures. The
setup is as follows.

Point Estimation. Consider X1, . . . , Xn i.i.d from Pθ. Estimate θ or q(θ).
This is the simplest setup, and we will also consider X ∼ Pθ when it is not
necessarily a random sample or i.i.d.

1. Method of moments. Let the population moments be
µr(θ) = Eθ(X

r), r = 1, 2, . . . and the sample moments be
µ̂r(θ) =

1

n

∑n

j=1
Xr

j , r = 1, 2, . . .. Suppose
q(θ) = g(µ1(θ), . . . , µk(θ)) for k ≥ 1, and g is continuous. Then the method
of moments estimate of q(θ) is

q̂(θ) = g(µ̂1(θ), . . . , µ̂k(θ)).

Example. σ2 = V arθ(X) = Eθ(X
2) − {Eθ(X)}2 = µ2(θ) − µ2

1
(θ) =

g(µ1(θ), µ2(θ)) where g(x, y) = y− x2 is continuous in (x, y). The method of
moments estimate of V arθ(X) is

σ̂2 = µ̂2 − µ̂2

1
=

1

n

n∑

j=1

X2

j −

(
1

n

n∑

j=1

Xj

)2

=
1

n

(
n∑

j=1

X2

j − nX̄2

)
=

1

n

n∑

j=1

(Xj − X̄)2,

which is the sample variance with divisor n.

Example. X1, . . . , Xn i.i.d Poisson(λ). Here θ = λ > 0. Then µ1(θ) = λ
and µ2(θ) = λ+ λ2. Two different method of moments are readily available
for λ. The one using only the first moment gives λ̂1 = µ̂1(θ) = X̄, and

1



another using the first two gives λ̂2 = µ̂2(θ) − µ̂2

1
(θ) = 1

n

∑n

j=1
(Xj − X̄)2.

Normally one would use the first one, unless there was a need to check how
good the Poisson model would be for the given data. Note that the mean
and the variance are equal for the Poisson model. In many applications
over-dispersion (i.e., variance larger than mean) is common suggesting other
possibilities such as the negative binomial model.

It can be readily seen that the method of moments is basically a substitution
method, where population moments are substituted by the corresponding
sample moments. The idea of fitting a model is not stressed there. The idea
of model fitting forms an important basis for the following method.

2. Maximum likelihood estimation

This requires consideration of a concept of fundamental importance called
the likelihood function.

Likelihood function. Let x be the observed data; {Pθ, θ ∈ Θ} with density
f(x|θ) is the model under consideration for model fitting. Then the function
L(θ,x) = f(x|θ), regarded as a function of θ for fixed x is called the likelihood
function. Often x is suppressed and f is taken as the likelihood function and
written L(θ).

Interpretation of the likelihood function as relevant for inference about θ
is the following. The data, x, has been observed already, so θ is the only
unknown. Then it makes sense to assume (according to a principle called
likelihood principle), that all information about θ is contained in L(θ) for the
observed x. Since f(x|θ) measures how likely x is if θ is the true parameter,
observing x must then provide information through L(θ), on how to regard
θ as the true parameter. The likelihood function is not unique in that for
any c(x) > 0 that may depend on x but not on θ, c(x)f(x|θ) is also a
likelihood function. What is unique are the likelihood ratios L(θ2)/L(θ1),
which indicate how plausible is θ2, relative to θ1, in the light of the given
data x. In particular, if the ratio is large, we have a lot of confidence in θ2
relative to θ1 and the reverse situation holds if the ratio is small.

Maximum likelihood estimate (MLE). MLE of θ is θ̂ = θ̂(x) where
L(θ̂, x) = maxθ∈Θ L(θ, x) if the maximum exists.
(i) MLE may not exist, or may not be unique; (ii) if θ̂ is the MLE of θ, then
q(θ̂) is taken to be the MLE of q(θ).

Example. Let X1, . . . , Xn be i.i.d Bernoulli(p). Then

L(p) = f(x1, . . . , xn|p) = p
∑

n

i=1
xi(1− p)n−

∑
n

i=1
xi .
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The MLE of p is p̂ =
∑n

i=1
xi/n as can be seen from the graph of L(p) and

using calculus:

p

L(p)

0 1

Result. MLE depends on x only through the sufficient statistics T (x).

Proof. L(θ, x) = f(x|θ) = g(T (x), θ)h(x). Therefore, we have L(θ̂(x), x) =
maxθ g(T (x), θ)h(x). Since h(x) > 0, we must have
L(θ̂(x), x) = h(x)maxθ g(T (x), θ), where the maximization is on the part
that invoves x through T (x) only.

Example. Let X1, . . . , Xn be i.i.d N(θ, 1). What is the MLE of θ? Sufficient
statistic is X̄ ∼ N(θ, 1/n). Then

L(θ, x1, . . . , xn) ∝ f(x̄|θ) ∝ exp
(
−
n

2
(x̄− θ)2

)
,

which is maximized by θ̂(x1, . . . , xn) = x̄.

θ

L(θ)

x̄

If the sample size n is large, usually the likelihood function has a sharp peak
as shown in the following figure. This peak is at the maximum likelihood

3



Figure 1: L(θ) for the double exponential model when data is normal mix-
ture.

estimate (MLE) θ̂. In situations like this, one feels θ̂ is very plausible as an
estimate of θ relative to any other points outside a small interval around θ̂.
One would then expect θ̂ to be a good estimate of the unknown θ, at least
in the sense of being close to it in some way.
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Example. Let X1, . . . , Xn be i.i.d U [0, θ], θ > 0. What is the MLE of θ?

L(θ, x1, . . . , xn) =
1

θn
I {xi ≤ θ, i = 1, 2, . . . , n} =

1

θn
I
{

max
i

xi ≤ θ
}

X(n) = maxi Xi is sufficient (minimal) for θ and L(θ) is as shown:

θ

L(θ)

0 x(n)

Therefore, θ̂(x1, . . . , xn) = x(n).

Likelihood equations.

Define L(θ, x) = logL(θ, x) as the log-likelihood function of θ. Suppose Θ is
an open set and L is differentiable in θ for each fixed x. Then, if the MLE
θ̂(x) exists, it satisfies the likelihood equations:

∂

∂θj
L(θ, x) = 0, j = 1, . . . , p.

This follows from the fact that θ̂ maximizes L(θ, x), and hence maximizes
L(θ, x) = logL(θ, x) also. Since L is differentiable, θ̂ is a zero of its derivative.

If X1, . . . , Xn are independent and Xi has density fi(x|θ), then
L(θ, x1, . . . , xn) =

∏n

i=1 fi(xi|θ), L(θ, x1, . . . , xn) =
∑n

i=1 log fi(xi|θ),
and hence the likelihood equations are given by

∂

∂θ
L(θ, x1, . . . , xn) =

n
∑

i=1

∂

∂θ
log fi(xi|θ) = 0.

1



Example. X ∼ Binomial(n, θ), 0 < θ < 1. Then

L(θ, x) =

(

n

x

)

θx(1− θ)n−x,

L(θ, x) = x log(θ) + (n− x) log(1− θ) + c(x)

∂

∂θ
L(θ, x) =

x

θ
−

n− x

1− θ
.

∂
∂θ
L(θ, x) = 0 has only one solution θ̂ = x/n which is a maximum since

∂2

∂θ2
L(θ, x) < 0.

Theorem. Let {Pθ, θ ∈ Θ} be a one-parameter exponential family with
density f(x|θ) = exp(c(θ)T (x)+ d(θ)+S(x))IA(x), and let C be the interior
of {c(θ), θ ∈ Θ}. Suppose θ → c(θ) is one-one. If the equation Eθ(T (X)) =
T (x) has a solution θ̂(x) for which c(θ̂(x)) ∈ C, then θ̂(x) is the unique MLE
of θ.

Proof. Since θ → c(θ) is one-one, maximizing the likelihood over θ is the
same as maximizing over η = c(θ). Hence consider the natural parametriza-
tion:

f(x|η) = exp (ηT (x) + d0(η) + S(x)) IA(x), η ∈ H,

L(η, x) = ηT (x) + d0(η) + S(x) if x ∈ A,

∂

∂η
L(η, x) = T (x) + d′0(η),

∂2

∂η2
L(η, x) = d′′0(η),

For η which is an interior point of H, we have, −d′0(η) = Eη(T (X)) and
−d′′0(η) = V ar(T (X)) > 0. Therefore, we get,

∂

∂η
L(η, x) = T (x)− Eη(T (X)) = 0

implying that Eη(T (X)) = T (x). Now ∂2

∂η2
L(η, x) < 0 so that L is strictly

concave. Thus we get a unique maximum at η̂(x) for which Eη(T (X))|η=η̂(x) =
T (x). The same argument goes through for k-parameter exponential family,
but one needs to work with the covariance matrix.

Example. Let X1, . . . , Xn be i.i.d N(µ, σ2), n ≥ 2. This is a 2-parameter
exponential family with

f(x1, . . . , xn) = exp

(

µ

σ2

n
∑

i=1

xi −
1

2σ2

n
∑

i=1

x2
i −

nµ2

2σ2
− n log(σ)−

n

2
log(2π)

)

,

2



so that c1(θ) =
µ

σ2 , c2(θ) = − 1
2σ2 , T1(x) =

∑n

i=1 xi, T2(x) =
∑n

i=1 x
2
i . Also,

(µ, σ2) → ( µ

σ2 ,−
1

2σ2 ) is one-one. Solve: Eθ(T (X)) = T (x). i.e., solve

Eθ(T1(X)) = Eθ(
n
∑

i=1

Xi) = nµ =
n
∑

i=1

xi,

Eθ(T2(X)) = Eθ(
n
∑

i=1

X2
i ) = n(µ2 + σ2) =

n
∑

i=1

x2
i ,

yielding, µ̂ = x̄ and σ̂2 = 1
n

∑n

i=1 x
2
i − x̄2 = 1

n

∑n

i=1(xi − x̄)2. They are MLE
if (µ̂, σ̂2) is an interior point. i.e., σ̂2 > 0.

What if n = 1? Then, f(x|µ, σ2) ∝ σ−1 exp(− 1
2σ2 (x − µ)2) = L((µ, σ2), x)

which is unbounded as σ → 0. To see this, consider µ̂ = x and L(µ̂, σ2) =
1/σ. MLE do not exist in this case.
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Some more examples where some methods of estimation work whereas others
do not.

Example. ǫ-contamination models. Consider the model with cdf:

F (x|θ) = 0.9Φ(
x− µ

σ
) + 0.1Φ(x− µ),

where Φ is the standard normal cdf. In this distribution, X ∼ N(µ, σ2) with
chance 90% and with 10% chance it is N(µ, 1). Then

f(x|θ) = 0.9
1

σ
φ(

x− µ

σ
) + 0.1φ(x− µ),

where φ is the standard normal pdf. Suppose we have a random sample,
X1, . . . , Xn from Fθ, where Θ = {θ = (µ, σ2) : −∞ < µ < ∞, σ2 > 0}. What
is MLE of θ?

L(θ, x1, . . . , xn) = f(x1, . . . , xn|θ)

=
n
∏

i=1

[

0.9
1

σ
φ(

xi − µ

σ
) + 0.1φ(xi − µ)

]

= (2π)−n/2

n
∏

i=1

[

0.9
1

σ
exp(−

(xi − µ)2

2σ2
) + 0.1 exp(−

(xi − µ)2

2
)

]

.

What is maxθ L(θ, x1, . . . , xn)? Consider µ̂ = x(1) and

L((µ̂, σ2), x1, . . . , xn)

= (2π)−n/2

[

0.9
1

σ
exp(−

(x(1) − µ)2

2σ2
) + 0.1 exp(−

(x(1) − µ)2

2
)

]

×

n
∏

i=2

[

0.9
1

σ
exp(−

(x(i) − µ)2

2σ2
) + 0.1 exp(−

(x(i) − µ)2

2
)

]

= (2π)−n/2

[

0.9

σ
+ 0.1

]

×
n
∏

i=2

[

0.9
1

σ
exp(−

(x(i) − x(1))
2

2σ2
) + 0.1 exp(−

(x(i) − x(1))
2

2
)

]

.

Note that as σ → 0, 1
σ
exp(−

(x(i)−x(1))
2

2σ2 ) → 0 for i ≥ 2. Therefore,

lim
σ→0

L((µ̂, σ2), x1, . . . , xn)

= (2π)−n/2 lim
σ→0

[

0.9

σ
+ 0.1

] n
∏

i=2

[

0.1 exp(−
(x(i) − x(1))

2

2
)

]

= ∞.
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Therefore, MLE of (µ, σ2) does not exist. However method of moments
estimate can be derived.

An example where MLE exists but method of moments do not.

Example. Let X1, . . . , Xn be i.i.d Cauchy(θ) with density
f(x|θ) = 1

π
1

1+(x−θ)2
, −∞ < x < ∞; −∞ < θ < ∞.

If n = 1, then L(θ, x1) =
1
π

1
1+(x1−θ)2

, so θ̂ = x1 is the MLE. If n = 2,

L(θ, x1, x2) =
1

π2

1

1 + (x1 − θ)2
1

1 + (x2 − θ)2
,

L(θ, x1, x2) = constant− log(1 + (x1 − θ)2)− log(1 + (x2 − θ)2),

∂

∂θ
L(θ, x1, x2) =

2(x1 − θ)

1 + (x1 − θ)2)
+

2(x2 − θ)

(1 + (x2 − θ)2)
.

Therefore, ∂
∂θ
L = 0 iff

(x1 − θ)[1 + (x2 − θ)2] + (x2 − θ)[1 + (x1 − θ)2]

[1 + (x1 − θ)2][1 + (x2 − θ)2]
= 0 iff

g(θ) ≡ (x1 − θ) + (x1 − θ)(x2 − θ)2 + (x2 − θ) + (x2 − θ)(x1 − θ)2 = 0.

Since θ̂1 = (x1 + x2)/2 satisfies x1 − θ̂1 = (x1 − x2)/2 = −(x2 − x1)/2 =
−(x2 − θ̂1), we have that θ̂1 is a root of g(θ) or a solution of ∂

∂θ
L = 0. Now

note that

g(θ) = (θ − θ̂1)
(

−2θ2 + 2(x1 + x2)θ − 2(1 + x1x2)
)

.

Therefore the other two roots, θ̂2 and θ̂3 are

x1 + x2

2
±

1

2

√

(x1 + x2)2 − 4(1 + x1x2)

=
x1 + x2

2
±

1

2

√

x2
1 + x2

2 + 2x1x2 − 4x1x2 − 4

=
x1 + x2

2
±

1

2

√

(x1 − x2)2 − 4.

Case 1. (x1−x2)
2 < 4. θ̂1 is the only real root. Check that this is the unique

MLE.
Case 2. (x1 − x2)

2 = 4. Only one root. Again, check that this is MLE.
Case 3. (x1 − x2)

2 > 4. There are 3 real roots now. Check that θ̂1 is a
minimum, θ̂2 and θ̂3 are both MLE since L(θ̂2) = L(θ̂3). Since Cauchy does
not possess any moments, method of moments estimates are not available.
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Example. Consider a random sample from U [0, θ]. Then X(n) is the MLE,
which is a function of the minimal sufficient statistic, whereas the method of
moments estimate is 2X̄ which is not.

Example. Consider a random sample X1, . . . , Xn from Gamma(α, λ). This
is a 2-parameter exponential family, so it is easy to write down the likelihood
equations. However, they cannot be solved explicitly since they involve Γ(α).
One is confronted with a computational issue here. Newton’s method can be

used in some of these situations. We need θ̂(x) such that ∂L(θ,x)
∂θ

∣

∣

∣θ=θ̂(x) = 0.

Let g(θ) = ∂L(θ,x)
∂θ

. We know that g(θ̂) = 0. Let θ̃ be an approximation for θ̂.
Then, assuming g is a smooth function,

0 = g(θ̂) = g(θ̃) + (θ̂ − θ̃)g′(θ̃) +
(θ̂ − θ̃)2

2
g′′(θ∗)

≈ g(θ̃) + (θ̂ − θ̃)g′(θ̃),

where θ∗ lies between θ̂ and θ̃, and the last term is ignored. Therefore,

θ̂ − θ̃ ≈ −g(θ̃)

g′(θ̃)
, or

θ̂ = θ̃ −
g(θ̃)

g′(θ̃)
= θ̃ −

∂L(θ,x)
∂θ

∂2L(θ,x)
∂θ2

|θ=θ̃

is an iterative procedure to locate θ̂.

Truncated data. Observations below or above a certain level cannot be
measured. For example, due to limitations of the measuring device,
X = blood alcohol level in a test is recorded if and only if X > a. Consider
X1, . . . , Xn i.i.d from this distribution. Suppose Y = untruncated blood
alcohol level ∼ N(µ, σ2). Find MLE of (µ, σ2) using X1, . . . , Xn. Note that

P (X > x|µ, σ2) = P (Y > x|Y > a, µ, σ2) =
1− Φ(x−µ

σ
)

1− Φ(a−µ
σ
)
, x > a.

Therefore,

fX(x|µ, σ
2) =

1
σ
φ(x−µ

σ
)

1− Φ(a−µ
σ
)
, x > a.

L((µ, σ2), x1, . . . , xn)

= σ−n

[

1− Φ(
a− µ

σ
)

]−n

exp

(

−
1

2σ2

n
∑

i=1

(xi − µ)2

)

I(a,∞)n(x),

L((µ, σ2), x1, . . . , xn)

= −n

{

log(σ) + log

[

1− Φ(
a− µ

σ
)

]}

−
1

2σ2

(

n
∑

i=1

(xi − x̄)2 + n(x̄− µ)2

)

.
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This is a 2-parameter exponential family, but no explicit solutions can be
derived. Numerical solutions such as Newton’s method can be used with the
likelihood equations.
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3. Least squares.

Linear models. Response y and factor/predictor x are measured on n
subjects: (x1, y1), . . . , (xn, yn). Modeling the linear dependence of y on x
for estimation and prediction is of interest. With this in view, the following
model is explored.
yi = α + βxi + ǫi, i = 1, . . . , n where ǫi are uncorrelated random errors with
mean 0 and variance σ2. Then the least squares method is to estimate α and
β by:

min
α,β

n
∑

i=1

(yi − (α + βxi))
2.

x

y

α + βx

xi

(xi, yi)

Since we need to minimize a quadratic function in α and β, we may simply

1



differentiate it and set the partial derivatives to 0. We then obtain

α̂ = ȳ − β̂x̄, and

β̂ =

∑n
i=1

(xi − x̄)(yi − ȳ)
∑n

i=1
(xi − x̄)2

=

∑n
i=1

(xi − x̄)(yi − ȳ)
√
∑n

i=1
(xi − x̄)2

√
∑n

i=1
(yi − ȳ)2

×
√
∑n

i=1
(yi − ȳ)2

√
∑n

i=1
(xi − x̄)2

= rxy
sy
sx

,

where rxy is the correlation coefficient between x and y, and sx, sy are the

s.d. of x and y, respectively. ŷ = α̂ + β̂x = α̂ + rxy
sy
sx
x is the least squares

equation to predict y based on x.

Now suppose ǫi are i.i.d N(0, σ2). Then yi are independent and
yi ∼ N(α + βxi, σ

2). What is the MLE of (α, β, σ2) ? Note that the model
is for y|x, treating x fixed. Then, we have,

f(y|α, β, σ2) = (2π)−n/2σ−n exp

(

− 1

2σ2

n
∑

i=1

(yi − α− βxi)
2

)

,

L(α, β, σ2) = −n log(σ)− 1

2σ2

n
∑

i=1

(yi − α− βxi)
2.

For each fixed σ2, maximization of L(α, β, σ2) over α, β is the same as mini-
mization of

∑n
i=1

(yi−α−βxi)
2. Therefore MLE of (α, β) is the same as the

least squares estimate. This shows an optimality property of least squares
under normality.

Now we show that the above normal linear model is a 3-parameter exponen-
tial family. Note that

n
∑

i=1

(yi − α− βxi)
2 =

n
∑

i=1

(

yi − α̂− β̂xi − (α− α̂)− (β − β̂)xi

)2

=
n
∑

i=1

(

yi − α̂− β̂xi

)2

+
n
∑

i=1

{

−(α− α̂)− (β − β̂)xi

}2

−2
n
∑

i=1

(yi − α̂− β̂xi)
{

(α− α̂) + (β − β̂)xi

}

=
n
∑

i=1

(

yi − α̂− β̂xi

)2

+
n
∑

i=1

{

(α− α̂) + (β − β̂)xi

}2

,

2



since

n
∑

i=1

(yi − α̂− β̂xi)
{

(α− α̂) + (β − β̂)xi

}

=
n
∑

i=1

(yi − ȳ − β̂(xi − x̄))
{

(α− α̂) + (β − β̂)xi

}

= (α− α̂)
n
∑

i=1

(yi − ȳ)− (α− α̂)β̂
n
∑

i=1

(xi − x̄) + (β − β̂)
n
∑

i=1

(yi − ȳ)xi

−β̂(β − β̂)
n
∑

i=1

xi(xi − x̄)

= (β − β̂)
n
∑

i=1

xi

{

(yi − ȳ)− β̂(xi − x̄)
}

= (β − β̂)

{

n
∑

i=1

(xi − x̄)(yi − ȳ)− β̂

n
∑

i=1

(xi − x̄)2

}

= 0.

Therefore,

f(y|α, β, σ2) = (2π)−n/2σ−n

× exp

(

− 1

2σ2

[

n
∑

i=1

(yi − α̂− β̂xi)
2 +

n
∑

i=1

{(α− α̂) + (β − β̂)xi}2
])

,

and hence {α̂, β̂,∑n
i=1

(

yi − α̂− β̂xi

)2

} is sufficient for (α, β, σ2). To show

that this is an exponential family, note

n
∑

i=1

{

(α− α̂) + (β − β̂)xi

}2

=
n
∑

i=1

{

(α + βxi)− (α̂ + β̂xi)
}2

=
n
∑

i=1

(α + βxi)
2 +

n
∑

i=1

(α̂ + β̂xi)
2

−2
n
∑

i=1

(α̂ + β̂xi)(α + βxi).
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Therefore,

f(y|α, β, σ2)

= exp

(

α

σ2

n
∑

i=1

(α̂ + β̂xi) +
β

σ2

n
∑

i=1

(α̂ + β̂xi)xi

− 1

2σ2

[

n
∑

i=1

(yi − α̂− β̂xi)
2 +

n
∑

i=1

(α̂ + β̂xi)
2

]

− 1

2σ2

n
∑

i=1

(α + βxi)
2 − n log(σ)− n log(

√
2π)

)

,

so that we can take c1(α, β, σ
2) = α/σ2, T1(y) =

∑n
i=1

(α̂+β̂xi), c2(α, β, σ
2) =

β/σ2, T2(y) =
∑n

i=1
(α̂ + β̂xi)xi, c3(α, β, σ

2) = −1/(2σ2),

T3(y) =
∑n

i=1
(yi − α̂ − β̂xi)

2 +
∑n

i=1
(α̂ + β̂xi)

2. Then, we can also use
exponential family methods to find MLE of (α, β, σ2). Since we already
know the MLE for α and β, and since, for each σ2,

max
α,β

L(α, β, σ2) = L(α̂, β̂, σ2) = σ−n exp

(

− 1

2σ2

n
∑

i=1

(yi − α̂− β̂xi)
2

)

,

we can find the MLE of σ2 by finding

max
σ2

L(α̂, β̂, σ2) = max
σ2

(σ2)−n/2 exp

(

− t2

2σ2

)

,

where t2 =
∑n

i=1
(yi − α̂− β̂xi)

2. Then,

L(α̂, β̂, σ2) = −n

2
log(σ2)− 1

2σ2
t2,

∂L(α̂, β̂, σ2)

∂σ2
= −n

2
σ2 +

t2

2

1

(σ2)2
=

1

2σ4
(t2 − nσ2).

Check that MLE of σ2 is

σ̂2 =
t2

n
=

1

n

n
∑

i=1

(yi − α̂− β̂xi)
2.
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Criteria of Estimation – Optimality

How should one choose an estimate when many are available? In other words,
what criteria are to be used to determine the procedure of estimation? This
prompts the question: how good is an estimate?

Suppose X ∼ Pθ and T (X) estimates q(θ). Then |T (X) − q(θ)| is the dis-
crepancy in estimation. Does there exist T (X) which can minimize this
discrepancy (uniformly) for all θ? No. Take q(θ) = θ. For θ = θ1, T (X) = θ1
is the best, but this is not optimal for any other θ. Define L(q(θ), T (X)) to
be the loss due to estimating q(θ) by T (X). Standard losses in the theory of
estimation are

L(q(θ), T (X)) =

{

|q(θ)− T (X)| absolute error loss;
(q(θ)− T (X))2 squared error loss.

We have already noted that the loss cannot be minimized uniformly. Also,
it depends on X which is random. Therefore, we average it over all samples.
Then we get R(q(θ), T (X)) = EθL(q(θ), T (X)) which is called the risk. Thus,
we have Eθ(|T (X)− q(θ)|) =

∫

|q(θ)−T (x)|f(x|θ) dx = mean absolute error
and Eθ((T (X) − q(θ))2) =

∫

(q(θ) − T (x))2f(x|θ) dx = mean square error
(MSE). Since these cannot be minimized uniformaly for all θ, one may restrict
T (X) to some class of estimators and then choose the best in that class.

Unbiased estimators. T (X) is said to be unbiased for q(θ) if
Eθ(T (X)) = q(θ) for all θ ∈ Θ.

Example. X1, . . . , Xn i.i.d Exp(λ), q(λ) = 1/λ. Then X̄ is an unbiased
estimator of q(λ) since E(X̄) = E(X) = 1/λ for all λ.

Note that MSE for unbiased estimators is just the variance of the estimate:

Eθ(T (X)− q(θ))2 = Eθ(T (X)− Eθ(T (X)))2 = V ar(T (X)).

Unbiasedness means only that Eθ(T (X)) − q(θ) = 0. i.e., if used over and
over again, on the average, underestimation will balance overestimation; no
consideration is given to how often or by how much the estimate will depart
from the parameter.

It is possible in many situations to find an estimate which is best among
all unbiased estimates in terms of variance. Such an estimate is called Uni-

formly Minimum Variance Unbiased Estimate or UMVUE or Best Unbiased
Estimate. Note that

1



• UMVUE may not exist;

• unbiasedness may be ridiculous;

• there may be better and simpler estimates which are not unbiased.

Example (Unbiased estmates do no exist). SupposeX ∼ Binomial(n, p).
We want to estimate q(p) = 1

p
. Since p̂ = X/n for both method of moments

and MLE, n/X is the corresponding estimate, except when X = 0. (No
estimate when X = 0.) Unbiasedness means,

Ep(T (X)) =
1

p
for all p ∈ (0, 1).

(Note that T (x) needs to be defined for all realizable x for computing E(T ).)
Then, we must have,

n
∑

x=0

T (x)

(

n

x

)

px(1− p)n−x =
1

p
for all p ∈ (0, 1). i.e.,

T (0)(1− p)n +
n

∑

x=1

T (x)

(

n

x

)

px(1− p)n−x =
1

p
for all p ∈ (0, 1).

As p → 0, LHS → T (0) which is a real number, whereas RHS → ∞. No
such T exists.

Example (Unbiased estimates are silly). Suppose X ∼ truncated Pois-
son:

Pλ(X = x) =
exp(−λ)λx/x!

1− exp(−λ)
, x = 1, 2, . . .

Estimate q(λ) = exp(−λ), a positive quantity. Consider any unbiased esti-
mate T (X). Then,

exp(−λ) = E(T (X)) =
∞
∑

x=1

T (x)
exp(−λ)λx/x!

1− exp(−λ)
,

so that

1− exp(−λ) = E(T (X)) =
∞
∑

x=1

T (x)
λx

x!
, ∀λ > 0.

Now the power series expansion gives,

LHS = 1−

[

1− λ+
λ2

2!
−

λ3

3!
+ · · ·

]

= −
∞
∑

x=1

(−1)xλx

x!
=

∞
∑

x=1

(−1)x+1λx

x!
.

2



Therefore, we must have that

∞
∑

x=1

(−1)x+1λx

x!
=

∞
∑

x=1

T (x)
λx

x!
, ∀λ > 0.

Since two power series agree on an interval, their coefficients must be equal.
Therefore the only unbiased estimate for exp(−λ) is

T (x) =

{

1 if x is odd;
−1 if x is even.

i.e., our estimate T (x) < 0 if x is even!

Let θ̂(x) be an estimator of θ. Consider L(θ, d) = (θ− d)2, the squared error
loss. Then

MSE = R(θ, d) = Eθ(d(X)− θ)2

= Eθ [d(X)− Eθ(d(X)) + Eθ(d(X))− θ]2

= Eθ [d(X)− Eθ(d(X))]2 + [Eθ(d(X))− θ]2

+2 [Eθ(d(X))− θ]Eθ [d(X)− Eθ(d(X))]

= V arθ(d(X)) + Bias2(θ),

where Bias(θ) = Eθ(d(X)) − θ. If Eθ(θ̂(X)) = θ for all θ, i.e., θ̂(X) is
unbiased for θ, then MSE = Variance.

Example. LetX1, . . . , Xn be i.i.dN(µ, σ2). Consider the following estimates
for σ2.

T1(X) =
1

n

n
∑

i=1

(Xi − X̄)2 =
S2

n
,

T2(X) =
1

n− 1

n
∑

i=1

(Xi − X̄)2 =
S2

n− 1
.

Since S2 =
∑n

i=1
(Xi−X̄)2 ∼ σ2χ2

n−1, E(T1) =
n−1

n
σ2 and E(T2) = σ2. Thus,

3



T2 is unbiased and T1 is not. However, compare their MSE.

MSE(T1) = E(T1 − σ2)2 = V ar(T1) + Bias2

= V ar

(

S2

n

)

+

(

E(
S2

n
)− σ2

)2

=
1

n2
V ar(S2) +

(

n− 1

n
σ2 − σ2

)2

=
1

n2
2(n− 1)σ4 +

1

n2
σ4 = σ4

[

2(n− 1)

n2
+

1

n2

]

= σ4

(

2n− 1)

n2

)

, and

MSE(T2) = V ar(T2) = V ar

(

S2

n− 1

)

=
1

(n− 1)2
2(n− 1)σ4 = σ4

(

2

n− 1

)

.

Note that,

2

n− 1
−

2n− 1)

n2
=

2n2 − (2n− 1)(n− 1)

n2(n− 1)

=
2n2 − {2n2 − 2n− n+ 1)}

n2(n− 1)
=

3n− 1

n2(n− 1)
> 0.

Thus, T1 has a smaller MSE than T2 for all σ
2 even though it is not unbiased.

T2 is often preferred because T1 can underestimate σ2 which is undesirable.
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How does one derive the UMVUE when it exists?

Let T = set of all unbiased estimators of q(θ). i.e.,

T = {T (X) : Eθ(T (X)) = q(θ) ∀θ ∈ Θ} .

Then MSEθ(T ) = R(θ, T ) = V arθ(T ) for T ∈ T . Sometimes it is possible to
find T ∗ ∈ T such that V arθ(T

∗) ≤ V arθ(T ) for all θ and all T ∈ T . Then T ∗

is called the UMVUE of q(θ). One method of deriving this is by using the
Rao-Blackwell Theorem. Some basic results in mathematics must precede it.

Result. Let φ be a convex function defined on (a, b) and let a < t < b. Then
there exists a line
y = L(x) = φ(t) + c(x− t) passing through (t, φ(t)) such that

(∗) L(x) ≤ φ(x) ∀x ∈ (a, b).

x

y

0

1

1 2

Jensen’s Inequality. If φ is a convex function defined on I = (a, b) and X

is a random variable such that P (X ∈ I) = 1 and E(|X|) < ∞, then

(∗∗) φ(E(X)) ≤ E(φ(X)).

If φ is strictly convex, the inequality is strict unless X is degenerate.

Proof. Let y = L(x) be as in (*) for which L(t) = φ(t) when t = E(X).
Then, from (*),

(∗ ∗ ∗) E(φ(X)) ≥ E(L(X)) = L(E(X)) = L(t) = φ(t) = φ(E(X)).

1



If φ is strictly convex, then the inequality in (*) is strict for all x 6= t, so
inequality in (***) is strict unless φ(X) = E(φ(X)) w.p. 1. The proof
can be extended to random vectors giving the following version of Jensen’s
Inequality, which will be used here.

Jensen’s Inequality. If φ is a convex real-valued function defined on a
non-empty convex set S ⊂ Rk and Z is a random vector with E(||Z||2) < ∞
and P (Z ∈ S) = 1, then E(Z) ∈ S and

φ (E(Z)) ≤ E (φ(Z)) ,

the inequality being strict if φ is strictly convex and Z is not degenerate.

Note: S is a convex set means, x, y ∈ S implies αx + (1 − α)y ∈ S, for
0 < α < 1.
φ is a convex function means, φ(αx+(1−α)y) ≤ αφ(x)+ (1−α)φ(y). Refer
to Rudin: Real and Complex Analysis for the above discussion.

x

y

0

1

1 2x1 x2

Theorem (Rao-Blackwell). Let X be a random vector with distribution
Pθ, θ ∈ Θ, and let T be sufficient for θ. Let δ(X) be an estimator of θ and
δ∗(t) = E [δ(X)|T = t]. Let L(θ, d) be a strictly convex loss function (in d)
and R(θ, d) = E [d(X)|T = t]. Then, if R(θ, δ) = E [L(θ, δ(X))] < ∞, we
obtain

R(θ, δ∗) < R(θ, δ), for all θ ,

unless δ(x) = δ∗(T (x)) w.p.1.

2



Proof. Fix θ and define φ(d) = L(θ, d). Then it is given that φ is strictly
convex. Therfore,

L(θ, δ∗(t)) = φ (E [δ(X)|T = t]) < E [φ (δ(X)) |T = t] = E [L(θ, δ(X))|T = t] .

Taking expectations on both sides w.r.t the distribution of T , we get,

E [L(θ, δ∗(T ))] < E [E {L(θ, δ(X))|T}] , i.e.,

R(θ, δ∗) < E [L(θ, δ(X))] = R(θ, δ).

Note 1. δ∗ is an estimator for θ since Eθ [δ(X)|T = t] is free of θ, and de-
pends on t only.

2. R-B says that any estimator can be improved by conditionally averaging
with respect to T if the loss is convex (since T has all the information about
θ). Therefore, an estimate depending on T is as good as δ(X). Given δ(x),
get δ∗(t) by averaging on partitioning sets.

3. Corollary. Let θ̂(X) be an unbiased estimator of θ. Then θ̂∗(T ) =

E
[

θ̂(X)|T
]

is also unbiased and has smaller variance than θ̂(X) for all θ if

V ar(θ̂∗(T )) < ∞.

Proof. L(θ, d) = (θ − d)2. Therefore, R(θ, d(X)) = E(θ − d(X))2 =
V ar(d(X)) if Eθ(d(X)) = θ. Since L is strictly convex, R(θ, θ̂∗) < R(θ, θ̂) if

θ̂∗(t) = E
[

θ̂(X)|T = t
]

. Further, Eθ

[

θ̂∗(T )
]

= E
{

E
[

θ̂(X)|T
]}

= E
[

θ̂(X)
]

= θ. Therefore θ̂∗ is unbiased and hence R(θ, θ̂∗) = E
[

θ̂∗ − θ
]2

= V ar(θ̂∗).

An alternative proof of R-B without using the Jensen’s inequality exists and
is as follows.

Theorem (Rao-Blackwell), another version. If T is an unbiased esti-
mate of τ(θ) and S is a sufficient statistic, the T ′ = E(T |S) is also unbiased
for τ(θ) and

Var(T ′|θ) ≤ Var(T |θ) ∀θ.

Proof. By the property of conditional expectations,

E (T ′|θ) = E {E(T |S) | θ} = E (T |θ) .

(You may want to verify this at least for the discrete case.) Also,

Var(T |θ) = E
[

{(T − T ′) + (T ′ − τ(θ))}2 | θ
]

= E
{

(T − T ′)2 | θ
}

+ E
{

(T ′ − τ(θ))2 | θ
}

,

3



because

Cov {T − T ′, T ′ − τ(θ) | θ} = E {(T − T ′)(T ′ − τ(θ) | θ}

= E [E {(T ′ − τ(θ))(T − T ′) | S} |θ]

= E [(T ′ − τ(θ))E(T − T ′|S) | θ]

= 0.

The decomposition of Var(T |θ) above shows that it is greater than or equal
to Var(T ′|θ).
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ANOVA Formula

If Z and Y are jointly distributed (with finite second moments),
then

E (Y ) = E [E (Y |Z )] ,

Var(Y ) = E [Var(Y |Z )] + Var [E (Y |Z )] ≥ Var [E (Y |Z )] .

The first term on RHS is the ‘within variation’: if Y is partitioned
according to values of Z , how much is left to be explained in Y for
given Z . The second term is the variation between Ŷ (Z ) values,
and is the ‘between variation’. In a study, Var(Y ) may be large,
but if Var(Y |Z ) is small, it makes sense to use Z to predict Y
using Z . This result is known as the Analysis of Variance formula,
and the ANOVA for regression is based on it.



z = duration and y = interval (both in minutes) for eruptions of
Old Faithful Geyser

z y z y z y z y z y z y

4.4 78 3.9 74 4.0 68 4.0 76 3.5 80 4.1 84

2.3 50 4.7 93 1.7 55 4.9 76 1.7 58 4.6 74

3.4 75 4.3 80 1.7 56 3.9 80 3.7 69 3.1 57

4.0 90 1.8 42 4.1 91 1.8 51 3.2 79 1.9 53

4.6 82 2.0 51 4.5 76 3.9 82 4.3 84 2.3 53

3.8 86 1.9 51 4.6 85 1.8 45 4.7 88 1.8 51

4.6 80 1.9 49 3.5 82 4.0 75 3.7 73 3.7 67

4.3 68 3.6 86 3.8 72 3.8 75 3.8 75 2.5 66

4.5 84 4.1 70 3.7 79 3.8 60 3.4 86

Table: Eruptions of Old Faithful Geyser, August 1 – 4, 1978
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Definition A statistic T or its distribution {Pθ, θ ∈ Θ} is said to be (bound-
edly) complete if for any real valued (bounded) function h(T ) with E(|h(T )|) <
∞,

Eθh(T ) = 0 ∀ θ implies h(T ) = 0

(with probability one under all θ).

Suppose T is discrete. The condition then simply means the family of p.m.f.’s
fT (t|θ) of T is rich enough that there is no non-zero h(t) that is orthogonal
to fT (t|θ) for all θ in the sense

∑

t h(t)fT (t|θ) = 0 for all θ. In general, T is
complete iff h(T ) ≡ 0 is the only unbiased estimator of 0.

Complete implies boundedly complete.

Example. Let X1, . . . , Xn be i.i.d Bernoulli(p), 0 < p < 1. E(X1 −X2) = 0
for all p, so X is not complete (but sufficient). T =

∑n
i=1

Xi is minimal
sufficient for p, and T ∼ Binomial(n, p).
Claim: T is complete.
Suppose Eph(T ) = 0 for all p ∈ (0, 1). i.e.,

n
∑

t=0

h(t)

(

n

t

)

pt(1− p)n−t = 0 ∀ p ∈ (0, 1), or

h(0)(1− p)n +
n
∑

t=1

h(t)

(

n

t

)

pt(1− p)n−t = 0 ∀ p ∈ (0, 1).

As p→ 0, LHS → h(0) and RHS = 0. Therefore, h(0) = 0. Hence,

n
∑

t=1

h(t)

(

n

t

)

pt(1− p)n−t = 0 ∀ p ∈ (0, 1).

Thus we get h(1) = 0 = h(2) and finally h(n) = 0.

Example. Let X1, . . . , Xn be i.i.d N(θ, θ2), θ > 0. Then

f(x1, . . . , xn|θ = (2π)−n/2θ−n exp

(

−
1

2θ2

n
∑

i=1

(xi − θ)2

)

= (2π)−n/2θ−n exp

(

−
1

2θ2

[

n
∑

i=1

x2i − 2θ
n
∑

i=1

xi + nθ2

])

= (2π)−n/2θ−n exp

(

1

θ

n
∑

i=1

xi −
1

2θ2

n
∑

i=1

x2i −
n

2

)

.

1



Thus, we see that, T (X) = (
∑n

i=1
Xi,
∑n

i=1
X2

i ) is (minimal) sufficient for θ
(even though θ is now one-dimensional).
Claim: T = (T1, T2) is not complete.
Note that h(t1, t2) = t2 −

2

n+1
t21 is not the 0 function, but Eθ [T2 − T 2

1 ] = 0
for all θ. To see this, observe, T1 =

∑n
i=1

Xi ∼ N(nθ, nθ2), so

Eθ(T
2

1 ) = Eθ

[

n
∑

i=1

Xi

]2

= nθ2 + (nθ)2 = n(n+ 1)θ2.

Also,

Eθ(T2) = Eθ

[

n
∑

i=1

X2

i

]

=
n
∑

i=1

Eθ(X
2

i ) = n(θ2 + θ2) = 2nθ2,

and hence

Eθ

[

(
2

n+ 1
)T 2

1

]

=
2n(n+ 1)

n+ 1
θ2 = 2nθ2 = Eθ(T2).

Theorem. Let X have distribution Pθ, θ ∈ Θ and let T = T (X) be complete
sufficient for θ (or Pθ, θ ∈ Θ). Then every function h(T ) is the unique
unbiased estimate of its own expected value. i.e., for any h, if q(θ) = Eθh(T ),
then h(T ) is the only unbiased estimate available for q(θ).

Proof. Suppose h1(T ) and h2(T ) are both unbiased estimates of a parametric
function ψ(θ). Then

Eθ [h1(T )− h2(T )] = 0 ∀ θ ∈ Θ.

i.e., if we let h∗(T ) = h1(T )− h2(T ), then

Eθ [h
∗(T )] = 0 ∀ θ ∈ Θ.

Since T is complete, h∗(T ) ≡ 0. i.e. h1(T ) = h2(T ).

Theorem (Lehmann-Scheffe). Suppose T (X) is complete sufficient (for
Pθ, θ ∈ Θ) and S(X) is any unbiased estimate of q(θ). Then T ∗(X) =
E(S(X)|T ) is the unique UMVUE of q(θ) if V arθ(T

∗(X)) <∞ for all θ.

Proof. Both S and T ∗ are unbiased, so that their MSE is the respective
variance. By the Rao-Blackwell theorem, V arθ(T

∗) < V arθ(S) unless S =
T ∗. To show uniqueness, we show that T ∗ is the same, whichever S we start
with, so that T ∗ cannot be improved upon further.
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Let S1 and S2 be two unbiased estimators of q(θ), and let g1(T ) = E(S1(X)|T )
and g2(T ) = E(S2(X)|T ). But then,

E(g1(T )) = E(S1) = q(θ) = E(S2) = E(g2(T )), ∀ θ ∈ Θ.

Since T is complete, there can be only one unbiased estimate of q(θ) based
on T . Therefore g1 ≡ g2.

Note. 1. Given any S(X) unbiased for q(θ), UMVUE is found by obtaining
T ∗(X) = E(S(X)|T ) where T is complete sufficient.

2. If we already have h(T ) unbiased for q(θ) and T is complete sufficient,
then h(T ) is UMVUE, since T ∗ = E(h(T )|T ) = h(T ).

Remark. The idea behind the L-S method is that, conditioning on a suffi-
cient statistic (possibly) improves the estimator (R-B), and conditioning on
a complete sufficient statistic gives the most possible improvement.

Example. Let X1, . . . , Xn be i.i.d Poisson(λ), λ > 0. Find the UMVUE of
q(λ) = 1−exp(−λ). Note that q(λ) = 1−exp(−λ) = Pλ(X1 > 0). Therefore,

S(X1, . . . , Xn) = I(X1 > 0) =

{

1 if X1 ≥ 1;
0 if X1 = 0

is an unbiased estimator of q(λ). Also, T (X) =
∑n

i=1
Xi is complete sufficient

for λ. (Check this.) Therefore,

h(T ) = E(S(X)|T (X)) = E(I(X1 > 0)|
n
∑

i=1

Xi) = P (X1 > 0|
n
∑

i=1

Xi)

is the unique UMVUE. We need the conditional distribution of X1|
∑n

i=1
Xi.

Note that X1|(
∑n

i=1
Xi = t) ∼ Binomial(t, 1

n
). (This is from the fact that

the conditional joint distribution of the Xi’s is a multinomial, as shown pre-
viously.) Therefore

h(t) = P (X1 > 0|
n
∑

i=1

Xi = t) = 1−

(

t

0

)(

1

n

)0(

n− 1

n

)t

= 1−

(

n− 1

n

)t

.

Thus, 1 −
(

n−1

n

)T
is the UMVUE. (How does one show directly that this is

unbiased?)

Example. Let X1, . . . , Xn be i.i.d Bernoulli(p), 0 < p < 1. Find UMVUE
of p.
(i) Consider S(X1, . . . , Xn) = X1. Then E(X1) = p for all 0 < p < 1, so that

3



S is an unbiased estimate of p. Therefore, the UMVUE of p is E(X1|
∑n

i=1
Xi)

since
∑n

i=1
Xi is complete sufficient. Now see that

E(X1|
n
∑

i=1

Xi) = E(X2|
n
∑

i=1

Xi) = · · · = E(Xn|
n
∑

i=1

Xi).

Therefore,

E(X1|

n
∑

i=1

Xi) =
1

n

n
∑

j=1

E(Xj|

n
∑

i=1

Xi) =
1

n
E

(

n
∑

j=1

Xj|

n
∑

i=1

Xi

)

=
1

n

n
∑

i=1

Xi.

(ii)
∑n

i=1
Xi is complete sufficient. Also, E(

∑n
i=1

Xi) = np, so that h(
∑n

i=1
Xi) =

1

n

∑n
i=1

Xi is an unbiased estimate of p depending on the complete sufficient
statistics only; thus unique UMVUE.
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Theorem. Let Pθ, θ ∈ Θ be a k-parameter exponential family with den-

sity f(x|θ) = exp
(

∑k
j=1 cj(θ)Tj(x) + d(θ) + S(x)

)

IA(x). Suppose {c(θ) =

(c1(θ), . . . , ck(θ), θ ∈ Θ} contains an open set (open rectangle) in Rk. (This
property is called full-rank.) ThenT(X) = (T1, . . . , Tk) is complete sufficient.

Proof. See Lehmann: Testing Statistical Hypotheses for a proof involving
uniquness of Laplace transforms. We will use the result.

Example. Let X1, . . . , Xn be i.i.d N(µ, σ2), −∞ < µ <∞, σ2 > 0. T (X) =
(X̄,

∑n
i=1(Xi − X̄)2) is sufficient. Since the set of c(θ) = ( µ

σ2 ,−
1

2σ2 ) for
−∞ < µ <∞, σ2 > 0 is R1 ×R+, an open set, T (X) is complete also.

Therefore, since E(X̄) = µ and X̄ = h(T (X)), we obtain that X̄ is the
unique UMVUE of µ.

Further,
∑n

i=1(Xi − X̄)2) ∼ σ2χ2
n−1, and hence

E

[

1

n− 1

n
∑

i=1

(Xi − X̄)2

]

= σ2, ∀ (µ, σ2).

Therefore, 1
n−1

∑n
i=1(Xi − X̄)2, which is a function of T (X) alone, is the

unique UMVUE of σ2.

Suppose we want to estimate q(µ, σ2) = µ/σ. Then, for n ≥ 3, the UMVUE
of q(µ, σ2) is

c(n)
X̄

√

1
n−1

∑n
i=1(Xi − X̄)2

,

where c(n) may be found from

E

[

X̄
√

∑n
i=1(Xi − X̄)2

]

= E(X̄)E

[

n
∑

i=1

(Xi − X̄)2

]−1/2

,

where E(X̄) = µ and
∑n

i=1(Xi − X̄)2/σ2 ∼ Γ(1/2, (n− 1)/2).

Example. Let X1, . . . , Xn be i.i.d N(θ, θ2), θ > 0. Then T (X) =
(
∑n

i=1Xi,
∑n

i=1X
2
i ) is (minimal) sufficient for θ, but it is not complete.

Therefore it is not possible to apply L-S to find the UMVUE of θ.

There is an interesting technical theorem, due to D. Basu, which establishes
independence of a sufficient statistic and an ancillary statistic. The result is
useful in many calculations. Recall that parts of a minimal sufficient statistic
may be ancillary, so conditions are needed for this to happen.

1



Theorem (Basu). Suppose T is complete sufficient for {Pθ, θ ∈ Θ}. Let S
be any ancillary statistic. Then T and S are independent for all θ.

Proof. Because T is sufficient, the conditional probability of S being in some
set B given T is free of θ and may be written as Pθ(S ∈ B|T ) = φ(T ). Since
S is ancillary, Eθ(φ(T )) = Pθ(S ∈ B) = c, where c is a constant. Consider a
B for which 0 < c < 1. Let ψ(T ) = φ(T ) − c. Then Eθψ(T ) = 0 for all θ,
implying ψ(T ) = 0 (with probability one), i.e., Pθ(S ∈ B|T ) = Pθ(S ∈ B).

Alternatively, let f(t, s|θ) be the joint density of (T, S) and FS(s) be the cdf
of S. Then FS is free of θ since S is ancillary. Let fT (t|θ) be the density of
T and FS|T (s) be the conditional cdf of S|T (which is again free of θ since T
is sufficient). Note that, for any s,

∫

FS(s)fT (t|θ) dt = FS(s)

∫

fT (t|θ) dt = FS(s).

∫

FS|T=t(s)fT (t|θ) dt =

∫ ∞

−∞

[
∫ s

−∞

fS|T=t(u) du

]

fT (t|θ) dt

=

∫ ∞

−∞

∫ s

−∞

fS|T=t(u) fT (t|θ) dudt

=

∫ ∞

−∞

∫ s

−∞

fS,T (u, t) dudt

=

∫ s

−∞

(
∫ ∞

−∞

fS,T (u, t) dt

)

du

=

∫ s

−∞

fS(u) du = FS(s).

Therefore,
∫ ∞

−∞

[

FS(s)− FS|T=t(s)
]

fT (t|θ) dt = 0, ∀ θ.

Fix s and let h(T ) = FS(s)− FS|T=t(s), which involves T but is totally free
of θ. Then Eθh(T ) = 0 for all θ. Since T is complete, h ≡ 0. That means,
FS|T ≡ FS, implying independence of S and T for all θ.

Example. Suppose X1, X2, . . . , Xn are i.i.d. N(µ, σ2). Then X̄ and S2 =
∑

(Xi−X̄)2 are independent. To prove this, treat σ2 as fixed to start with and
µ as the parameter. Then X̄ is complete sufficient and S2 =

∑

(Xi − X̄)2 =
∑
[

(Xi − µ)− (X̄ − µ)
]2

=
∑

(Zi − Z̄)2 is ancillary. Hence X̄ and S2 are
independent for each σ2 by Basu’s theorem.

Example. Suppose X1, X2, . . . , Xn are i.i.d U(θ1, θ2). Then for any 1 < r <
n, Y = (X(r)−X(1))/(X(n)−X(1)) is independent of (X(1), X(n)). This follows

2



because Y is ancillary.

It is shown below that a complete sufficient statistic is minimal sufficient. In
general, the converse isn’t true. Also, technically, neither may exist or only
one of them may exist.

Theorem. A (bdd) complete sufficient statistic is minimal sufficient, assum-
ing minimal sufficient statistic exists.

Proof. Let T be minimal sufficient and U be complete sufficient. Then
T = h(U) for some function h since minimal sufficiency provides coarser
partition. We need to show that T and U are equivalent statistics (i.e.,
produce the same partition). It is enough to show that for all (integrable) ψ,

E [ψ(U)|T ] = ψ(U).

(Note that T = h(U) and the above requirement is simply that averaging
ψ(U) where h(U) is fixed, reproduces ψ(U).)

Suppose not. That is, let there exist ψ such that E [ψ(U)|h(U)] is not iden-
tical to ψ(U). Define

k(U) = ψ(U)− E [ψ(U)|h(U)] .

Then k 6= 0 but

E [k(U)] = E {ψ(U)− E [ψ(U)|h(U)]}

= E(ψ(U))− E {E [ψ(U)|h(U)]}

= E(ψ(U))− E {ψ(U)} = 0.

However, U is complete!

Corollary. Let P = {Pθ, θ ∈ Θ} be a k-parameter exponential family with
density

f(x|θ) = exp(

(

k
∑

i=1

ci(θ)Ti(x+ d(θ) + S(x)

)

IA(x),

where C = {(c1(θ, . . . , ck(θ)) : θ ∈ Θ} contains an open set. Then (T1, . . . , Tk)
is minimal sufficient.

Proof. (T1, . . . , Tk) is complete sufficient as remarked previously, hence min-
imal sufficient.

3



Information contained in an experiment

It is of interest to know how informative is an experiment about the un-
known parameters. Binomial and negative binomial sampling provide differ-
ent amount of information depending on how large or small p is. In Infor-

mation Theory, Shannon information is mostly used, which is a measure of
entropy or randomness, but in statistics different measures are used. The
notion that is described and used here is based on ‘the difference that we see
when we change the model continuously from one to another’.

Information number (Fisher). Let {Pθ, θ ∈ Θ} be a family of probability
distributions satisfying the following mathematical regularity conditions.

(A) A = {x : f(x|θ) > 0} does not depend on θ. For all x ∈ A and θ ∈ Θ,
the score function,

S(x) =
∂

∂θ
log f(x|θ) =

∂
∂θ
f(x|θ)

f(x|θ)

exists and is finite.

S(x) measures the relative rate at which f(x|θ) changes at x. Since x varies
(due to X being random) this needs averaging.

I(θ) = Eθ

[

∂

∂θ
log f(X|θ)

]

2

=

∫
(

∂

∂θ
log f(x|θ)

)

2

f(x|θ) dx

is called the Fisher Information number of θ contained in f(.|θ) or Pθ. Clearly,
0 ≤ I(θ) ≤ ∞. To get a feeling for I(θ), consider an extreme case where
f(x|θ) is free of θ. Clearly, in this case there can be no information about θ
in X. On the other hand, if I(θ) is large, then on an average a small change
in θ leads to a big change in log f(x|θ), i.e., f depends strongly on θ and one
expects there is a lot that can be learned about θ.

Example. X ∼ Bernoulli(p). i.e., how much information is there in a single

1



toss of a coin on its success probability, p?

f(x|p) = px(1− p)1−x, x = 0, 1

log f(x|p) = x log p+ (1− x) log(1− p)

∂

∂p
log f(x|p) =

x

p
−

1− x

1− p
=

x− xp− p+ xp

p(1− p)
=

x− p

p(1− p)
, so

I(p) = Ep

[

∂

∂p
log f(X|p)

]

2

= Ep

[

(X − p)2

p2(1− p)2

]

=
p(1− p)

p2(1− p)2
=

1

p(1− p)
=

1

V arp(X)
.

In other words, Information is inversely proportional to the variance. In-
tuitively, if the variance is large, or if p is far away from 0 or 1, then one
will need a large number of observations to get a reliable estimate of p. If
p is close to 0 or 1, the observations will be mostly 0, or mostly 1, so that
estimation is easy. On the other hand, if p is close to 1/2, there will be a lot
of fluctuation, and much variability. Then it will be difficult to distinguish
between models.

Theorem. If (A) holds, and
(B) the derivative with respect to θ of

∫

f(x|θ) dx can be obtained by differ-
entiating under the integral sign, then
(i) Eθ

(

∂
∂θ

log f(X|θ)
)

= 0, and
(ii) I(θ) = V arθ

[

∂
∂θ

log f(X|θ)
]

.
In addition, if
(C) the second derivative (w.r.t. θ) of log f(x|θ) exists for all x and θ, and
the second derivative of

∫

f(x|θ) dx can be obtained by differentiating twice
under the integral sign, then

(iii) I(θ) = −Eθ

[

∂2

∂θ2
log f(X|θ)

]

.

(A)-(C) are called Cramer-Rao (C-R) regularity conditions.

Proof. (i). Since
∫

∞

−∞
f(x|θ) dx = 1, we have,

0 =
∂

∂θ

∫

∞

−∞

f(x|θ) dx =

∫

∂

∂θ
f(x|θ) dx =

∫

{

∂
∂θ
f(x|θ)

f(x|θ)

}

f(x|θ) dx

=

∫
{

∂

∂θ
log f(x|θ)

}

f(x|θ) dx = Eθ

{

∂

∂θ
log f(X|θ)

}

.

2



(ii). Now, using this, we get,

I(θ) = Eθ

[

∂

∂θ
log f(X|θ)

]

2

= Eθ

[

∂

∂θ
log f(X|θ)− Eθ

{

∂

∂θ
log f(X|θ)

}]

2

= V arθ

[

∂

∂θ
log f(X|θ)

]

.

(iii). To obtain this alternative formula, note that,

∂2

∂θ2
log f(x|θ) =

∂

∂θ

[

∂

∂θ
log f(x|θ)

]

=
∂

∂θ

[

∂
∂θ
f(x|θ)

f(x|θ)

]

=
∂2

∂2θ
f(x|θ)

f(x|θ)
−

(

∂
∂θ
f(x|θ)

)2

[f(x|θ)]2
.

Therefore,

Eθ

[

∂2

∂2θ
log f(X|θ)

]

= Eθ







∂2

∂2θ
f(X|θ)

f(X|θ)
−

(

∂
∂θ
f(X|θ)

f(X|θ)

)

2







=

∫ ∂2

∂2θ
f(x|θ)

f(x|θ)
f(x|θ) dx− Eθ

[

∂

∂θ
log f(X|θ)

]

2

=

∫

∂2

∂2θ
f(x|θ) dx− Eθ

[

∂

∂θ
log f(X|θ)

]

2

= 0− I(θ),

since

0 =
∂2

∂θ2

∫

∞

−∞

f(x|θ) dx =

∫

∂2

∂θ2
f(x|θ) dx.

The condition (A) that the support of f(·|θ) is free of θ is essential. The
exponential families satisfy these regularity conditions. Location-scale fam-
ilies may or may not satisfy, usually the critical assumption is that relating
to the support of f . Thus the Cauchy location-scale family satisfies these
conditions but not the uniform or the exponential density

f(x|µ, σ) =
1

σ
exp

(

−
x− µ

σ

)

, x > µ.
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Theorem. Let X and Y be independently distributed random observables
with density f1(x|θ) and f2(y|θ). If I(θ), I1(θ) and I2(θ) are the information
numbers about θ contained in (X, Y ), X and Y , respectively, then

I(θ) = I1(θ) + I2(θ).

Proof. To see this additive property, note that,

I(θ) = V arθ

[

∂

∂θ
log f(X, Y |θ)

]

= V arθ

[

∂

∂θ
log {f1(X|θ)f2(Y |θ)}

]

= V arθ

[

∂

∂θ
log f1(X|θ) +

∂

∂θ
log f2(Y |θ)

]

= V arθ

[

∂

∂θ
log f1(X|θ)

]

+ V arθ

[

∂

∂θ
log f2(Y |θ)

]

= I1(θ) + I2(θ).

Example. Let X1, . . . , Xn be i.i.d Bernoulli(p). Then the information in the
sample is I(p) = n

p(1−p)
since the information in each of the observations is

I1(p) =
1

p(1−p)
. Further,

∑n

i=1 Xi ∼ Binomial(n, p) is sufficient for p and has

the same likelihood function as that of the sample. Thus Binomial(n, p) has
the same I(p) of n

p(1−p)
.

For multi-parameter problems, one defines the Information Matrix,

I(θ) = ((Iij(θ))), where Iij(θ) = E

[

∂

∂θi
log f(X|θ)

∂

∂θj
log f(X|θ)

]

.

I(θ) depends on the particular parametrization chosen: Suppose η = c(θ),
where c(.) is one-one and differentaible. Then θ = h(η) = c−1(η). Therefore,
letting f ∗(x|η) = f(x|θ)|θ=h(η),

I∗(η) = Eη

[

∂

∂η
log f ∗(X|η)

]2

= Eη

[

∂

∂θ
log f(X|θ)

∣

∣

θ=h(η)
∂

∂η
h(η)

]2

= Eη

[

∂

∂θ
log f(X|θ)

]2
∣

∣

θ=h(η)

(

∂

∂η
h(η)

)2

= I(θ)

(

dθ

dη

)2
∣

∣

θ=h(η) .

1



Example. Let f(x|α) = αx exp
(

−α
2
x2
)

, x > 0, α > 0. What is I(α)? Using
the definition, since

log f(x|α) = logα + log x−
α

2
x2,

∂

∂α
log f(x|α) =

1

α
−

x2

2
, so

I(α) = Eα

[

(

X2

2
−

1

α

)2
]

,

which is difficult to compute, but using the alternative formula, we get,

∂2

∂α2
log f(x|α) = −

1

α2
,

so that I(α) = 1/α2. Sometimes, reparametrization can help too.

Example. Let f(x|θ) = x
θ2
exp

(

− x2

2θ2

)

, x > 0, θ > 0. Find I(θ). We note

log f(x|θ) = log x− 2 log θ −
x2

2θ2
,

∂

∂θ
log f(x|θ) = −

2

θ
+

x2

θ3
=

1

θ3
(x2 − 2θ2), so

I(θ) =
1

θ6
Eθ

(

X2 − 2θ2
)2

,

which is again difficult to compute. We may look at

∂2

∂θ2
log f(x|θ) =

2

θ2
−

3x2

θ4
= −

1

θ4
(3x2 − 2θ2),

and try to compute I(θ) = 1
θ4
Eθ(3X

3 − 2θ2), which doesn’t seem to simplify
the calculation. Instead, let α = α(θ) = 1/θ2. Then from the previous
example, I(α) = 1/α2. Therefore,

I∗(θ) = I(α(θ))(α′(θ))2 = θ4
4

θ6
=

4

θ2
.

Example. Let X ∼ N(µ, σ2). Then I(µ, σ2) = ((Iij(µ, σ
2))), where

I11(µ, σ
2) = Eµ,σ2

[

∂

∂µ
log f(X|µ, σ2)

]2

I22(µ, σ
2) = Eµ,σ2

[

∂

∂σ2
log f(X|µ, σ2)

]2

I12(µ, σ
2) = Eµ,σ2

[

∂

∂µ
log f(X|µ, σ2)

∂

∂σ2
log f(X|µ, σ2)

]

.

2



Since

log f(x|µ, σ2) = −
1

2
log σ2 −

1

2σ2
(x− µ)2,

∂

∂µ
log f(x|µ, σ2) = −

1

2σ2
2(x− µ)(−1),

∂

∂σ2
log f(x|µ, σ2) = −

1

2

1

σ2
+

1

2σ4
(x− µ)2,

we obtain

I11(µ, σ
2) = Eµ,σ2

[

(X − µ)2

σ4

]

=
1

σ2
,

I22(µ, σ
2) =

1

4σ8
Eµ,σ2

[

(X − µ)2 − σ2
]2

=
2σ4

4σ8
=

1

2σ4
.

I12(µ, σ
2) =

1

2
Eµ,σ2

[(

X − µ

σ2

)(

(X − µ)2 − σ2

σ4

)]

= 0.

Thus,

I(µ, σ2) =

(

1
σ2 0
0 1

2σ4

)

.
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Theorem. Let X have one-parameter exponential family density

f(x|θ) = exp(c(θ)T (x) + d(θ) + S(x))IA(x).

Consider the mean-value parametrization, δ(θ) = Eθ(T ). Then

I(δ) =
1

V ar(T )
.

Poof. The natual parametrization, η = c(θ) gives

f ∗(x|η) = exp(ηT (x) + d0(η) + S(x))IA(x),

log f ∗(x|η) = ηT (x) + d0(η) + S(x)),

∂

∂η
log f ∗(x|η) = T (x) + d′0(η) = T (x)− Eη(T ).

Therefore,
I∗(η) = Eη (T − Eη(T ))

2 = V arη(T ).

Now, δ = E(T ) = −d′0(η) = h(η), so

dη

dδ
=

(

dδ

dη

)

−1

= (−d′′0(η))
−1

=
1

V ar(T )
.

Therefore,

I(δ) = I∗(η)

(

dη

dδ

)2
∣

∣

η=h−1(δ)

= V ar(T )
1

(V ar(T ))2
.

Information Inequality (Cramer-Rao). Suppose the conditions (A) and
(B) hold, and 0 < I(θ) < ∞. Let T (X) be any statistic with V ar(T ) < ∞
and such that the derivative w.r.t. θ of

Eθ(T ) =

∫

T (x)f(x|θ) dx

exists and can be obtained by differentiating under the integral sign. Then

V arθ(T (X)) ≥

[

d
dθ
Eθ(T )

]2

I(θ)
.

1



Note. This is called the C-R lower bound on the variance of a statistic.

Proof. Note that

d

dθ
Eθ(T ) =

d

dθ

∫

A

T (x)f(x|θ) dx =

∫

A

T (x)
∂

∂θ
f(x|θ) dx

=

∫

A

T (x)

[

∂
∂θ
f(x|θ)

f(x|θ)

]

f(x|θ) dx =

∫

T (x)S(x)f(x|θ) dx

= Eθ (T (X)S(X)) ,

where S(x) = ∂
∂θ

log f(x|θ). Further,

EθS(X) =

∫

A

S(x)f(x|θ) dx =

∫

A

∂

∂θ
log f(x|θ)f(x|θ) dx

=

∫

A

(

∂
∂θ
f(x|θ)

f(x|θ)

)

f(x|θ) dx =

∫

∂

∂θ
f(x|θ) dx

=
d

dθ

∫

f(x|θ) dx = 0.

Therefore,
d

dθ
Eθ(T ) = Covθ(T (X), S(X)).

Since |Cov(T (X), S(X))| ≤
√

V ar(T (X))V ar(S(X)), and V arθ(S(X)) =
V arθ

(

∂
∂θ

log f(X|θ)
)

= I(θ), we obtain

|
d

dθ
Eθ(T )| ≤

√

V arθ(T )
√

I(θ).

Therefore,

V arθ(T ) ≥

[

d
dθ
Eθ(T )

]2

I(θ)
.

Note. 1. For the class of all unbiased estimators of θ, we have Eθ(T ) = θ
and d

dθ
Eθ(T ) = 1, so that

V arθ(T ) ≥
1

I(θ)
.

This lower bound is independent of any any particular T . Therefore, if there
exists an unbiased estimator which attains this lower bound at all θ, it is the
UMVUE.

2



Usually T = T (X1, . . . , Xn) = Tn, and Eθ(Tn) → θ, which is called asymp-
totic unbiasedness. Then one would like to know what the asymptotic vari-
ance is, or whether it is the least it can be. MLE usually has this property.

Here is an example which shows that regularity conditions are indeed re-
quired.

Example. Let X ∼ U [0, θ], θ > 0. Then the likelihood function is as follows.

θ

L(θ)

0 x

f(x|θ) =
1

θ
for x ≤ θ,

log f(x|θ) = − log θ for x ≤ θ,

∂

∂θ
log f(x|θ) =

{

−1
θ

if θ > x;
undefined if θ = x;

Since Pθ(X = θ) = 0,

∂

∂θ
log f(X|θ) = −

1

θ
, w.p. 1 under Pθ.

Therefore,

Eθ

[

∂

∂θ
log f(X|θ)

]

= −
1

θ
6= 0,

V arθ

[

∂

∂θ
log f(X|θ)

]

= 0,

Eθ

[

∂

∂θ
log f(X|θ)

]2

=
1

θ2
.

3



Then, what is I(θ)? For unbiased estimators T of θ, do we have

V arθ(T ) ≥
1

I(θ)
= θ2 or ∞?

Consider T (X) = 2X. Since E(X) = θ/2, T is an unbiased estimator of

θ. Note that V ar(T ) = V ar(2X) = 4V ar(X) = 4
(

θ2

12

)

= θ2/3 < θ2 < ∞.

Note that conditions (A) and (B) are violated in this model.

4



Example. X1, . . . , Xn i.i.d Poisson(λ), λ > 0. Consider T (X) = X̄ for
estimating λ. Since E(T ) = E(X̄) = λ, T is an unbiased estimator. We also

have V ar(T ) = V ar(X̄) = V ar(X)
n

= λ
n
. Further,

f(x|λ) = exp(−λ)
λx

x!
, x = 0, 1, 2, . . .

log f(x|λ) = −λ+ x log(λ)− log(x!),

∂

∂λ
log f(x|λ) = −1 +

x

λ
,

∂2

∂λ2
log f(x|λ) = − x

λ2
,

so that

I1(λ) = Eλ

[

∂

∂λ
log f(X|λ)

]2

= V arλ

[

∂

∂λ
log f(X|λ)

]

= −Eλ

[

∂2

∂λ2
log f(X|λ)

]

=
1

λ2
Eλ(X) =

λ

λ2
=

1

λ
.

Therefore, I(λ) = In(λ) = n/λ. This yields the Information bound of

V arλ(T ) ≥
1

I(λ)
=

λ

n
,

for any unbiased estimator T . Note that T (X) = X̄ achieves this bound,
hence it is UMVUE.

Example. X ∼ Poisson(θ), θ > 0. q(θ) = exp(−θ). I(θ) = 1
θ
. Consider

T (X) =

{

1 if X = 0;
0 otherwise.

Then E(T ) = Pθ(X = 0) = exp(−θ) = q(θ) and V arθ(T ) = exp(−θ)(1 −
exp(−θ)) since T ∼ Bernoulli(q(θ)). The C-R bound on all unbiased estima-
tors U of q(θ) is

V arθ(U) ≥
(

d
dθ
q(θ)

)2

I(θ)
=

exp(−2θ)

1/θ
= θ exp(−2θ) = C-R (θ).

Therefore,

V arθ(T )

C-R (θ)
=

exp(−θ)(1− exp(−θ))

θ exp(−2θ)
=

1− exp(−θ)

θ exp(−θ)
=

exp(θ)− 1

θ

=
1 + θ + θ2/2 + · · · − 1

θ
> 1.

1



However, X is complete sufficient, hence T (X) is UMVUE of q(θ).

Confidence Statements

It is not enough to give just an estimate of the parameter of interest, however
good the procedure of estimation is. Usually one also wants to know what
the likely error of estimation is.

Suppose θ is the parameter of interest, and we have available, a random sam-
ple, X1, . . . , Xn from Pθ. Suppose, further, θ̂(X1, . . . , Xn) is an estimator of
θ. It is desirable to have an estimate of the magnitude of θ̂− θ. Typical esti-
mates are asymptotically unbiased. Therefore, an estimate of s.d.(θ̂), called
the standard error, s.e.(θ̂), is an indicator of the likely error of estimation of
θ by θ̂. This means, θ̂± s.e.(θ̂) is our interval estimate of θ, in the sense that
θ̂ is the point estimate but it may be off by s.e.(θ̂).

Example. X̄ ± σ
√

n
or X̄ ± s

√

n
for µ of N(µ, σ2); p̂ ±

√

p̂(1− p̂)/n for p of

Binomial(n, p); λ̂±
√

λ̂ for λ of Poisson(λ), and so on.

Another more formal approach is through confidence statements.

Interval Estimation

Let X ∼ Pθ and a confidence interval is of interest for q(θ).

Definition. An interval [T (X), T̄ (X)], where T ≤ T̄ is a 100(1 − α)%
confidence interval for q(θ) if

inf
θ
Pθ

{

T (X) ≤ θ ≤ T̄ (X)
}

≥ 1− α.

i.e., Pθ

{

T (X) ≤ θ ≤ T̄ (X)
}

≥ 1− α for all θ.

Example. Let X1, . . . , Xn be i.i.d N(θ, σ2), σ2 known. Want [T (X), T̄ (X)]
such that Pθ

{

T (X) ≤ θ ≤ T̄ (X)
}

≥ 1− α for all θ. Note,

Z =
X̄ − θ

σ/
√
n

∼ N(0, 1) for all θ.

Therefore,

Pθ

(∣

∣

∣

∣

X̄ − θ

σ/
√
n

∣

∣

∣

∣

≤ z1−α/2

)

= 1− α.

2



z

φ(z)

0

1− α

-z1−α/2 z1−α/2

(For example, if α = 0.05, then z1−α/2 = 1.96.) Thus,

Pθ

(

−z1−α/2
σ√
n
≤ X̄ − θ ≤ z1−α/2

σ√
n

)

= 1− α for all θ, or

Pθ

(

X̄ − z1−α/2
σ√
n
≤ θ ≤ X̄ + z1−α/2

σ√
n

)

= 1− α for all θ.

Therefore,
[

X̄ − z1−α/2
σ
√

n
, X̄ + z1−α/2

σ
√

n

]

is a 100(1−α)% confidence inter-

val for θ.

Example. Let X1, . . . , Xn be i.i.d N(µ, σ2), σ2 unknown. Now θ = (µ, σ2).
Want [T (X), T̄ (X)] such that Pθ

{

T (X) ≤ µ ≤ T̄ (X)
}

≥ 1 − α for all θ =
(µ, σ2). Note, since

T =
X̄ − µ

s/
√
n

∼ tn−1 for all µ, σ2,

Pµ,σ2

(

X̄ − tn−1(1− α/2)
s√
n
≤ µ ≤ X̄ + tn−1(1− α/2)

s√
n

)

= 1− α

for all µ, σ2. Thus,
[

X̄ − tn−1(1− α/2) s
√

n
, X̄ + tn−1(1− α/2) s

√

n

]

is a

100(1− α)% confidence interval for µ.

3



Interpretation of confidence statements.

Consider again the confidence interval for µ in N(µ, σ2) with σ2 known, which
is X̄ ± z1−α/2 σ/

√
n. This means

Pµ,σ2 {µ ∈ confidence interval }

= Pµ,σ2

{

X̄ − z1−α/2
σ√
n
≤ µ ≤ X̄ + z1−α/2

σ√
n

}

= 1− α.

In this statement, as in all other areas of classical statistics, µ is a constant,
and the probability statement is about X̄. So (1 − α) is the proportion of
times the interval [T , T̄ ] covers µ over repetitions of the experiment and data
sets. Let α = 0.05. Then, if the interval X̄ ± 1.96 σ

√

n
is used for a large

number of data sets in repetitions of the experiment, then in about 95% of
the time µ will be inside the interval, and will lie outside rest of the time.
If one has a data set with X̄ = 3, and asks for the probability that µ lies in
3 ± 1.96σ/

√
n, the answer isn’t 95% but trivially zero or one depending on

the value of µ. Though the idea of such intervals is quite old, it was Neyman
who formalized them.

The simplest way to generate confidence intervals is to find what Fisher called
a pivotal quantity, namely, a real valued function T (X, θ) of both X and θ
such that the distribution of T (X, θ) does not depend on θ. Suppose then
we choose two numbers t1 and t2 such that Pθ {t1 ≤ T (X, θ) ≤ t2} = 1 − α.
If for each x, T (x, θ) is monotone in θ, say, an increasing function of θ, then
we can find T (x) and T̄ (x) such that T (x, T̄ (x)) = t2 and T (x, T (x)) = t1.
Clearly (T ≤ θ ≤ T̄ ) iff t1 ≤ T ≤ t2 and hence T ≤ θ ≤ T̄ with probability
1− α.

In the normal example, T (X, µ) = X̄ − µ, the distribution of which is
N(0, σ2/n), free of µ.

Example. Let X1, . . . , Xn be i.i.d N(µ, σ2), both µ and σ2 unknown. How
do we construct a confidence interval for σ2? We need a pivot involving
σ2 only. Consider the MLE of σ2: σ̂2 = 1

n

∑n
i=1(Xi − X̄)2, and note that

S2 =
∑n

i=1(Xi − X̄)2 ∼ σ2χ2
n−1. Therefore, S2/σ2 ∼ χ2

n−1 can be used as a
pivotal statistic. i.e., we can find c1 < c2 such that

Pσ2

(

c1 ≤
S2

σ2
≤ c2

)

= 1− α for all σ2,

Pσ2

(

1

c2
≤ σ2

S2
≤ 1

c1

)

= 1− α for all σ2,

Pσ2

(

S2

c2
≤ σ2 ≤ S2

c1

)

= 1− α for all σ2.
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Many choices exist for (c1, c2). One may take them to satisfy

α

2
= P

(

χ2
n−1 ≤ c1

)

= 1− P
(

χ2
n−1 > c2

)

,

or take

fn−1(c1) = fn−1(c2), and

∫ c2

c1

fn−1(x) dx = 1− α.

Example. Let

(

X1

Y1

)

, . . . ,

(

Xn

Yn

)

be i.i.d. N2

((

µ1

µ2

)

, σ2

(

1 ρ
ρ 1

))

.

Construct confidence interval for µ1 − µ2. Since µ̂1 − µ2 = X̄ − Ȳ , look for
a pivot involving this. Let Di = Xi − Yi, i = 1, 2, . . . , n. Then Di are i.i.d
N(µ1 − µ2, 2σ

2(1 − ρ) = σ2
D). Now, D̄ ∼ N(µ1 − µ2, σ

2
D/n) independent of

S2
D =

∑n
i=1(Di − D̄)2 ∼ σ2

Dχ
2
n−1. Therefore,

T =

√
n
(

D̄ − (µ1 − µ2)
)

√

∑n
i=1(Di − D̄)2/(n− 1)

∼ tn−1.

Hence, from the previous discussion, D̄±tn−1(1−α/2)sD/
√
n is a 100(1−α)%

confidence interval for µ1 − µ2. (Here s2D = S2
D/(n− 1).)

Example. LetX1, . . . , Xn be i.i.d Bernoulli(θ). How do we find
[

T (X), T̄ (X)
]

such that
Pθ

[

T (X) ≤ θ ≤ T̄ (X)
]

= 1− α ∀ θ?

Sn =
∑n

i=1 Xi is sufficient for θ and Sn ∼ Binomial(θ). An exact pivot
involving Sn is not available, so it is difficult to construct an exact confidence
interval using the above approach. An approximate large sample interval
is constructed as follows. If n is large then θ̂ = Sn/n ∼ N(θ, θ(1 − θ))
approximately. Therefore, for large n, approximately,

θ̂ − θ
√

θ(1− θ)/n
∼ N(0, 1).

In fact, we have, for large n, approximately,

θ̂ − θ
√

θ̂(1− θ̂)/n
∼ N(0, 1).

This gives the usual, large sample, approximate confidence interval:

θ̂ ± z1−α/2

√

θ̂(1− θ̂)/n.

5



Testing Hypotheses

This is the problem of choosing between two theories, two models or two
hypotheses.

(1) H0 or the Null Hypothesis: This is the established hypothesis saying that
the standard model is true or correct. If we are testing a new treatment
against the current standard, H0 denotes no difference between them.

Example. In a quality control setup, suppose that the procedure in use
produces 2% defectives on average. Then new quality control measures are
brought in and there is a claim of reduction in the proportion (p) of defectives.
Then, we have

H0 : p = 0.02 i.e., no change has occured.

This effectively means that any observed changes can be explained as due to
purely chance variations, and a new model is not needed.

(2) The hypothesis to be tested against H0 is called H1 or the Alternative
Hypothesis.

In the example above,

H1 : p < 0.02 i.e., a positive change has occured.

This effectively means that the observed changes cannot be explained as due
to chance variations under H0 and a new model is needed.

Question. Is there enough evidence in the data to reject H0 in favour of
H1?
We proceed as follows by considering the consequences of actions in a test
procedure under the different possible states of nature.

decision
accept H0 reject H0

H0 is true X type I error
H1 is true type II error X

Decisions (or actions, accept or reject H0) are made using evidence from
random samples or data. Therefore, we can only compute the probabilities
of errors, and not know when they are committed. As shown above, Type I

Error is the incorrect rejection of H0, and
P ( Type I Error ) = α = level of significance.

1



Type II Error is the incorrect acceptance of H0, and
P ( Type II Error ) = β; 1− β = power of test.

Our approach is to fix α (at say, 0.05 or 0.01) and minimize β (or maximize
the power, 1− β) to get the “most powerful” tests.

Let us consider some examples to intuitively see

• how to derive test statistics;

• how to derive test criteria.

Example. A pack of a certain brand of cigarettes displays the statement,
“1.5 mg nicotine on average per cigarette”. Let µ denote the actual average
nicotine content per cigarette for all cigarettes of this brand. It is required
to test if the actual average is higher than what is claimed. Suppose a
sample of cigarettes is selected, and the nicotine content of each cigarette
is determined. The observed contents are X1, . . . , Xn. Conduct the test at
the level of significance of 5%. We assume that Xi are distributed as i.i.d
N(µ, σ2). Then, we desire to test

H0 : µ = 1.5 = µ0 versus H1 : µ > 1.5 i.e., average is higher.

How to we calculate evidence? Estimate µ from data. µ̂ = X̄. Compare µ̂
with µ0. When do we say that H0 is not true?

X̄−µ0 = observed difference between estimated mean and the hypothesized value.

However, X̄ has variation from sample to sample. The expected variation in
X̄ values is s.e.(X̄) = s

√

n
.

Now compare the observed difference with the expected, and enquire: Is

X̄ − µ0

s/
√
n

>> 1?

i.e., is the observed difference much larger than the expected difference?

If so, reject H0. If
X̄ − µ0

s/
√
n

∼ 1 or < 1

there is no evidence to reject H0. Thus, we have the statistic for testing:

Test statistic =
observed departure from H0

expected departure
.

2



In the present problem, the test statistic is

T =
X̄ − µ0

s/
√
n

∼ tn−1 if H0 is true.

Reject H0 if the observed value of the test statistic is large. But, how large?

0.05 = α = P ( Type I Error ) = P ( Reject H0 when H0 is true )

= P

(

X̄ − µ0

s/
√
n

> C

)

= P (tn−1 > C) .

t

fn−1(t)

0

.05

tn−1(.95)

Therefore, C = tn−1(1− α) = tn−1(.95) and,
we claim to have evidence against the null hypothesis at the 5% level of
significance
if the observed value of X̄−µ0

s/
√

n
> tn−1(.95).

Example. X ∼ Binomial(n, p) and it is of interest to test

H0 : p = p0 versus H1 : p 6= p0 a two-sided alternative.

p̂ = X
n
and it would be natural to use the statistic:

estimated departure from H0

expected departure or s.e.
=

p̂− p0
√

p0(1− p0)/n
∼ N(0, 1),

approximately for large n, if H0 is true. Since the alternative hypothesis

is two-sided, the test statistic is

∣

∣

∣

∣

p̂−p0√
p0(1−p0)/n

∣

∣

∣

∣

, large values of which provide

3



evidence against H0 and in favour of H1. To obtain the crtitical value (above
which H0 is to be rejected), note

α = PH0

(∣

∣

∣

∣

∣

p̂− p0
√

p0(1− p0)/n

∣

∣

∣

∣

∣

> C

)

= P (|Z| > C),

implying that C = z1−α/2.

z

φ(z)

0

1− α

-z1−α/2 z1−α/2

At the significance level of α, evidence to reject H0 exists
if | p̂−p0√

p0(1−p0)/n
| > z1−α/2.

How does one derive ‘most powerful’ tests?

Power of a test. As noted previously, power of a test is PH0
( reject H0 ).

Suppose X1, . . . , Xn are i.i.d N(µ, σ2) where σ2 is known and we desire to
test

H0 : µ = µ0 versus H1 : µ > µ0

at the level of significance α. We use the test statistic

Z =
X̄ − µ0

σ/
√
n

∼ N(0, 1) if H0 is true.

Reject H0 if the observed value of Z > z1−α since

α = Pµ=µ0

(

X̄ − µ0

σ/
√
n

> z1−α

)

.
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To compute the power of this test at any µ > µ0 (under H1), we have,

Power(µ) = Pµ

(

X̄ − µ0

σ/
√
n

> z1−α

)

= Pµ

(

X̄ − µ

σ/
√
n

+
µ− µ0

σ/
√
n

> z1−α

)

= Pµ

(

X̄ − µ

σ/
√
n

> z1−α − µ− µ0

σ/
√
n

)

= P

(

Z > z1−α − µ− µ0

σ/
√
n

)

,

which is an increasing function of µ. i.e., if µ is much larger than µ0, the test
rejects H0 easily.

Power(µ) as a function of µ is called the power curve.

µ

Power(µ)

α

µ0

P-values. The error probabilities of a test (significance level α and the power
1− β which are predetermined) do not provide a measure of the strength of
evidence in a particular data set against H0. The P-values defined below try
to capture that.
Suppose H0 : θ = θ0 and your test is to reject H0 for large values of a test
statistic W = W (X). Then, when X = x is observed, the P-value is defined
as

p(x) = Pθ0 (W > W (x)) ,

Any data point x for which p(x) ≤ α may be considered strong enough
eveidence to reject H0 at the significance level of α.

Example. Let X1, X2, . . . , X9 be i.i.d N(µ, 1). It is of interest to test
H0 : µ = 0 versus H1 : µ 6= 0. Compute P-value for the Z-test if x̄ = 0.9 is
observed. The Z-test rejects H0 when

|Z| =
∣

∣

∣

∣

X̄ − µ0

σ/
√
n

∣

∣

∣

∣

= 3|X̄|

is large. Z ∼ N(0, 1 when H0 is true. Therefore the P-value when x is
observed is p(x) = P (|Z| > 3x̄). If x̄ = 0.9, then the P-value is 2[1−Φ(2.7)]
= 0.007.
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How do we know that these are the ‘best’ tests avaiable to us? Let us discuss
the Neyman-Pearson theory of deriving optimal tests for this.
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Neyman-Pearson Theory of Testing

X ∼ Pθ, θ ∈ Θ. X = sample space = set of all values that X can take. It is
of interest to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,

where Θi ⊂ Θ and Θ0 ∩Θ1 = φ.
Simple hypothesis: Θ0 = {θ0}, i.e., H0 : θ = θ0.
Composite hypothesis: Θ0 = (−∞, θ0], i.e., H0 : θ ≤ θ0.

Nonrandomized test. Find a subset S of X , and reject H0 if the observed
value x ∈ S. S ⊂ X is called the critical region or the rejection region of the
test. One defines a test function for nonrandomized tests φ as

φ(x) =

{

1 if x ∈ S;
0 if x ∈ Sc.

Note that φ(x) is also the probability of rejecting H0 upon observing x.

For a level α test, one must have,

sup
θ∈Θ0

Pθ(X ∈ S) ≤ α.

Note that, if Θ0 = {θ0}, then we need Pθ0(X ∈ S) ≤ α.
For nonrandomized tests, it may happen that supθ∈Θ0

Pθ(X ∈ S) < α.

Power(θ) = Power of test = Pθ(X ∈ S) = Eθ[φ(X)] for θ ∈ Θ1 is the power
function of the test associated with S.

Randomized test. Any φ such that 0 ≤ φ(x) ≤ 1 for all x ∈ X , and at any
x, φ(x) is the probability of rejecting H0 if x is observed. Nonrandomized
tests form a subset of randomized tests. The power function for randomized
tests is given by

Pθ(RejectH0) = Eθ [P (RejectH0|X)] = Eθφ(X) =

∫

X

φ(x) dPθ(x).

Problem. Find φ such that Eθφ is maximized when θ ∈ Θ1 and subject
to supθ∈Θ0

Eθφ(X) ≤ α. Such a test, if it exists, is called a Uniformly Most
Powerful (UMP) test.

Consider the two kinds of the errors defined earlier. It turns out that in
general if one tries to reduce one error probability the other error probability
goes up, so one cannot reduce both simultaneously. Because probability of

1



error of first kind is more important, one first makes it small (by fixing it
at a small value such as 0.01 or 0.05). Among all tests satisfying this, one
then tries to minimize the probability of committing error of second kind or
equivalently, to maximize the power uniformly for all θ in H1.

N-P Lemma. Suppose Θ0 = {θ0} and Θ1 = {θ1}. i.e., simple null versus
simple alternative. Also, let pθ0 and pθ1 denote the respective densities (pdf
or pmf). Then
(a) there exists a test φ and a constant k ≥ 0 such that

Eθ0φ(X) = α (1)

and

φ(x) =

{

1 when pθ1(x) > kpθ0(x);
0 when pθ1(x) < kpθ0(x).

(2)

(b) If a test satisfies (1) and (2) for some k, then it is most powerful for
testing H0 : Pθ = Pθ0 versus H1 : Pθ = Pθ1 at level α.
(c) If φ is a most powerful test at level α for testing H0 : Pθ = Pθ0 versus
H1 : Pθ = Pθ1 , then it satisfies (1) and (2) for some k. (This answers whether
MP test can have some other form.)

Remark. The most powerful test is of the form: reject H0 if pθ1(x)/pθ0(x) >
k. i.e., when the likelihood ratio exceeds a threshold. This is intuitively
meaningful because, on the one hand we want

∫

S
pθ0(x) dx ≤ α and on the

other
∫

S
pθ1(x) dx = maximum. To achieve this one must put all x that give

very large values of pθ1(x)/pθ0(x) in S.

Proof. Let 0 < α < 1 and define

α(c) = Pθ0 (pθ1(X) > cpθ0(X)) = Pθ0

(

pθ1(X)

pθ0(X)
> c

)

.

(The second equality is because Pθ0(pθ0(X) = 0) = 0.) Then,

1− α(c) = Pθ0(r(X) ≤ c), where r(X) =
pθ1 (X)

pθ0 (X)
.

Therefore, 1− α(c) is the cdf of r(X). Thus, 1 − α(c) is nondecreasing and
right continuous. Therefore, α(c) is nonincreasing and right continuous. i.e.,
1 − α(−∞) = 0, 1 − α(∞) = 1, 1 − α(c) ր and 1 − α(c+) = 1 − α(c).
Therefore, α(−∞) = 1, α(∞) = 0, α(c) ց and α(c+) = α(c). We would
like to find c0, if possible, such that α(c0) = α. Note that

α(c−)− α(c) = Pθ0(r(X) = c) = Pθ0

(

pθ1(X)

pθ0(X)
= c

)

.
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For fixed 0 < α < 1, find c0 such that α(c0) ≤ α ≤ α(c0−) and define

φ(x) =







1 if pθ1(x) > c0pθ0(x);
0 if pθ1(x) < c0pθ0(x);

α−α(c0)
α(c0−)−α(c0)

if pθ1(x) = c0pθ0(x).

c

α(c)

α1

α2

α3

If α(c0) = α(c0−), (i.e., α1 or α3 in the figure) then

Pθ0

(

pθ1(X)

pθ0(X)
= c0

)

= 0,

i.e., Pθ0(pθ1(X) = c0pθ0(X)) = 0. Therefore, φ(.) is defined a.e. w.r.t. Pθ0 .

Note that

Eθ0φ(X) = Pθ0

(

pθ1(X)

pθ0(X)
> c0

)

+
α− α(c0)

α(c0−)− α(c0)
Pθ0

(

pθ1(X)

pθ0(X)
= c0

)

= α(c0) +
α− α(c0)

α(c0−)− α(c0)
(α(c0−)− α(c0)) = α

Choose k = c0 to satify (1) and (2).

(b) Suppose φ is a test which satisfies (1) and (2). We want to show φ is MP
at level α. Let φ∗ be any other test such that Eθ0φ

∗(X) ≤ α. (Note that
0 ≤ φ(x) ≤ 1 and 0 ≤ φ∗(x) ≤ 1.) Let

S+ = {x : φ(x)− φ∗(x) > 0} and S− = {x : φ(x)− φ∗(x) < 0}.

Then, if x ∈ S+, φ(x) > φ∗(x) ≥ 0. Therefore,

pθ1(x)

pθ0(x)
≥ k, or pθ1(x) ≥ kpθ0(x).
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If x ∈ S−, φ(x) < φ∗(x) ≤ 1, so that pθ1(x) ≤ kpθ0(x). Therefore,

∫

X

(φ(x)− φ∗(x))(pθ1(x)− kpθ0(x)) dx

=

∫

S+∪S−

(φ(x)− φ∗(x))(pθ1(x)− kpθ0(x)) dx ≥ 0.

Hence,

∫

X

(φ(x)− φ∗(x))pθ1(x) dx ≥ k

∫

X

(φ(x)− φ∗(x))pθ0(x) dx

= k

[
∫

X

φ(x)pθ0(x) dx−

∫

X

φ∗(x)pθ0(x) dx

]

= k [α− Eθ0φ
∗(X)] ≥ 0.

i.e., Eθ1φ(X) ≥ Eθ1φ
∗(X).

(c) Suppose φ∗ is the most powerful test and φ satisfies (1) and (2). Let

S =
(

S+ ∪ S−
)

∩ {x : pθ1(x) 6= kpθ0(x)} .

Suppose S has positive probability (or positive Lebesgue measure in the
continuous case). Then, since (φ(x)− φ∗(x))(pθ1(x)− kpθ0(x)) > 0 on S,

∫

S+∪S−

(φ(x)− φ∗(x))(pθ1(x)− kpθ0(x)) dx

=

∫

S

(φ(x)− φ∗(x))(pθ1(x)− kpθ0(x)) dx > 0.

Therefore,

∫

X

(φ(x)− φ∗(x))pθ1(x) dx > k

∫

X

(φ(x)− φ∗(x))pθ0(x) dx ≥ 0,

and hence,
∫

X

φ(x)pθ1(x) dx >

∫

X

φ∗(x)pθ1(x) dx.

i.e., Eθ1φ(X) > Eθ1φ
∗(X), which contradicts the assumption that φ∗ is MP.

Therefore, S must have probability 0, which implies that φ and φ∗ can differ
only on the set {x : pθ1(x) = kpθ0(x)}. (So, the MP tests may differ by
picking different subsets of this set to satisfy the level condition.)
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Corollary. The power of the MP level α test for testing H0 : Pθ = Pθ0

versus H1 : Pθ = Pθ1 is strictly larger than α unless Pθ1 = Pθ0 .

Proof. Consider φ(x) ≡ α. This is a level α test since Eθ0φ(X) = α. Since
Eθ1φ(X) = α also, the MP test has power at least Eθ1φ(X) = α. If the
power of the MP test is exactly α, then φ(x) ≡ α is also MP. Then from the
earlier theorem, part (c), φ should satisfy:

φ(x) =







1
pθ1 (x)

pθ0 (x)
> k;

0
pθ1 (x)

pθ0 (x)
< k.

Therefore pθ1(x) = pθ0(x) w.p. 1. (Why is k = 1?) i.e., Pθ1 = Pθ0 .

Example. X ∼ Binomial(2, p). Test H0 : p = 1/2 versus H1 : p = 3/4 at
level α = 0.01. MP test φ has the form:

φ(x) =







1
p3/4(x)

p1/2(x)
> k;

0
p3/4(x)

p1/2(x)
< k.

Note that
p3/4(x)

p1/2(x)
=

(

2
x

)

(3/4)x(1/4)2−x

(

2
x

)

(1/2)x(1/2)2−x
> k iff

3x224−2 > k iff

3x > 4k iff

x >
log(4k)

log(3)
= k1.

i.e.,

φ(x) =







1 if x > k1;
0 if x < k1;
γ if x = k1.

,

where k1 and γ are chosen to satisfy the level condition. Now note that

p1/2(x) =







1/4 if x = 0;
1/2 if x = 1;
1/4 if x = 2.

Since p1/2(2) = 1/4 > 0.01, k1 = 2. Since

α = 0.01 = E1/2φ(X) = γp1/2(2) = γ/4,

1



the MP test rejects H0 with probability 0.04 if x = 2; accepts otherwise.

Example. X1, . . . , Xn i.i.d N(µ, σ2), σ2 known. Test H0 : µ = µ0 versus
H1 : µ = µ1 where µ1 > µ0. X̄ is sufficient for µ and X̄ ∼ N(µ, σ2/n). We
switch notation now from pθ(x) to f(x|θ). MP level α test is of the form:

φ(x) =











1 if f(x̄|µ1)
f(x̄|µ0)

> k;

γ if f(x̄|µ1)
f(x̄|µ0)

= k;

0 if f(x̄|µ1)
f(x̄|µ0)

< k.

Since f(x̄|µ) = (2π)−1/2
√
n
σ
exp

(

− n
2σ2 (x̄− µ)2

)

,

f(x̄|µ1)

f(x̄|µ0)
= exp

(

− n

2σ2

{

x̄2 + µ2
1 − 2µ1x̄− x̄2 − µ2

0 + 2µ0x̄
}

)

= exp
(

− n

2σ2

{

µ2
1 − µ2

0 − 2x̄(µ1 − µ0)
}

)

= exp

(

n(µ1 − µ0)

σ2
x̄− n

2σ2
(µ2

1 − µ2
0)

)

,

which is a monotone increasing function of x̄. Therefore,

f(x̄|µ1)

f(x̄|µ0)
> k iff x̄ > c for some c,

and hence

φ(x) =







1 if x̄ > c;
γ if x̄ = c;
0 if x̄ < c.

Choice of γ is not needed since Pµ(X̄ = c) = 0. We need

α = Pµ0

(

X̄ > c
)

= Pµ0

(

X̄ − µ0

σ/
√
n

>
c− µ0

σ/
√
n

)

,

so that c−µ0

σ/
√
n
= z1−α. Equivalently,

φ(x) =

{

1 if X̄−µ0

σ/
√
n
> z1−α ;

0 if X̄−µ0

σ/
√
n
< z1−α.

This is simply the standard Z-test.

Uniformly Most Powerful (UMP) Tests.

For testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, φ is level α UMP test if
supθ∈Θ0

Eθφ(X) ≤ α and

2



Eθφ(X) ≥ Eθφ
∗(X) for all θ ∈ Θ1, for any other test φ∗ for which

supθ∈Θ0
Eθφ

∗(X) ≤ α. This extension of the MP theory is subject to rather
strong conditions on the density f(x|θ):

I. Θ ⊂ R1 (single parameter)

II. Monotone Likelihood Ratio (MLR). Pθ, θ ∈ Θ ⊂ R1 with density
f(x|θ) is said to have m.l.r if there exists a real valued function T (x) such

that for any θ < θ′, Pθ 6= Pθ′ and the likelihood ratio f(x|θ′)
f(x|θ) is a nondecreasing

function of T (x). i.e.,

f(x|θ′)
f(x|θ) = hθ,θ′(T (x)), where hθ,θ′(y) ր y for fixed θ′ > θ.

Example. X ∼ Binomial(n, θ). Then

f(x|θ) =

(

n

x

)

θx(1− θ)n−x, and hence

f(x|θ′)
f(x|θ) =

(

θ′

θ

)x (
1− θ′

1− θ

)n−x

=

(

1− θ′

1− θ

)n (
θ′/(1− θ′)

θ/(1− θ)

)x

.

For fixed θ′ > θ,
(

1−θ′

1−θ

)n
is fixed and θ′

1−θ′
> θ

1−θ
, so that

(

θ′/(1−θ′)
θ/(1−θ)

)x

is

increasing in T (x) = x.

Theorem. If Pθ, θ ∈ Θ ⊂ R1 belongs to a one-parameter exponential family
having density

f(x|θ) = exp (c(θ)T (x) + d(θ) + S(x)) IA(x)

with c(.) strictly monotone in θ (strictly increasing or strictly decreasing)
then {Pθ} has m.l.r. in T (x) or −T (x).

Proof. Note that

f(x|θ′)
f(x|θ) = exp (T (x) [c(θ′)− c(θ)]) exp (d(θ′)− d(θ))

is increasing in T (x) if c(.) is increasing, otherwise increasing in −T (x).

Example. X ∼ U(0, θ]. Then f(x|θ) = 1
θ
I(0 < x ≤ θ), so that for θ′ > θ >

0,
f(x|θ′)
f(x|θ) =

{

θ
θ′

if 0 < x ≤ θ;
∞ if θ < x ≤ θ′.

3



This shows that U(0, θ), θ > 0 has monotone likelihood ratio (in T (x) = x)
even though it is not an exponential family.
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Theorem. Let θ be a real parameter and let X have density f(x|θ) with
MLR in T (x). Then
(i) for testing H0 : θ ≤ θ0 versus H1 : θ > θ0, there exists a UMP level α test
given by

φ(x) =







1 when T (x) > C;
γ when T (x) = C; (∗)
0 when T (x) < C,

where C and γ are determined by

Eθ0φ(X) = α. (∗∗)

(ii) The power function Eθφ(X) of this test is strictly increasing for all points
θ for which Eθφ(X) < 1.
(iii) For all θ′, the test given by (*) and (**) is UMP for testing H0 : θ ≤ θ′

versus H1 : θ > θ′ at the level α′ = Eθ′φ(X).
(iv) For any θ < θ0, the test (*) and (**) minimizes Eθφ(X) among all tests
satisfying (**).

Proof. We first prove the existence of φ satisfying (*) and (**). Then we
show that (ii) holds for this φ. Then we prove the UMP part of (i).

Consider testing H0 : θ = θ0 versus H1 : θ = θ1, θ1 > θ0. From N-P Lemma,
MP test for this is of the form:

φ(x) =







1 if
pθ1 (x)

pθ0 (x)
> k;

0 if
pθ1 (x)

pθ0 (x)
< k.

But pθ(x) = f(x|θ) has MLR in T (x). Therefore,

f(x|θ1)
f(x|θ0)

> k iff T (x) > C for some C .

Hence,

φ(x) =

{

1 if T (x) > C;
0 if T (x) < C.

Now, from N-P Lemma (a), there exist C and γ satisfying (*) and (**). These
do not depend on θ1. (Note, due to MLR, dependence of MP on θ1 has been
eliminated.) From N-P Lemma (b) this test is MP for testing H0 : θ = θ′

versus H1 : θ = θ′′ at level α′ = Eθ′φ(X) if θ′ < θ′′. This is because, from
MLR,

f(x|θ′′)
f(x|θ′) > k1 iff T (x) > C1 for some C1

1



and the MP test is exactly of the same form as φ. Now from the corollary to
N-P Lemma, we have Eθ′′φ(X) > Eθ′φ(X), whenever θ′′ > θ′. This proves
(ii). The fact that Eθφ(X) is strictly increasing implies that

Eθφ(X) ≤ α ∀ θ ≤ θ0. (∗ ∗ ∗)

Now let us check what test is UMP for testing H0 : θ ≤ θ0 versus H1 : θ > θ0.
For this, consider the class C1 of all tests that satisfy (***). (We want to
know what is best in C1.) This class C1 is contained in the class C2 of tests
that satisfy Eθ0φ(X) ≤ α. In other words, we have,

C1 = {φ : Eθφ(X) ≤ α ∀ θ ≤ θ0} ⊂ C2 = {φ : Eθ0φ(X) ≤ α} ,

since Eθφ(X) ≤ α ∀ θ ≤ θ0 implies Eθ0φ(X) ≤ α. From N-P Lemma (b),
MP level α test for testing H0 : θ = θ0 versus H1 : θ = θ1 (for any θ1 > θ0)
is given by (*) and (**). That means that φ satisfying (*) and (**) is best
(MP) in C2 and this φ belongs to C1 also. Therefore it is best in C1. However,
this test does not depend on θ1. Therefore it is UMP for H1 : θ > θ0. i.e.,
for any θ > θ0, Eθφ(X) ≥ Eθφ

∗(X) for all φ∗ ∈ C1.

Example. X ∼ Binomial(n, p) and it is of interest to test H0 : p ≤ p0 versus
H1 : p > p0. (Consider a clinical trial where the efficacy of a drug is being
checked.) MLR exists in T (x) = x. Therefore, UMP exists and is given by

φ(x) =







1 if x > x0;
0 if x < x0;
γ if x = x0.

Choose γ and x0 to satisfy

Ep0φ(X) = Pp0(X > x0) + γPp0(X = x0) = α.

Let α = 0.05, n = 10 and p0 = 1/2. We have

x f(x|p = 1/2) Pp=1/2(X ≥ x)
10 0.000977 0.00098
9 0.009766 0.01074
8 0.043945 0.05469

Thus, x0 = 8 and

γ =
α− P (X > x0|p = p0)

P (X = x0|p = p0)
=

0.05− 0.01074

0.04395
= 0.8933.

Example. X1, . . . , Xn i.i.d N(µ, σ2), σ2 known. TestH0 : µ ≤ µ0 versusH1 :
µ > µ0. X̄ is sufficient for µ and X̄ ∼ N(µ, σ2/n). It was shown previously,
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directly, that the likelihood ratio is an increasing function of T (x̄) = x̄. This
means MLR which can also be shown using the fact that N(µ, σ2), σ2 known
is a one-parameter exponential family. Since

f(x̄|µ) =
√

n

2π

1

σ
exp

(

− n

2σ2
(x̄− µ)2

)

= exp
(nµ

σ2
x̄− n

2σ2
µ2 − n

2σ2
x̄2 + · · ·

)

,

which establishes MLR in T (x̄) = x̄. Therefore UMP level α test is

φ(x) =







1 if x̄ > C;
γ if x̄ = C;
0 if x̄ < C.

Choice of γ is not needed since Pµ(X̄ = C) = 0. We need

α = Pµ0

(

X̄ > C
)

= Pµ0

(

X̄ − µ0

σ/
√
n

>
C − µ0

σ/
√
n

)

,

so that C−µ0

σ/
√
n
= z1−α or C = µ0+ z1−α

σ√
n
. Thus, the UMP test simply rejects

H0 if X̄−µ0

σ/
√
n
> z1−α. This is simply the standard Z-test.

Example. X1, . . . , Xn i.i.d N(µ0, σ
2), µ0 known. Test H0 : σ2 ≤ σ2

0 versus
H1 : σ

2 > σ2
0. S

2 =
∑n

i=1(Xi − µ0)
2 is sufficient for σ2 and

S2 =
∑n

i=1(Xi − µ0)
2/σ2 ∼ χ2

n.

fS2(s2|σ2) = exp

(

− s2

2σ2

)(

s2

2σ2

)n/2−1

× constant

= exp

(

− 1

2σ2
s2 − n

2
log(σ2) + (

n

2
− 1) log(s2) + · · ·

)

.

Thus we have a one-parameter exponential family with MLR in T (s2) = s2.
Therefore the UMP level α test is

φ(x) =

{

1 if s2 > C;
0 if s2 < C.

s2

fn−1(s
2)

0

1− α

χ2
n(1− α)

3



C is determined by

α = Pσ2

0

(

S2 > C
)

= Pσ2

0

(

S2

σ2
0

>
C

σ2
0

)

.

Since S2/σ2
0 ∼ χ2

n, when σ2 = σ2
0, we have that C/σ2

0 = χ2
n(1− α)

4



Are there UMP tests for all fairly simple problems? Not in most cases.

Example. X1, . . . , Xn i.i.d N(µ, σ2), σ2 unknown. Test H0 : µ = µ0 versus
H1 : µ = µ1. This seems to be a simple problem, but N-P Lemma does not
apply since the hypotheses are not simple:

Θ0 = {(µ0, σ
2), σ2 > 0}, Θ1 = {(µ1, σ

2), σ2 > 0}.

What about problems where Θ ⊂ R1 and MLR exists? No, not in most cases,
even then. Suppose X ∼ Pθ, θ ∈ Θ ⊂ R1 and MLR exists in T (x). Consider
testing H0 : θ = θ0 versus H1 : θ 6= θ0. First consider testing H0 : θ = θ0
versus H1 : θ > θ0. Then UMP test exists and is given by

φ1(x) =







1 if T (x) > C1;
γ1 if T (x) = C1;
0 if T (x) < C1,

where C1 and γ1 are determined by Eθ0φ1(X) = α. Observe the power
function, Eθφ1(X) of this test.

θ

Eθφ1

α

θ0

For all θ > θ0, φ1 maximizes the power among all level α tests. Does it
maximize the power for any θ < θ0? No. To see this, consider testing
H0 : θ = θ0 versus H1 : θ < θ0. Then the UMP test is given by

φ2(x) =







1 if T (x) < C2;
γ2 if T (x) = C2;
0 if T (x) > C2,

where C2 and γ2 are determined by Eθ0φ2(X) = α. This test, by definition,
maximizes the power for all θ < θ0.

1



θ

Eθφ2

α

θ0

Therefore, no single test φ uniformly maximizes the power for all θ 6= θ0
subject to Eθ0φ(X) = α.

One may argue that φ1 and φ2 both are clearly not reasonable in this case,
since the power falls below the level for certain alternatives. Eliminate these
by putting the condition

Eθφ(X) ≥ α for all θ 6= θ0.

In general, for testing

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

the test φ that maximizes the power Eθφ for θ ∈ Θ1 subject to

sup
θ∈Θ0

Eθφ(X) ≤ α and Eθφ(X) ≥ α for all θ 6= θ0

is called the Uniformly Most Powerful Unbiased (UMPU) test. They exist
under some very stringent conditions on the model density. These situations
are rare. (See Lehmann, TSH.)

Generalized Likelihood Ratio Tests (GLRT)

UMP tests do not exist in all but simple situations. UMPU tests also may
not exist. How does one conduct a test then? The approach that seems
reasonable is to derive tests heuristically, and then check for their optimality.

Let X ∼ Pθ, θ ∈ Θ having density f(x|θ). Consider testing

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

2



Then the Generalized Likelihood Ratio statistic is defined to be

L(x) =
supθ∈Θ1

f(x|θ)

supθ∈Θ0
f(x|θ)

.

Reject H0 if L is too large. This is a reasonable approach because we saw
earlier that f(x|θ1)

f(x|θ0)
can be looked upon as evidence against H0 : θ = θ0 and

in favour of H1 : θ = θ1. Now, supθ∈Θ1
f(x|θ) is the best evidence for

H1 : θ ∈ Θ1 whereas supθ∈Θ0
f(x|θ) is the best evidence for H0 : θ ∈ Θ0.

Suppose Θ = Θ0 ∪Θ1. Consider

λ(x) =
supθ∈Θ f(x|θ)

supθ∈Θ0
f(x|θ)

.

Then λ(x) = max{L(x), 1} since

λ(x) =

{

1 if supθ∈Θ0
f(x|θ) ≥ supθ∈Θ1

f(x|θ);
L(x) if supθ∈Θ0

f(x|θ) < supθ∈Θ1
f(x|θ).

Note that

λn(x1, . . . , xn) =
f(x1, . . . , xn|θ̂)

f(x1, . . . , xn|θ̂0)
,

where
θ̂ = MLE of θ in Θ,
θ̂0 = MLE of θ in Θ0.
If an increasing function of λ(X) has a standard distribution under H0, then
it can be used to construct the test.
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Generalized Likelihood Ratio Tests (GLRT)

UMP tests do not exist in all but simple situations. UMPU tests also may
not exist. How does one conduct a test then? The approach that seems
reasonable is to derive tests heuristically, and then check for their optimality.

Let X ∼ Pθ, θ ∈ Θ having density f(x|θ). Consider testing

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Then the Generalized Likelihood Ratio statistic is defined to be

L(x) =
supθ∈Θ1

f(x|θ)
supθ∈Θ0

f(x|θ) .

Reject H0 if L is too large. This is a reasonable approach because we saw
earlier that f(x|θ1)

f(x|θ0)
can be looked upon as evidence against H0 : θ = θ0 and

in favour of H1 : θ = θ1. Now, supθ∈Θ1
f(x|θ) is the best evidence for

H1 : θ ∈ Θ1 whereas supθ∈Θ0
f(x|θ) is the best evidence for H0 : θ ∈ Θ0.

Suppose Θ = Θ0 ∪Θ1. Consider

λ(x) =
supθ∈Θ f(x|θ)
supθ∈Θ0

f(x|θ) .

Then λ(x) = max{L(x), 1} since

λ(x) =

{

1 if supθ∈Θ0
f(x|θ) ≥ supθ∈Θ1

f(x|θ);
L(x) if supθ∈Θ0

f(x|θ) < supθ∈Θ1
f(x|θ).

Note that

λn(x1, . . . , xn) =
f(x1, . . . , xn|θ̂)
f(x1, . . . , xn|θ̂0)

,

where
θ̂ = MLE of θ in Θ,
θ̂0 = MLE of θ in Θ0.
If an increasing function of λ(X) has a standard distribution under H0, then
it can be used to construct the test.

Example. X1, . . . , Xn i.i.d N(µ, σ2), both µ and σ2 unknown. Test H0 :
µ = 0 versus H1 : µ 6= 0. Then

Θ0 = {(µ = 0, σ2), σ2 > 0}, Θ1 = {(µ, σ2),−∞ < µ < ∞, µ 6= 0, σ2 > 0}.

1



MLE are needed to compute the GLR statistic: unrestricted and, restricted
to Θ0.

θ̂ = (µ̂ = X̄, σ̂2 =
1

n

n
∑

i=1

(Xi − X̄)2),

θ̂0 = (µ̂0 = 0, σ̂2
0 =

1

n

n
∑

i=1

X2
i ).

Therefore,

λ(x) =
f(x|θ̂)
f(x|θ̂0)

=
(2π)−n/2

(

1
n

∑n
i=1(xi − x̄)2

)−n/2
exp

(

− 1
2σ̂2 {

∑n
i=1(xi − x̄)2 + n(x̄− µ̂)2}

)

(2π)−n/2
(

1
n

∑n
i=1 x

2
i

)−n/2
exp

(

− 1
2σ̂2

0

{
∑n

i=1 x
2
i }
)

=
(
∑n

i=1(xi − x̄)2)
−n/2

(
∑n

i=1 x
2
i )

−n/2
=

( ∑n
i=1 x

2
i

∑n
i=1(xi − x̄)2

)n/2

=

(∑n
i=1(xi − x̄)2 + nx̄2

∑n
i=1(xi − x̄)2

)n/2

=

(

1 +
nx̄2

∑n
i=1(xi − x̄)2

)n/2

.

Note that λ(x) is an increasing function of

T 2 =
nx̄2

∑n
i=1(xi − x̄)2/(n− 1)

,

and therefore of |T |, where

T =

√
nX̄

√

∑n
i=1(Xi − X̄)2/(n− 1)

∼ tn−1, if H0 is true.

Therefore the GLRT rejects H0 if

∣

∣

∣

∣

∣

√
nx̄

√
∑n

i=1(xi − x̄)2/(n− 1)

∣

∣

∣

∣

∣

> tn−1(1− α/2).

Example. X1, . . . , Xn i.i.d N(µ, σ2), σ2 known. Test H0 : µ = µ0 versus
H1 : µ 6= µ0. Derive the GLR statistic and show that GLRT rejects H0 when

∣

∣

∣

∣

√
n(x̄− µ0)

σ

∣

∣

∣

∣

> z1−α/2.

2



Note. Classical or Frequentist test procedure (which is what we have been
discussing) is predetermined. x or data is used only to check whether it falls
in the rejection region or not. Exact value of x is not relevant. What is
reported is the level α and whether φ(x) is 1, γ or 0. If H0 is true, then
the test procedure will ensure that, if used over and over again, the long-run
average rejection rate is α.

Confidence Sets and Hypothesis Tests

For a confidence set, we want S(X) ⊂ Θ such that

Pθ (θ ∈ S(X)) ≥ 1− α for all θ ∈ Θ.

Then S(X) is said to be 100(1-α)% confidence set for θ. Suppose we have
available to us a test procedure for testing H0 : θ = θ′ versus H1 : θ 6= θ′ for
any θ′ ∈ Θ. Let A(θ′) ⊂ X be the acceptance region of the level α test of
H0 : θ = θ′ versus H1 : θ 6= θ′. Define

S(x) = {θ′ ∈ Θ such that x ∈ A(θ′)}
= { all θ′ for which H0 : θ = θ′ will be accepted if x is observed. }

Then θ ∈ S(x) iff x ∈ A(θ). Therefore,

Pθ (θ ∈ S(X)) = Pθ (X ∈ A(θ)) ≥ 1− α.

Therefore, S(X) is 100(1-α)% confidence set for θ.

Example. X1, . . . , Xn i.i.d N(µ, σ2), σ2 known. Then X̄ is sufficient and
X̄ ∼ N(µ, σ2/n). Recall that GLRT for testing H0 : µ = µ′ versus H1 : µ 6=
µ′ rejects H0 when

∣

∣

∣

∣

√
n(x̄− µ′)

σ

∣

∣

∣

∣

> z1−α/2.

Therefore, its acceptance region is

A(µ′) =

{

x̄ :

∣

∣

∣

∣

x̄− µ′

σ/
√
n

∣

∣

∣

∣

≤ z1−α/2

}

.

Hence,

S(x̄) =

{

µ′ :

∣

∣

∣

∣

x̄− µ′

σ/
√
n

∣

∣

∣

∣

≤ z1−α/2

}

.

Therefore the resulting confidence set (interval) is

S(X̄) = X̄ − z1−α/2
σ√
n
≤ µ ≤ X̄ + z1−α/2

σ√
n
.
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Example. X1, . . . , Xn i.i.dN(µ, σ2), both µ and σ2 unknown. It is of interest
to construct a confidence set for µ. (X̄, S2 =

∑n
i=1(Xi − X̄)2) is sufficient.

Let s2 = 1
n−1

∑n
i=1(Xi − X̄)2). Consider the GLRT for testing H0 : µ = µ0

versus H1 : µ 6= µ0. Its acceptance region is

A(µ0) =

{

(x̄, s2) :

∣

∣

∣

∣

x̄− µ0

s/
√
n

∣

∣

∣

∣

≤ tn−1(1− α/2)

}

, so that

S(x̄, s2) =

{

µ :

∣

∣

∣

∣

x̄− µ0

s/
√
n

∣

∣

∣

∣

≤ tn−1(1− α/2)

}

.

This yields the confidence interval:

S(X̄, s2) = X̄ − tn−1(1− α/2)
s√
n
≤ µ ≤ X̄ + tn−1(1− α/2)

s√
n
.
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Bayesian Statistical Inference

An example of statistical inference is as follows.

Example. Consider a production process where the overall proportion of
defectives, θ, is of interest. A random sample of size n of products from
this process is checked for defectives. Let X denote the number of defectives
found in the sample. Then X ∼ Binomial(n, θ). i.e.,

P (X = x|θ) = f(x|θ) =

(

n

x

)

θx(1− θ)n−x, x = 0, 1, . . . , n.

The unknown quantity θ indexes the model Pθ forX. What is the ‘best fit’ for
θ if X = x is observed? We may find the mle of θ: l(θ|x) =

(

n

x

)

θx(1− θ)n−x,
as a function of θ for given x is the likelihood function of θ. This is a measure
of how likely that the model with proportion θ produced the data x. With
this interpretation, it makes sense to maximize this likelihood function to
estimate θ.
θ̂mle : maxθ l(θ|x)

In the example, l(θ|x) = c(x)θx(1 − θ)n−x has unique maximum at θ̂ =
x/n = sample proportion of defectives. Good! Now we have an estimate (for
θ). How good is this estimate? What is the estimation error? What is a
confidence interval for θ?

These questions cannot be answered by the likelihood approach. In the
Frequentist approach, they require the sampling distribution of the estimator
– on repeated sampling how does θ̂ behave? Let us consider confidence
statements.

Confidence Set. Any random set (related to X) which captures θ with a
prescribed level of confidence.

If n is large, a 95% confidence interval for θ is θ̂ ± 1.96

√

θ̂(1− θ̂)/n. This

is because, since X ∼ Binomial(n, θ), for large n, X/n is approximately
N(θ, θ(1− θ)/n), or

X/n− θ
√

θ(1− θ)/n
∼ N(0, 1).

Then, approximately,

P

(

|
X

n
− θ| ≤ 1.96

√

θ(1− θ)/n

)

= 0.95.
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For large n, θ̂(X) is close to θ, so

P

(

|
X

n
− θ| ≤ 1.96

√

θ̂(1− θ̂)/n

)

= 0.95.

Therefore,

θ ∈

(

θ̂(X)± 1.96

√

θ̂(X)(1− θ̂(X))/n

)

with probability 0.95 for all θ.

There are two issues with this approach. First, instead of binomial sampling,
suppose we did inverse binomial sampling. i.e., check products until x (same
count as what we got with binomial sampling) defectives are spotted. Then,
we have:
binomial likelihood: θx(1− θ)n−x

inverse binomial likelihood: θx(1− θ)y

Suppose n − x = y; then the observed likelihood is the same for both the
models, so θ̂ = x/n for both. However, the confidence intervals will be
different since the variances of θ̂ will be different.

The second issue involves the interpretation of the confidence interval. If
we sample again and again from the production process and construct 95%
confidence intervals with each of the samples, in about 19 cases out of 20 the
intervals will contain θ. However, for the given sample we get a fixed (not

random) interval: θ̂(x)± 1.96

√

θ̂(x)(1− θ̂(x))/n. What is the interpretation
for this interval? Surely, θ can only lie in that interval with probability either
0 or 1.

Classical statistics is frequentist – talks only in terms of optimality w.r.t.
long-run average behaviour of statistical procedures. It cannot condition on
data, and cannot interpret procedures with respect to fixed data. Why is con-
ditioning needed if we have procedures which have good long-run behaviour?

The need for conditioning on data.

First of all, repetition of experiments (as in frequentist sense) may not be
meaningful – what are the chances of another catastrophe like covid-19?
Another point is illustrated below.

Example. Let X1 and X2 be i.i.d. with

Xi =

{

θ − 1 with probability 1/2;
θ + 1 with probability 1/2,
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where −∞ < θ < ∞. Define a confidence set for θ as follows.

C(X1, X2) =

{

{X1+X2

2
} if X1 6= X2;

{X1 − 1} if X1 = X2.

Then, we get,

Pθ(θ ∈ C) = Pθ

(

θ =
X1 +X2

2

∣

∣

∣

∣

X1 6= X2

)

Pθ(X1 6= X2)

+P (θ = X1 − 1 | X1 = X2)Pθ(X1 = X2)

= 1×
1

2
+

1

2
×

1

2
=

3

4
,

for all θ, so C(X1, X2) is a 75% confidence set for θ. Thus, if we use this
procedure repeatedly, we will be correct about θ three times out of four.
But, if we observe x1 6= x2, are we not 100% sure that θ = (x1 + x2)/2?
Why say that we are only 75% sure? This shows that ther are situations
where pre-experimental optimality is not the appropriate approach for in-
ference. However, the frequentist approach does not permit any (observed)
data dependent confidence statements. There are many examples like this.

Example. To estimate µ in N(µ, σ2), toss a fair coin. Have a sample of size
n = 2 if it is a head and take n = 1000 if it is a tail. An unbiased estimate
of µ is X̄n =

∑n

i=1
Xi/n with variance = 1

2
{σ2

2
+ σ2

1000
} ∼ σ2

4
. Suppose it was

a tail. Would you believe σ2/4 is a measure of accuracy?

Example. LetX1, X2 be i.i.d. U(θ− 1

2
, θ+ 1

2
). Let X̄±C be a 95% confidence

interval, C > 0 being suitably chosen. Suppose X1 = 2 and X2 = 1. Then
we know for sure θ = (X1+X2)/2 and hence θ ∈ (X̄−C, X̄+C). Should we
still claim we have only 95% confidence that the confidence interval covers
θ?

How is then conditioning on data to be done? Consider the example below.

Example. A laboratory test (such as RAT for COVID-19) is needed to
check whether a person has a particular disease. The result of the test is
either positive (x = 1) or negative (x = 0). Let θ1 denote ‘disease is present’,
θ2 be ‘not present’. P (X = x|θ) is as follows.

x = 0 x = 1
θ1 0.2 0.8
θ2 0.7 0.3

The test is not fool-proof. 30% false positives and 20% false negatives appear.
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Now suppose a patient is sent to the laboratory for this test and the test
result comes out positive. What is the doctor to conclude regarding the
presence or absence of the disease? Note that the question of interest is not
whether the test result is positive or negative. Instead, what are the chances
of the disease being present? i.e., P (θ = θ1|X = 1) = ?

What we have are P (X = 1|θ = θ1) and P (X = 1|θ = θ2). We have the
‘wrong’ conditional probabilities! They need to be reversed or inverted. But
how?

Suppose, in the concerned community, the disease is present in 5% of the
cases. i.e., P (θ = θ1) = 0.05. This is, however, not part of the sample data.
This is pre-experimental. The doctor has this information from experience
in the field. Now,

P (θ = θ1|X = x) =
P (θ = θ1 and X = x)

P (X = x)
,

and

P (X = x) = P (X = x|θ1)P (θ = θ1) + P (X = x|θ2)P (θ = θ2),

so applying the Bayes Theorem,

P (θ = θ1|X = x) =
P (X = x|θ1)P (θ = θ1)

P (X = x|θ1)P (θ = θ1) + P (X = x|θ2)P (θ = θ2)
. (1)

Therefore,

P (θ = θ1|X = 1) =
0.8× 0.05

0.8× 0.05 + 0.3× 0.95
=

0.04

0.04 + 0.237
= 0.123,

and P (θ = θ2|X = 1) = 0.877. Positive blood test indicates only a 12.3%
chance of disease being present in a random member of the community, so
further diagnostic measures may be needed. On the other hand, this is
important since the risk has more than doubled, from 5% to 12.3%.

(1) shows how to ‘invert’ the given conditional probabilities, P (X = x|θ)
to derive the desired conditional probabilities, P (θ = θi|X = x), which is
an application of the Bayes Theorem. Since this involves an inversion, the
name, Theory of inverse probability is used for statistical inference based on
this approach. This was the usage at the time of Bayes and Laplace – late
18th century, before Fisher and Pearson. However, these days it is known
simply as Bayesian inference. Note that, to obtain P (θ = θ1|X = 1), it is
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essential to have P (θ = θ1) (and hence P (θ = θ0) = 1− P (θ = θ1)). Where
does this come from, and what kind of a probability is this?

Ingredients of Bayesian inference

likelihood function, l(θ|x) ∝ f(x|θ)

prior distribution, π(θ) =

{

probability mass function, if θ is discrete;
probability density function, if θ is continuous

What are the implications of using a prior distribution (π) on the unknown
quantity θ?

There is usually some information (prior to sample data collection) avail-
able about θ; sometimes this may be precise but not often. Thus, there is
usually a lot of uncertainty about θ. What is a good way to quantify uncer-
tainty? Probability is the only well-accepted mathematical approach. This
does not necessarily mean that θ is random. Probability is a tool to incorpo-
rate uncertainty, that is all. There is no requirement that probabilities must
have a relative frequency interpretation based on a repeatable experiment.
However, past data is a common source for prior probabilities. Recall the
example on laboratory test for diagnosis. In this case, the prior probability,
P (θ = θ1) = 0.05 in the concerned population is simply the prevalence of
the disease, about which medical experts are expected to have information.
In the quality control example, the manufacturer wants to monitor the qual-
ity of his products. Random samples are taken periodically to estimate the
proportion p of defectives. But the manufacturer has a lot of other informa-
tion about his production process including past data on the proportion of
defectives.

An important aspect of Bayesian inference is this: Whether useful prior
information is available or not, a prior distribution is needed for the imple-
mentation of conditioning on data using the Bayes theorem.

Technically, a Bayesian takes the view that all unknown quantities, namely
the unknown parameter and the data before observation, have a probability
distribution. For the data, the distribution, given θ, comes from a model
that arises from past experience in handling similar data as well as subjective
judgment. The distribution of θ arises as a quantification of the Bayesian’s
knowledge and belief. If her knowledge and belief are weak, she may fall back
on a common objective distribution in such situations.
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Bayesian Inference

Informally, to make inference about θ is to learn about the unknown θ from
data X, i.e., based on the data, explore which values of θ are probable,
what might be plausible numbers as estimates of different components of θ
and the extent of uncertainty associated with such estimates. In addition to
having a model f(x|θ) yielding a likelihood function, the Bayesian needs a
distribution for θ. The distribution is called a prior distribution or simply
a prior because it quantifies her uncertainty about θ prior to seeing data.
The prior may represent a blending of her subjective belief and knowledge,
in which case it would be a subjective prior. Alternatively, it could be a
conventional prior supposed to represent small or no information. Such a
prior is called an objective prior.

Given all the above ingredients, the Bayesian calculates the conditional prob-
ability density of θ given X = x by Bayes formula. First, the joint density
of X and θ is h(x, θ) = f(x|θ)π(θ) on X × Θ. The marginal (or predictive)
density of X is

m(x) =

∫

Θ

f(x|θ)π(θ) dθ, or
∑

θ

f(x|θ)π(θ).

Then,

π(θ|x) =
h(x, θ)

m(x)
=

f(x|θ)π(θ)

m(x)

∝ f(x|θ)π(θ) for observed data, x,

is called the post-experimental or posterior distribution (density) of θ given
x.

This summarizes all the post-data information about θ, and is a quantifi-
cation of our uncertainty about θ in the light of data. The transition from
π(θ) to π(θ|x) is what we have learnt from the data. All inferences about θ
must be based on this posterior distribution. Nothing beyond l(θ|x) from the
experiment is needed. Two different experiments with the same likelihood
lead to identical inference. π(θ|x) ∝ l(θ|x) ∝ f(x|θ) if π(θ) ≡ 1. In this case
π(θ|x) does not use any information other than what is in l(θ|x).

Suppose T = T (X) is sufficient for θ (or Pθ, θ ∈ Θ) or for f(x|θ), θ ∈ Θ.

Theorem. Posterior distribution of θ given X = x depends on x only
through T (x).
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Proof. We will assume the factorization theorem: f(x|θ) = g(T (x), θ)h(x).
If T (x) = t, then

π(θ|x) =
f(x|θ)π(θ)

∫

f(x|u)π(u) du

=
g(T (x), θ)h(x)π(θ)

∫

g(T (x), u)h(x)π(u) du

=
g(t, θ)π(θ)

∫

g(t, u)π(u) du
.

Example. Consider an urn with Np red and N(1 − p) black balls, p is
unknown but N is a known large number. Balls are drawn at random one
by one and with replacement, selection is stopped after n draws. For i =
1, 2, . . . , n, let

Yi =

{

1 if the ith ball drawn is red;
0 otherwise.

Then Yi’s are i.i.d Binomial(1, p), i.e., Bernoulli with probability of success
p. Therefore the likelihood function for p given the data is proportional to

f(y1, . . . , yn) = p
∑

n

i=1
yi(1− p)n−

∑
n

i=1
yi = px(1− p)n−x,

where x =
∑n

i=1
yi. Since X =

∑n

i=1
Yi (the number of red balls drawn) is

sufficient for p, we get the same likelihood function (the part involving p)
if we assume that we have observed X = x from a Binomial(n, p). Let p
have a prior distribution π(p). We will consider a family of priors for p that
simplifies the calculation of posterior distribution and then consider some
commonly used priors from this family. Let

π(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1, 0 ≤ p ≤ 1;α > 0, β > 0.

This is the density of the Beta distribution. Equivalently, under the prior
distribution, the unknown parameter, p ∼ Beta(α, β). (Note that for con-
venience we take p to assume all values between 0 and 1, rather than only
0, 1/N, 2/N , etc.) The prior mean and variance are α/(α+β) and αβ/{(α+
β)2(α + β + 1)}, respectively, which may be obtainable from past data.

To derive the posterior density, note that

h(x, p) =

(

n

x

)

px(1− p)n−x Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1, x = 0, . . . , n; 0 < p < 1

=

(

n

x

)

Γ(α + β)

Γ(α)Γ(β)
px+α−1(1− p)n−x+β−1, x = 0, . . . , n; 0 < p < 1,
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so that

m(x) =

∫ 1

0

h(x, p) dp =

(

n

x

)

Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

px+α−1(1− p)n−x+β−1 dp

=

(

n

x

)

Γ(α + β)

Γ(α)Γ(β)

Γ(α + x)Γ(β + n− x)

Γ(α + β + n)
, x = 0, . . . , n.

Therefore, we obtain,

π(p|x) =
h(x, p)

m(x)

=
Γ(n+ α + β)

Γ(x+ α)Γ(n− x+ β)
px+α−1(1− p)n−x+β−1, 0 < p < 1.

i.e., p|X = x ∼ Beta(x+α, n−x+β). Note, however, that the computation
of m(x) is not needed here to derive the posterior density; it can be deduced
from simply noting the functional form of the density in h(x, p), namely,
px+α−1(1 − p)n−x+β−1, which is just the (unnormalized) density of the Beta
distribution. This is due to the choice of the prior, and will be explored
further later. Before that note the following. As a straightforward and
immediate estimate of p, one could look at the most ‘probable’ value of
p (under π(p|x)). The highest posterior density or HPD estimate of p is
the value, denoted p̂ hpd , which maximizes π(p|x). In the example above,

p̂ hpd = (x+ α− 1)/(n+ α + β − 2).

(i) If we take α = 1 = β, i.e., π(p) ≡ 1, we get

π(p|x) =
Γ(n+ 2)

Γ(x+ 1)Γ(n− x+ 1)
px(1− p)n−x, 0 < p < 1.

As a function of p, π(p|x) and l(p|x) are the same. Therefore,
MLE of p = x/n = HPD estimate of p. i.e., p̂ mle = p̂ hpd , but their

interpretations are different.
Given x, θ̂ hpd is the most probable value of θ, or Pθ̂ hpd

is most ‘probably’

the correct model (for X), whereas p̂ mle is that value of θ, or the parameter
of that model which most ‘likely’ produced x.

Now, coming back to the Beta prior for Binomial, note that what simplied
the computation of the posterior density is that the prior and likelihood have
the same functional form.

3



Now, coming back to the Beta prior for Binomial, note that what simplied
the computation of the posterior density is that the prior and likelihood have
the same functional form.

Conjugate families of prior distributions. Let F denote a class of
density functions f(x|θ). A class P of prior densities is said to be a conjugate
family for F if π(.|x) ∈ P for all f ∈ F and π ∈ P .

Example. X|θ ∼ Binomial(n, θ). Then

F = { all Binomial(n, θ), n = 1, 2 . . . } ,

P = { all Beta(a, b), a > 0, b > 0. } .
If π ∈ P and f ∈ F , then θ ∼ Beta(a, b) for some a > 0, b > 0, and
X|f ∼ Binomial(n, θ) for some n > 0, so θ|X = x ∼ Beta(x+a, n−x+b) ∈ P .

Example. X|θ ∼ N(θ, σ2), σ2 known. Consider θ ∼ N(µ, τ 2), µ, τ 2 known.

Then, θ|X = x ∼? h(x, θ) = 1
2π

1
στ

exp(−1
2
[ (x−θ)2

σ2 + (θ−µ)2

τ2
]). One can complete

the square for θ, proceed using calculus to find m(x) and then determine
π(θ|x). We will use a property of the multivariate normal instead. Note that
X|θ ∼ N(θ, σ2) is equivalent to X = θ+ǫ, where ǫ ∼ N(0, σ2) independent of
θ. Since θ ∼ N(µ, τ 2), we can obtain the joint bivariate normal distribution
for X and θ as:

(

X
θ

)

=

(

θ + ǫ
θ

)

∼ N2

((

µ
µ

)

,

(

σ2 + τ 2 τ 2

τ 2 τ 2

))

,

because E(X) = E(θ+ ǫ) = µ, V ar(X) = V ar(θ+ ǫ) = σ2+τ 2, Cov(X, θ) =
Cov(θ + ǫ, θ) = Cov(θ, θ) = V ar(θ) = τ 2. Therefore,

θ|X = x ∼ N

(

µ+
τ 2

σ2 + τ 2
(x− µ), τ 2 − τ 4

σ2 + τ 2

)

= N

(

τ 2

σ2 + τ 2
x+

σ2

σ2 + τ 2
µ,

σ2τ 2

σ2 + τ 2
=

(

1

σ2
+

1

τ 2

)

−1
)

.

Remark. If insteadX1, X2, . . . , Xn are i.i.d N(θ, σ2), σ2 known, in the above
example, then X̄ is sufficient for θ and X̄|θ ∼ N(θ, σ2/n). Therefore replace
X by X̄ and σ2 by σ2/n above.

Question. Are conjugate priors reasonable for expressing prior information?
If they represent actual prior information, there is no problem. Otherwise
they are easy to work with but not robust – prior and likelihood have the
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same functional form, so similar weight is given to prior and sample data.
Mixtures of conjugate priors are much better, and computations are not too
difficult because MCMC sampling methods are available.

Noninformative or vague priors

Example. X1, X2, . . . , Xn are i.i.d N(θ, σ2), σ2 known. Inference on θ is
of interest. Consider π(θ) ≡ 1 as an expression of lack of prior information.
This is not a probability density, but that of a limit of N(0, τ 2) as τ 2 → ∞.
Since X̄|θ ∼ N(θ, σ2/n), h(x̄, θ) = f(x̄|θ)π(θ) = f(x̄|θ), we get

m(x̄) =

∫

∞

−∞

f(x̄|θ) dθ =

∫

∞

−∞

√
n√

2πσ
exp(− n

2σ2
(θ − x̄)2) dθ = 1.

Therefore,

π(θ|x̄) =
√
n√

2πσ
exp(− n

2σ2
(θ − x̄)2),

so that θ|X̄ = x̄ ∼ N(x̄, σ2/n). Why not then use π(θ) ≡ c whenever no prior
information is available, or when a noninformative prior is needed? Observe
the problem with this approach. Suppose θ > 0 and consider π(θ) ≡ c. Then
∫

∞

0
π(θ) dθ = ∞. Consider the reparametrization: η = η(θ) = exp(θ). Then

θ = log(η), so dθ = dη/η. Therefore, the prior density on η is given by

π∗(η) = π(log(η))
1

η
=

c

η
,

which is not uniform as is the case with π(θ). If we did not have information
about θ how did we get information about a transform of it? There are
no strictly noninformative priors, there are default and reference priors for
objective choice, for example, the Jeffreys’ prior.

Jeffreys’ Prior

The idea is to employ a prior which contains the minimal amount of prior
information needed to be able to conduct Bayesian analysis for the given
experiment. Let f(x|θ) be the model density of X|θ for which I(θ) be the
Fisher Information. Then the Jeffreys’ prior in this case is defined to be

π(θ) = (I(θ))1/2 if θ is univariate; more generally π(θ) = |I(θ)|1/2 .

Example. SupposeX|θ ∼ N(θ, 1). Then I(θ) = 1 since ∂
∂θ

log f(x|θ) = x−θ

and ∂2

∂θ2
log f(x|θ) = −1. Therefore, π(θ) ≡ C is the Jeffreys’ prior in this

case.
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It may be verified that this prior is invariant with respect to any one-one
differentiable transformations on θ.

In practice, however, Jeffreys’ employed a different group invariance argu-
ment. For any location family, his suggestion for the prior on the location
parameter is the translation invariant (thus indicating lack of information)
measure. Note that this agrees with the Jeffreys’ prior above for the N(θ, 1).
For a location-scale family f(x|θ, σ), his argument is as follows. If σ is fixed,
then the prior for the location θ is π1(θ|σ) = 1 as above. Now note that, if
σ is a scale parameter for a positive r.v. Y then log σ is a location for log Y .
So, the prior for log σ is a constant which in turn gives π2(σ) = 1/σ. Thus
π(θ, σ) = π1(θ|σ)π2(σ) = 1/σ. This is the right invariant Haar measure for
the affine group of transaformations whereas the Jeffreys’ prior according to
the formal definition above is the left invariant Haar measure which is 1/σ2.
Most Bayesians prefer the former one, for various reasons including posterior
consistency.

Estimation

π(θ| data) is the probability density of θ having seen the data. It contains all
the post-experimental information about θ. Any Bayesian inference about θ
must be based on it. Note the following in this context.
(i) We have an actual probability distribution on the unknown parameters

to describe their uncertainty, namely π(θ| data).
(ii) We can readily make probability statements on where θ lies using this
distribution.

A Bayesian can simply report the posterior distribution, or report some sum-
mary descriptive measures associated with the posterior distribution. For
example, as mentioned previously, θ̂ hpd , is one such measure which is anal-

ogous to the MLE. If π(θ|x) is unimodal, this may be a reasonable estimate
for θ. However, the usual Bayes estimate of θ is E(θ|x), which is a mea-
sure of location or centre of π(θ|x). For this estimate, the precision may be
measured by the posterior standard deviation, s.d.(θ|x), which is a standard
measure of spread or dispersion. Note that (for a real valued θ)

E(θ|x) =
∫

∞

−∞

θπ(θ|x) dθ

and the posterior variance

V ar(θ|x) = E{(θ − E(θ|x))2|x}

=

∫

∞

−∞

(θ − E(θ|x))2π(θ|x) dθ.
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Consider the binomial example again: X|θ ∼ Binomial(n, p), for which the
prior is p ∼ Beta(α, β). Then p|X = x ∼ Beta(x+ α, n− x+ β). Therefore,
the posterior mean and variance are

E(p|x) = (α + x)/(α + β + n),

V ar(p|x) =
(α + x)(β + n− x)

(α + β + n)2(α + β + n+ 1)
,

s.d(p|x) =

√

(α + x)(β + n− x)

(α + β + n)2(α + β + n+ 1)
.

The posterior mean can be rewritten as a weighted average of the prior mean
and MLE.

(α + β)

(α + β + n)

α

(α + β)
+

n

(α + β + n)

x

n
.

Once again, the importance of both the prior and the data comes out, the
relative importance of the prior and the data being measured by (α+β) and
n. It will not escape one’s attention that if n is large then the posterior mean
is approximately equal to the MLE, p̂ mle = x/n and the posterior variance
is quite small, so the posterior distribution is concentrated around p̂ mle for
large n. We can interpret this as an illustration of a fact that when we have
lots of data, the data tend to wash away the influence of the prior.
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Posterior inference

Model: X |θ has density f (x |θ)
Prior: θ has density π(θ)

Posterior density:

π(θ|x) =
f (x |θ)π(θ)

m(x)

This is the probability density for θ after observing the data, X = x

It contains all the information on θ after observing the data

All inferences on θ must be based on this



Optimal estimators

L(θ, a) = (θ − a)2 is the (squared error) loss when θ is estimated
with a number a.

What is the best estimator for θ under this loss?

mina E
[

(θ − a)2|x
]

=?

E
[

(θ − a)2|x
]

= E
[

{(θ − E (θ|x)) + (E (θ|x)− a)}2|x
]

= E
[

(θ − E (θ|x))2
]

+ (E (θ|x)− a)2

≥ E
[

(θ − E (θ|x))2
]

= Var(θ|x),

with equality iff a = δ(x) = E (θ|x)



What is the optimal estimator if

L(θ, a) = |θ − a|?



Credible sets

π(θ|x) is the probability density for θ (after observing data, X = x)

Any subset C = C (x) ⊂ Θ which has probability

P(θ ∈ C |x) =

∫

C

π(θ|x) dθ = 1− α

is a 100(1− α)% credible set for θ

Frequentist Confidence sets:

Pθ(T(X ) ≤ θ ≤ T̄ (X )) = 1− α

for all θ



Example.

X1,X2, · · · ,Xn i.i.d. N(θ, σ2), σ2 is known. θ ∼ N(µ, τ2).

θ|X = x ∼ N

(

τ2

τ2 + σ2/n
x̄ +

σ2/n

τ2 + σ2/n
µ,

τ2σ2/n

τ2 + σ2/n

)

.

Bayes estimate of θ is the posterior mean:

E (θ|x) =
τ2

τ2 + σ2/n
x̄ +

σ2/n

τ2 + σ2/n
µ,

Posterior variance:

Var(θ|x) =
τ2σ2/n

τ2 + σ2/n
.

100(1− α)% HPD credible interval for θ is:

E (θ|x)± z1−α/2 s.d.(θ|x)



τ2

τ2 + σ2/n
x̄ +

σ2/n

τ2 + σ2/n
µ± z1−α/2

√

τ2σ2/n

τ2 + σ2/n



Example. X1, . . . , Xn i.i.d. Poisson(λ). λ ∼ Exp(a). Then

f(x1, . . . , xn|λ) = exp(−nλ)λ
∑

n

i=1
xi/(

n
∏

i=1

xi!), xi = 0, 1, 2, . . .

π(λ) = a exp(−aλ), λ > 0, a > 0, so

π(λ|x) = a exp(−aλ) exp(−nλ)λ
∑

n

i=1
xi

(
∏n

i=1 xi!)m(x)
∝ exp (−λ(n+ a))λ

∑
n

i=1
xi , λ > 0.

Therefore λ|x ∼ Γ(
∑n

i=1 xi + 1, n+ a) and hence

E(λ|x) =

∑n
i=1 xi + 1

n+ a
=

n

n+ a

∑n
i=1 xi

n
+

a

n+ a

1

a
,

V ar(λ|x) =

∑n
i=1 xi + 1

(n+ a)2
,

s.d.(λ|x) =

√
∑n

i=1 xi + 1

n+ a
.

Example. X1, X2, · · · , Xn i.i.d. (N(θ, σ2)), σ2 is known. θ ∼ N(µ, τ 2).
Then as shown previously,

θ|X = x ∼ N

(

τ 2

τ 2 + σ2/n
x̄+

σ2/n

τ 2 + σ2/n
µ,

τ 2σ2/n

τ 2 + σ2/n

)

.

Therefore, the Bayes estimate of θ is the posterior mean

E(θ|x) = τ 2

τ 2 + σ2/n
x̄+

σ2/n

τ 2 + σ2/n
µ,

and posterior variance

V ar(θ|x) = τ 2σ2/n

τ 2 + σ2/n
.

i.e., in the light of the data, θ shifts from prior guess µ towards a weighted
average of the prior guess about θ and x̄, while the variability reduces from
σ2 to σ2

n
( τ2

τ2+σ2/n
). Consider the role of τ 2 and n: If the prior information is

small, implying large τ 2 or there is lot of data, i.e., n is large, the posterior
mean is close to the MLE x̄. Similarly, the posterior variance will be close to
σ2

n
in such a case. This can also be seen from the fact that then the posterior

distribution is close to N(x̄, σ
2

n
), which is what one gets from the likelihood.

1



This phenomenon of the likelihood dominating any reasonable prior as the
sample size grows simply says that as data accumulates, prior information
becomes unimportant. As expected, prior information is especially useful
when the sample size is small.

What happens to the posterior computations when there are more parame-
ters?

Example. Suppose the data consist of i.i.d. observations X1, X2, . . . , Xn

from a normal N(θ, σ2) distribution where both θ and σ2 are unknown. Sup-
pose we are only interested in inferences for θ. Even then we need a joint
prior on both the parameters. Consider the prior density π(θ, σ) = 1/σ. This
improper prior is recommended by Jeffreys. Then we have,

f(x|θ, σ2) = (2π)−n/2(σ2)−n/2 exp

[

− 1

2σ2

{

n
∑

i=1

(xi − x̄)2 + n(θ − x̄)2

}]

,

so that (letting S2 =
∑n

i=1(xi − x̄)2),

π(θ, σ|x) ∝ f(x|θ, σ2)
1

σ

= constant σ−(n+1) exp

[

− 1

2σ2

{

n(θ − x̄)2 + S2
}

]

.

Therefore, with a transformation v = σ−2, so that dv = −2σ−3 dσ, or dv/v =
−2dσ/σ, and s2 = S2/(n− 1) we get

π(θx) =

∫

∞

0

π(θ, σ|x) dσ

= constant

∫

∞

0

σ−(n+1) exp

[

− 1

2σ2

{

n(θ − x̄)2 + S2
}

]

dσ

= constant

∫

∞

0

σ−n exp

[

− 1

2σ2

{

n(θ − x̄)2 + S2
}

]

dσ

σ

= constant

∫

∞

0

vn/2 exp
[

−v

2

{

n(θ − x̄)2 + S2
}

] dv

v

= constant

∫

∞

0

exp
[

−v

2

{

n(θ − x̄)2 + S2
}

]

vn/2−1 dv

= constant
{

S2 + n(θ − x̄)2
]

−n/2

= constant (S2)−n/2
{

1 +
n

S2
(θ − x̄)2

]

−n/2

∝
{

1 +
1

n− 1

(√
n(θ − x̄)

s

)2
]

−(n−1+1)/2

,
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which is the density of Student’s t with n− 1 d.f. i.e.,

√
n(θ − x̄)

s
|x ∼ tn−1.

Therefore, the Bayes estimate for θ is E(θ|x) = x̄ under the Jeffreys’ prior.

Credible Intervals

Bayesian interval estimates for θ are similar to confidence intervals of classical
inference. They are called credible intervals or sets.

Definition For 0 < α < 1, a 100(1−α)% credible set for θ is a subset C ⊂ Θ
such that

P{C|X = x} = 1− α.

Usually C is taken to be an interval. Let θ be a continuous random variable,
θ(1), θ(2) be 100α1% and 100(1 − α2)% quantiles with α1 + α2 = α. Let
C = [θ(1), θ(2)]. Then P (C|X = x) = 1 − α. Usually equal tailed intervals
are chosen so α1 = α2 = α/2.

If θ is discrete, usually it would be difficult to find an interval with exact
posterior probability 1− α. There the condition is relaxed to

P (C|X = x) ≥ 1− α

with the inequality being as close to an equality as possible. In general, one
may use a conservative inequality like this in the continuous case also if exact
posterior probability 1− α is difficult to attain.

Whereas the (frequentist) confidence statements do not apply to whether a
given interval for a given x covers the “true” θ, this is not the case with cred-
ible intervals. The credibility 1− α of a credible set does answer a layman’s
question on whether the given set covers the “true” θ with probability 1−α.
This is because in the Bayesian approach, “true” θ is a random variable with
a data dependent probability distribution, namely, the posterior distribution.

The equal tailed credible interval need not have the smallest size, namely,
length or area or volume whichever is appropriate. For that one needs an
HPD (Highest Posterior Density) interval.

Definition Suppose the posterior density for θ is unimodal. Then the HPD
interval for θ is the interval

C = {θ : π(θ|X = x) ≥ k},

3



where k is chosen such that

P (C|X = x) = 1− α.

θ

π(θ|x)

0

1− α

θ

π(θ|x)

0

1− α

HPD Credible Interval versus Other Credible Interval

Example. Consider a normal prior for mean of a normal population with
known variance σ2. The posterior is normal for wich the mean and variance
have been derived earlier. The HPD interval is the same as the equal tailed
interval centered at the posterior mean,

C = posterior mean ± z1−α/2 posterior s.d.
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X ∼ N(µ, σ2). I (µ, σ2) = ((Iij(µ, σ
2))), where

I11(µ, σ
2) = Eµ,σ2

[

∂

∂µ
log f (X |µ, σ2)

]2

I22(µ, σ
2) = Eµ,σ2

[

∂

∂σ2
log f (X |µ, σ2)

]2

I12(µ, σ
2) = Eµ,σ2

[

∂

∂µ
log f (X |µ, σ2)

∂

∂σ2
log f (X |µ, σ2)

]

.

log f (x |µ, σ2) = −
1

2
log σ2 −

1

2σ2
(x − µ)2,

∂

∂µ
log f (x |µ, σ2) = −

1

2σ2
2(x − µ)(−1),

∂

∂σ2
log f (x |µ, σ2) = −

1

2

1

σ2
+

1

2σ4
(x − µ)2.



I11(µ, σ
2) = Eµ,σ2

[

(X − µ)2

σ4

]

=
1

σ2
,

I22(µ, σ
2) =

1

4σ8
Eµ,σ2

[

(X − µ)2 − σ2
]2

=
2σ4

4σ8
=

1

2σ4
.

I12(µ, σ
2) =

1

2
Eµ,σ2

[(

X − µ

σ2

)(

(X − µ)2 − σ2

σ4

)]

= 0.

I (µ, σ2) =

(

1

σ2 0

0 1

2σ4

)

.

|I (µ, σ2)| ∝ (σ2)−3.



Jeffreys (formal) prior is

π(µ, σ2) dµ dσ2 = |I (µ, σ2)|1/2 dµ dσ2 ∝ (σ2)−3/2
dµ dσ2.

Why is this not the same as the left invariant Haar measure on the
affine group, which is

σ−2?



Since dσ2 = 2σ dσ,

π(µ, σ) dµ dσ ∝ (σ2)−3/2
dµσ dσ = σ−2

dµ dσ.



P
π(Θ0|x)

Pπ(Θ1|x)
=

P
π(Θ0|x)

1− Pπ(Θ0|x)
=

π0

1− π0
× BF01(x).

If Θ0 = {θ0}, then

π(θ0|x)

1− π(θ0|x)
=

π0

1− π0
× BF01(x)

1− π(θ0|x)

π(θ0|x)
=

1− π0

π0
× BF−1

01
(x)

1

π(θ0|x)
− 1 =

1− π0

π0
× BF−1

01
(x)

1

π(θ0|x)
= 1 +

1− π0

π0
× BF−1

01
(x)



Example. Now consider the unknown variance case. Then as discussed
previously, with the Jeffreys’ prior, we have

√
n(θ − x̄)

s
|x ∼ tn−1.

Then, since

P (|
√
n(θ − x̄)

s
| ≤ tn−1(1− α/2)|x) = 1− α,

for n ≥ 2, the HPD 100(1-α)% credible interval for θ is

x̄± tn−1(1− α/2)
s√
n
.

Credible intervals are very easy to calculate unlike confidence intervals, the
construction of which requires pivotal quantities or inversion of a family of
tests. Consider the following example.

Example. X|θ ∼ Binomial(n, θ) and θ ∼ Beta(a, b). Then θ|X = x ∼
Beta(a+x, b+n−x). Therefore, the 100(1-α)% HPD credible set is (C1, C2)
where C1 and C2 satisfy

1− α =

∫ C2

C1

π(θ|x) dθ

=

∫ C2

C1

Γ(a+ b+ n)

Γ(a+ x)Γ(b+ n− x)
θa+x−1(1− θ)b+n−x−1 dθ, and

π(C1|x) = π(C2|x), or

Ca+x−1
1 (1− C1)

b+n−x−1 = Ca+x−1
2 (1− C2)

b+n−x−1

.

Solve for C1 and C2 numerically.

1



θ

π(θ|x)

0 1

1− α

C1 C2

Example. X1, X2, . . . , Xn i.i.d N(θ, σ2), σ2 known. π(θ) ≡ C. Then, from
previous discussion,

θ|x1, x2, . . . , xn ∼ N

(

x̄,
σ2

n

)

.

Therefore, the 100(1-α)% HPD credible set for θ is

x̄± z1−α/2
σ√
n
,

which is the same as the corresponding confidence interval. Then what is
the difference between the Bayesian and Frequentist intervals? It is in the
interpretation.

When viewed as a credible set, x̄±z1−α/2
σ√
n
has (posterior) probability 1−α

of containing θ. But when it is viewed as a confidence interval, this fixed
set has no such meaning. The random interval X̄ ± z1−α/2

σ√
n
has probability

1− α of containing θ. In otherwords, if the procedure is employed over and
over again, then the resulting intervals have long-run relative frequency of
1 − α of capturing θ inside. If α = 0.05, the random interval has 19 out of
20 chance of containing θ, so we can have the confidence that the confidence
interval from any data set has a good chance of capturing θ.

Prediction of a Future Observation

We have already done this informally earlier. Suppose the data are x1, · · · , xn,
whereX1, . . . , Xn are i.i.d. with density f(x|θ), e.g., N(µ, σ2) with σ2 known.

2



We want to predict the unobserved Xn+1 or set up a predictive credible in-
terval for Xn+1.

Prediction by a single number t(x1, · · · , xn) based on x1, · · · , xn with squared
error loss amounts to considering prediction loss

E
{

(Xn+1 − t)2|x
}

= E
[

{(Xn+1 − E(Xn+1|x))− (t− E(Xn+1|x))}2 |x
]

= E
{

(Xn+1 − E(Xn+1|x))2|x
}

+ (t− E(Xn+1|x))2

which is minimum at
t = E(Xn+1|x).

To calculate the predictor we need to calculate the predictive distribution

π(xn+1|x) =

∫

Θ

π(xn+1|x, θ)π(θ|x) dθ

=

∫

Θ

f(xn+1|θ)π(θ|x) dθ.

Let µ(θ) =

∫ ∞

−∞

xf(x|θ) dx. It can be shown that

E(Xn+1|x) = E(µ(θ)|x) =
∫

Θ

µ(θ)π(θ|x) dθ

and hence for the normal problem the predictor is

∫ ∞

−∞

µπ(µ|x) dµ = poste-

rior mean of µ.

Similarly in the Binomial Example, the predictive probability that the next
ball is red is

E(Xn+1|x) = E(p|x) = α + r

α + β + n

where r =
∑n

1
xi.

A predictive credible interval for Xn+1 is (c, d) where c and d are 100α1%
and 100(1 − α2)% quantiles of the predictive distribution of Xn+1 given x.
Usually, one takes α1 = α2 = α/2 as for credible intervals.

Testing of hypotheses: Model choice/criticism

X ∼ Pθ, θ ∈ Θ, with density or mass function f(x|θ). We want to test
H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, Θ0 ∪ Θ1 = Θ. In principle this is just
another Bayesian inference problem. Simply obtain π(θ|x) and compute

P (Θ0|x) =
∫

Θ0

π(θ|x) dθ and P (Θ1|x) =
∫

Θ1

π(θ|x) dθ = 1− P (Θ0|x).
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If P (Θ0|x) > 1/2 (or a suitable threshold), or the posterior odds ratio (of H0

relative to H1), P (Θ0|x)/P (Θ1|x) > 1, accept H0.

Example. Consider a blood test conducted for determining the sugar level
of a person with diabetes two hours after he had his breakfast. It is of interest
to see if his medication has controlled his blood sugar levels. Assume that
the test result X is N(θ, 100), where θ is the true level. In the appropriate
population (diabetic but under this treatment), θ is distributed according
to a N(100, 900). Then, marginally X is N(100, 1000), and the posterior
distribution of θ given X = x is normal with
mean = 900

1000
x+ 100

1000
100 = 0.9x+ 10 and variance = 100×900

1000
= 90.

Suppose we want to test H0 : θ ≤ 130 versus H1 : θ > 130. If the blood
test shows a sugar level of 130, what can be concluded? Note that, given
this test result, the true mean blood sugar level (θ) may be assumed to be
N(127, 90), which is the posterior distribution. Consequently, we obtain,

P (θ ≤ 130|X = 130) = Φ

(

130− 127√
90

)

= Φ(.316) = 0.624, and hence

P (θ > 130|X = 130) = 0.376.

Therefore the Posterior odds ratio of H0 relative to H1 is 0.624/0.376 = 1.66.

4



There is a simple interpretation for the posterior odds ratio, P (Θ0|x)/P (Θ1|x)
mentioned above. Consider the simple versus simple testing: H0 : θ = θ0
versus H1 : θ = θ1. We can assume Θ = {θ0, θ1}. Let π0 = P π(θ = θ0) =
1− P π(θ = θ1). Then

π(θ|x) =
π(θ)f(x|θ)

m(x)
=

π(θ)f(x|θ)

π0f(x|θ0) + (1− π0)f(x|θ1)

=

{

π0f(x|θ0)
m(x)

if θ = θ0;
(1−π0)f(x|θ1)

m(x)
if θ = θ1.

}

Therefore, the posterior odds ratio of H1 relative to H0 is

(1− π0)f(x|θ1)

π0f(x|θ0)
=

f(x|θ1)

f(x|θ0)
,

if π0 = 1/2. This is nothing but the likelihood ratio used in the classical MP
test. However the Bayesian use of it is simply to use it for expressing evidence
against H0 directly, without having to look for a reference distribution.

Testing a Point Null Hypothesis The problem is to test

H0 : θ = θ0 versus H1 : θ 6= θ0.

Conceptually testing a point null is not a different problem, but there are
complications. First of all, it is not possible to use a continuous prior density
because any such prior will necessarily assign prior probability zero to the null
hypothesis. Consequently, the posterior probability of the null hypothesis
will also be zero. Intuitively, this is clear: if the null hypothesis is a priori

impossible, it will remain so a posteriori also. Therefore, a prior probability
of π0 > 0 needs to be assigned to the point θ0 and the remaining probability of
π1 = 1−π0 will be spread over {θ 6= θ0} using a density g1. The complication
now is that the prior π is of the form

π(θ) = π0I{θ = θ0}+ (1− π0)g1(θ)I{θ 6= θ0}

and hence has both discrete and continuous parts. This complication appears
whenever Θ0 and Θ1 have different dimensions when we test H0 : θ ∈ Θ0

versus H1 : θ ∈ Θ1. Therefore we shall discuss this more general problem
below.

Let π0 and 1 − π0 be the prior probabilities of Θ0 and Θ1. Let gi(θ) be the
prior p.d.f. of θ on Θi (conditional on Hi being true), so that

∫

Θi

gi(θ) dθ = 1.

1



Thus the prior π(θ) is specified by

π(θ) = π0g0(θ)I{θ ∈ Θ0}+ (1− π0)g1(θ)I{θ ∈ Θ1}.

We do not require any longer that Θ0 and Θ1 be of the same dimension. We
can now proceed as before and compute posterior probabilities or posterior
odds. To obtain these posterior quantities, note that the marginal density of
X under the prior π can be expressed as

mπ(x) =

∫

Θ

f(x|θ)π(θ) dθ

= π0

∫

Θ0

f(x|θ)g0(θ) dθ + (1− π0)

∫

Θ1

f(x|θ)g1(θ) dθ,

and hence the posterior density of θ given the data X = x as

π(θ|x) =
f(x|θ)π(θ)

mπ(x)
=

{

π0f(x|θ)g0(θ)/mπ(x) if θ ∈ Θ0;
(1− π0)f(x|θ)g1(θ)/mπ(x) if θ ∈ Θ1.

It follows then that

P π(H0|x) = P π(Θ0|x) =
π0

mπ(x)

∫

Θ0

f(x|θ)g0(θ) dθ

=
π0

∫

Θ0

f(x|θ)g0(θ) dθ

π0

∫

Θ0

f(x|θ)g0(θ) dθ + (1− π0)
∫

Θ1

f(x|θ)g1(θ) dθ
and

P π(H1|x) = P π(Θ1|x) =
(1− π0)

mπ(x)

∫

Θ1

f(x|θ)g1(θ) dθ

=
(1− π0)

∫

Θ1

f(x|θ)g1(θ) dθ

π0

∫

Θ0

f(x|θ)g0(θ) dθ + (1− π0)
∫

Θ1

f(x|θ)g1(θ) dθ
.

Therefore, the posterior odds ratio of H0 to H1 is

P π(Θ0|x)

P π(Θ1|x)
=

π0

∫

Θ0

f(x|θ)g0(θ) dθ

(1− π0)
∫

Θ1

f(x|θ)g1(θ) dθ

=
π0

1− π0

∫

Θ0

f(x|θ)g0(θ) dθ
∫

Θ1

f(x|θ)g1(θ) dθ

=
π0

1− π0

× BF01(x),

where

BF01(x) =
P π(Θ0|x)

P π(Θ1|x)
/
P π(Θ0)

P π(Θ1)

=
Posterior odds ratio

Prior odds ratio
.

2



Thus, one may also report the Bayes factor, which does not depend on π0.
Note that the Bayes factor may be defined without reference to the prior
odds ratio also:

BF01 =

∫

Θ0

f(x|θ)g0(θ) dθ
∫

Θ1

f(x|θ)g1(θ) dθ
=

m0(x)

m1(x)
,

wheremi(x) is the marginal or predictive distribution ofX underHi. Clearly,
BF10 = 1/BF01. Also, the posterior odds ratio of H0 relative to H1 is

(

π0

1− π0

)

BF01,

which reduces to BF01 if π0 = 1
2
. Thus, BF01 is an important evidential

measure that is free of π0. The smaller the value of BF01, the stronger the
evidence against H0. As noted previously, the Bayes factor is the likelihood
ratio in the simple verus simple case, a weighted likelihood ratio in the general
case.

Example. In the blood sugar example, π0 = P π(θ ≤ 130) = Φ(130−100
30

) =
Φ(1), so the prior odds ratio is π0/(1− π0) = Φ(1)/(1−Φ(1)) = .8413/.1587
= 5.3, and thus the Bayes factor turns out to be BF01 = posterior odds
ratio/prior odds ratio = 1.66/5.3 = .313.

Consider an example on testing a point null hypothesis.

Example. Suppose X ∼ Binomial(n, θ) and we want to test H0 : θ = θ0
versus H1 : θ 6= θ0, a problem similar to checking whether a given coin is
biased based on n independent tosses (where θ0 will be taken to be 0.5).
Under the alternative hypothesis, suppose θ is distributed as Beta(α, β).
Then m1(x) is given by

m1(x) =

(

n

x

)

Γ(α + β)

Γ(α)Γ(β)

Γ(α + x)Γ(β + n− x)

Γ(α + β + n)
,

so that

BF01(x) =

(

n

x

)

θx0 (1− θ0)
n−x/

((

n

x

)

Γ(α + β)

Γ(α)Γ(β)

Γ(α + x)Γ(β + n− x)

Γ(α + β + n)

)

= θx0 (1− θ0)
n−x/

(

Γ(α + β)

Γ(α)Γ(β)

Γ(α + x)Γ(β + n− x)

Γ(α + β + n)

)

=
Γ(α)Γ(β)

Γ(α + β)

Γ(α + β + n)

Γ(α + x)Γ(β + n− x)
θx0(1− θ0)

n−x.

3



Hence, we obtain,

π(θ0|x) =

{

1 +
1− π0

π0

BF−1
01 (x)

}−1

=

{

1 +
1− π0

π0

Γ(α+β)
Γ(α)Γ(β)

Γ(α+x)Γ(β+n−x)
Γ(α+β+n)

θx0(1− θ0)n−x

}−1

.
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Applications in statistical inference

References:
1. Bickel, D. and Doksum, K. Mathematical Statistics

2. Lehman, E. and Casella, G. Theory of Point Estimation

Let X1, X2, . . . be an i.i.d sequence such that E(X) = µ. Then, since X̄n
P−→

n→∞

µ, we have that g(X̄n)
P−→

n→∞
g(µ) for all continuous functions g.

Example. Let X1, X2, . . . be an i.i.d sequence such that E(X) = µ and

V ar(X) = σ2. Then 1
n

∑n

i=1(Xi − X̄)2
P−→

n→∞
σ2.

Proof. Since 1
n

∑n

i=1 X
2
i

P−→
n→∞

E(X2) = µ2 + σ2 and X̄2 P−→
n→∞

(E(X))2 = µ2,

we obtain, from Slusky,

1

n

n
∑

i=1

(Xi − X̄)2 =
1

n

n
∑

i=1

X2
i − X̄2 P−→

n→∞
{µ2 + σ2} − µ2 = σ2.

Example. Let X1, X2, . . . be an i.i.d sequence such that E(X) = µ and
V ar(X) = σ2. Then from CLT, we have,

√
n
(

X̄n − µ
)

σ

d−→
n→∞

N(0, 1).

From this we obtain that
(√

n
(

X̄n − µ
)

σ

)2

=
n
(

X̄n − µ
)2

σ2

d−→
n→∞

χ2
1,

since g(x) = x2 is continuous.

Large Sample Optimality

It is desirable to see that statistical procedures have optimality properties
as more and more data become available – estimators should be close to the
true quantities, their errors become small and so on.

Definition. Let X1, X2, . . . be i.i.d Pθ. An estimator Tn(X1, X2, . . . , Xn) of
q(θ) is said to be consistent (strong) if

Tn(X1, X2, . . . , Xn)
P−→

n→∞
q(θ)

1



(strong if convergence is a.s.).

Result. Suppose q(θ) = g(µ1(θ), . . . , µk(θ)) for k ≥ 1, where µr(θ) =
Eθ(X

r), r = 1, 2, . . . and g is continuous. Let the sample moments be µ̂r(θ) =
1
n

∑n

j=1X
r
j . Then the method of moments estimate Tn = g(µ̂1(θ), . . . , µ̂k(θ))

is consistent.

This follows from the fact that

(µ̂1(θ), . . . , µ̂k(θ))
P−→

n→∞
(µ1(θ), . . . , µk(θ))

so that
g(µ̂1(θ), . . . , µ̂k(θ))

P−→
n→∞

g(µ1(θ), . . . , µk(θ)).

Note that unbiasedness does not imply consistency. For instance, consider
i.i.d X1, . . . , Xn with E(X) = µ and V ar(X) = σ2 < ∞. We know then that
Tn = X̄ is both consistent and unbiased, whereas Un = X1 is unbiased but
not consistent.

To establish the consistency of a given estimator, LLN may not be useful in
some situations.

Example. Let X1, . . . , Xn be i.i.d U(0, θ). Then E(X) = θ/2. A method of
moments estimator is
θ̂1 =

2
n

∑n

i=1 Xi, which is consistent from WLLN. Note that

1

n

n
∑

i=1

Xi
P−→

n→∞
E(X) =

θ

2
.

The MLE, however, is different, and is
θ̂2 = X(n), a function of the minimal sufficient statistic. Is this consistent?
MLE is generally consistent, but regularity conditions apply, so it is easier
to prove it directly rather than checking those conditions. One can establish
the consistency of θ̂2 by finding its mean and variance (using the distribu-
tion of o.s.; X(n)/θ is Beta(1, n)) and applying the Chebychev’s inequality.
Alternatively, since 0 < X(n) < θ,

P (|X(n) − θ| > ǫ) = P (X(n) − θ < −ǫ) + P (X(n) − θ > ǫ)

= P (X(n) < θ − ǫ) = (P (X < θ − ǫ))n

=

(

θ − ǫ

θ

)n

=
(

1− ǫ

θ

)n

−→
n→∞

0

2



for any fixed ǫ > 0. MLE is not always consistent as the following example
shows.

Example (Neyman-Scott problem). This problem involves estimating
the precision of a measuring device by measuring a large number of different
quantities. Suppose two independent measurements each of µ1, µ2, . . . ... are
made. In other words, let
(

Xi

Yi

)

∼ N2

((

µi

µi

)

, σ2I2

)

, i = 1, 2, . . . be independent. Now there is

no question of consistent estimators for µi since only two observations are
available. σ2 is important for calibration purposes. What is the MLE of σ2?
Note

f
(

(
x1

y1
), · · · , ( xn

yn
)
)

=

(2π)−n(σ2)−n exp

(

− 1

2σ2

n
∑

i=1

[

(xi − µi)
2 + (yi − µi)

2
]

)

.

Fix σ2. Since Xi and Yi are i.i.d N(µi, σ
2),

µ̂i =
1

2
(Xi + Yi), i = 1, 2, . . . independent of σ2 .

Therefore,

max
{µi},σ2

L
(

{µi}, σ2, (x,y)
)

= max
σ2

L
(

{µ̂i}, σ2, (x,y)
)

= max
σ2

(σ2)−n exp

(

− 1

2σ2

n
∑

i=1

[

(xi − µ̂i)
2 + (yi − µ̂i)

2
]

)

.

Thus

σ̂2 =
1

2n

n
∑

i=1

[

(xi − µ̂i)
2 + (yi − µ̂i)

2
]

=
1

2n

n
∑

i=1

2

(

xi −
1

2
(xi + yi)

)2

=
1

4n

n
∑

i=1

(xi − yi)
2.

Now note that Xi − Yi ∼ N(0, 2σ2) i.i.d., so

1

n

n
∑

i=1

(Xi − Yi)
2 P−→

n→∞
E(X − Y )2 = 2σ2, and hence

3



1

4n

n
∑

i=1

(Xi − Yi)
2 P−→

n→∞

σ2

2
.

This shows that the MLE of σ2 is inconsistent here. Consistent estimators
are easily available, however. For example, 1

2n

∑n

i=1(Xi − Yi)
2 is a consistent

estimator. The problem with the MLE here is that it considers the problem
of estimating the infinite sequence of µi in addition to σ2 in the limit as n
grows.

Example. X1, . . . , Xn i.i.d Bernoulli(p). Estimate p. Then p̂ =
∑

n

i=1
Xi

n
=

X̄n is MLE, method of moments as well as UMVUE. By WLLN, p̂ = X̄n
P−→

n→∞

p, thus showing that it is consistent. What if we want to estimate q(p) =
p(1 − p)? Then q̂(p) = p̂(1 − p̂) is MLE or method of moments estimator.

Since q(x) = x(1 − x) is a continuous function and p̂
P−→

n→∞
p, we have that

q̂(p) = p̂(1− p̂) is consistent for q(p) = p(1− p). How good is this estimator?

4



How good is consistency as a measure of optimality of an estimator? We need
a measure of accuracy. For large samples, we need a rate of convergence to
the true parameter or parametric function. If we assume that our estimator is
asymptotically unbiased (i.e. E(θ̂−θ) −→

n→∞
0) then we can use the asymptotic

s.d. for this purpose. If we have an i.i.d sequence X1, X2, . . . with E(X) = µ
and V ar(X) = σ2 then

√
n(X̄n − µ) is asymptotically normal. What about

g(X̄n) in such a situation for a smooth function g? We need the following
result in this context.

Result. Suppose {an} ↑ ∞ as n → ∞, b fixed and

an(Xn − b)
d−→

n→∞
X.

Let g be a continuous function which is differentiable, and let g′ be continuous
and g′(b) 6= 0. Then

an (g(Xn)− g(b))
d−→

n→∞
g′(b)X.

Proof. Note that

Xn − b =
1

an
[an(Xn − b)]

d−→
n→∞

0×X = 0.

Therefore Xn

P−→
n→∞

b. Now, an (g(Xn)− g(b)) = an (g
′(X∗

n
)(Xn − b)) where

X∗
n
lies between Xn and b. Therefore

|X∗
n
− b| ≤ |Xn − b| P−→

n→∞
0.

Therefore, X∗
n

P−→
n→∞

b and hence g′(X∗
n
)

P−→
n→∞

g′(b). It follows then that

g′(X∗
n
)an (Xn − b)

d−→
n→∞

g′(b)X.

Note, however, that if g′(b) = 0, then an (g(Xn)− g(b))
P−→

n→∞
0.

Result. Suppose we have an i.i.d sequence X1, X2, . . . with E(X) = µ and
V ar(X) = σ2 < ∞. Define X̄n = 1

n

∑

n

i=1
Xi. Let h be differentiable, h′ be

continuous and h′(µ) 6= 0. Then

√
n
(

h(X̄n)− h(µ)
)

d−→
n→∞

N
(

0, (h′(µ))2σ2
)

.

1



Proof. From CLT,
√
n
(

X̄n − µ
)

d−→
n→∞

N (0, σ2). Therefore, from the previ-

ous result,
√
n
(

h(X̄n)− h(µ)
)

d−→
n→∞

h′(µ)N
(

0, σ2
)

= N
(

0, (h′(µ))2σ2
)

.

Example. X1, . . . , Xn i.i.d Bernoulli(p). Let Sn =
∑

n

i=1
Xi. Then p̂n =

Sn/n = X̄n satisfies
√
n(p̂n − p) =

√
n(X̄n − p)

d−→
n→∞

N(0, p(1 − p)). Now

consider estimating q(p) = p(1−p) with Tn = p̂n(1−p̂n). We have seen earlier
that it is consistent. What can be said about its asymptotic distribution?
Consider h(x) = x(1−x) which is differentiable with h′(x) = 1−2x. h′(p) 6= 0
if p 6= 1/2. Therefore, for p 6= 1/2,

√
n (Tn − p(1− p)) =

√
n (h(p̂n)− h(p))

d−→
n→∞

N
(

0, (h′(p))2p(1− p)
)

= N(0, p(1− p)(1− 2p)2).

What happens when p = 1/2? Recall how we proved the result:

an (g(Xn)− g(b))
d−→

n→∞
g′(b)X

if an(Xn − b)
d−→

n→∞
X, g is differentiable, g′ continuous and g′(b) 6= 0? We

used Taylor series expansion: g(Xn) = g(b) + g′(X∗
n
)(Xn − b). If g′(b) = 0,

we need a further term:

g(Xn) = g(b) + g′(b)(Xn − b) +
1

2
g′′(X∗

n
)(Xn − b)2

= g(b) +
1

2
g′′(X∗

n
)(Xn − b)2,

so that g(Xn) − g(b) = 1

2
g′′(X∗

n
)(Xn − b)2. Assume that g′′ is continuous

at b and g′′(b) 6= 0. Then g′′(X∗
n
)

P−→
n→∞

g′′(b) and (an(Xn − b))2
d−→

n→∞
X2.

Therefore,

a2
n
(g(Xn)− g(b)) =

1

2
g′′(X∗

n
) {an(Xn − b)}2

d−→
n→∞

1

2
g′′(b)X2.

Now consider the asymptotic distribution of Tn = p̂n(1−p̂n) in the Bernoulli(p)
example. Here h(x) = x(1 − x), h′(x) = 1 − 2x and h′′(x) = −2. Also√
n(p̂n − 1

2
)

d−→
n→∞

N(0, 1
4
). Therefore

n(p̂n(1− p̂n)−
1

4
)

d−→
n→∞

1

2
(−2)

1

4
χ2

1
= −1

4
χ2

1
.
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Example. Let X1, X2, . . . be an i.i.d sequence such that E(X) = µ and
V ar(X) = σ2. Let s2 = 1

n−1

∑

n

i=1
(Xi − X̄)2. Then

(√
n(X̄ − µ), s2

)

d−→
n→∞

(

N(0, σ2), σ2
)

.

Therefore, by Slutsky,

√
n(X̄ − µ)

s

d−→
n→∞

N(0, 1).

Example. Let X1, X2, . . . be i.i.d N(µ, σ2). Then

Tn =

√
n(X̄ − µ)

s
∼ tn−1.

Thus note that as n → ∞, tn−1

d−→ N(0, 1) from the previous result. This
can also be seen directly since the numerator is always N(0, σ2) whereas s in
the denominator converges to σ in probability.

Asymptotic Normality.

Large sample normal approximation for estimators is desirable:
(i) to obtain estimation error;
(ii) to be able to compare efficiencies; and
(iii) for large sample tests.

Usually reasonable estimators θ̂n converge at the rate of OP (
1√
n
). i.e., θ̂n

P−→
n→∞

θ and
√
n(θ̂n − θ)

P−→
n→∞

to some distribution.

Definition. Suppose Tn(X1, . . . , Xn) is an estimator of q(θ). Then Tn is said
to be asymptotically normal if

√
n (Tn(X1, . . . , Xn)− q(θ))

d−→
n→∞

N(0, σ2(θ)).

Example. Let X1, X2, . . . be i.i.d such that E(X) = µ and V ar(X) = σ2.

Consider Tn(X1, . . . , Xn) = X̄. Then by CLT
√
n(Tn−µ)

d−→
n→∞

N(0, σ2). We

therefore say that X̄ is asymptotically normal in this case.

Example. Let X1, X2, . . . be i.i.d Exp(θ). Then E(X) = 1

θ
and V ar(X) =

1

θ2
. Consider θ̂ = 1

X̄
. Since, by WLLN, X̄

P−→
n→∞

1

θ
, θ̂ = 1

X̄

P−→
n→∞

θ, hence it is

3



consistent. Note that we have made use of the continuity of h(x) = 1/x for
x > 0. h′(x) = −1/x2 is also continuous for x > 0. We have, by CLT,

√
n

(

X̄ − 1

θ

)

d−→
n→∞

N(0,
1

θ2
).

Therefore,

√
n
(

θ̂ − θ
)

d−→
n→∞

h′(
1

θ
)N(0,

1

θ2
) = N

(

0, (θ2)2
1

θ2
= θ2

)

.
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Asymptotic Relative Efficiency (ARE)

Consider two estimators which are asymptotically unbiased. If one of them
has a smaller variance than the other, then the former is more precise, more
efficient.

Suppose T
(1)
n and T

(2)
n are two estimators of q(θ) such that

√
n
(

T (1)
n

− q(θ)
)

d−→
n→∞

N(0, σ2
1(θ)) and

√
n
(

T (2)
n

− q(θ)
)

d−→
n→∞

N(0, σ2
2(θ)).

Then the asymptotic relative efficiency of T
(1)
n w.r.t. T

(2)
n is defined to be

e
(

θ, T (1)
n

, T (2)
n

)

=
σ2
2(θ)

σ2
1(θ)

.

Notice T
(1)
n is better if σ2

2 > σ2
1.

Example. X1, . . . , Xn i.i.d Bernoulli(p). Let Sn =
∑

n

i=1 Xi. Then MLE of

p is T
(1)
n = Sn

n
. Consider the Bayes estimate of p under the Beta(a, b) prior

for p, a > 0, b > 0. Since

p|X1, . . . , Xn ∼ Beta(Sn + a, n− Sn + b),

we obtain the Bayes estimate to be

T (2)
n

= E(p|X1, . . . , Xn) =
Sn + a

Sn + a+ n− Sn + b
=

Sn + a

n+ a+ b
.

We know already that

√
n(T (1)

n
− p)

d−→
n→∞

N(0, p(1− p)).

Since

T (2)
n

=
Sn + a

n+ a+ b
=

Sn

n

n

n+ a+ b
+

a

n+ a+ b

=
Sn

n

(

1− a+ b

n+ a+ b

)

+
a

n+ a+ b

=
Sn

n
− (a+ b)Sn

n(n+ a+ b)
+

a

n+ a+ b
,

√
n(T (2)

n
− p) =

√
n(T (1)

n
− p)− (a+ b)Sn√

n(n+ a+ b)
+

√
na

n+ a+ b
.

1



Now, note that, since a and b are fixed, and Sn

n

P−→
n→∞

p,

√
na

n+ a+ b
−→
n→∞

0, and
(a+ b)Sn√
n(n+ a+ b)

P−→
n→∞

0.

Therefore T
(2)
n has the same asymptotic distribution as T

(1)
n . i.e.,

√
n(T (2)

n
− p)

d−→
n→∞

N(0, p(1− p)).

Thus the two estimators have the same asymptotic relative efficiency, or

e(p, T (1)
n

, T (2)
n

) =
p(1− p)

p(1− p)
= 1.

Example. Let X1, X2, . . . be i.i.d N(0, σ2). Consider the following two
estimators for σ:

σ̂1 =

√

√

√

√

1

n

n
∑

i=1

X2
i
, σ̂2 =

√

π

2

1

n

n
∑

i=1

|Xi|.

Since X2
i
∼ σ2χ2

1, E(X2
i
) = σ2, V ar(X2

i
) = 2σ4, by CLT,

√
n
(

σ̂2
1 − σ2

)

d−→
n→∞

N(0, 2σ4).

Taking h(x) =
√
x for x > 0, we have h′(x) = 1

2
√
x
, and so

√
n (σ̂1 − σ)

d−→
n→∞

N

(

0,

(

1

2σ

)2

2σ4

)

= N

(

0,
σ2

2

)

.

Since Zi = Xi/σ ∼ N(0, 1), and

E(|Zi|) =

∫ ∞

−∞
|z| 1√

2π
exp(−z2/2) dz

= 2

∫ ∞

0

z
1√
2π

exp(−z2/2) dz

=

√

2

π

∫ ∞

0

exp(−u) du =

√

2

π
,

we get E(|Xi|) =
√

2
π
σ and V ar(|Xi|) = E(X2

i
) − (E(|Xi|))2 = σ2 − 2

π
σ2 =

(

1− 2
π

)

σ2. Therefore, E(
√

π

2
|Xi|) = σ and V ar(

√

π

2
|Xi|) = π

2
(1 − 2

π
)σ2 =

(π
2
− 1)σ2. Hence

√
n (σ̂2 − σ)

d−→
n→∞

N
(

0,
(π

2
− 1
)

σ2
)

.
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Thus we have the ARE:

e
(

σ2, σ̂1, σ̂2

)

=

(

π

2
− 1
)

σ2

1
2
σ2

= 2
(π

2
− 1
)

= π − 2 > 1.

What can be done when CLT cannot be used to obtain the asymptotic dis-
tribution?

Example. Consider i.i.d observations X1, X2, . . . from a location family
with θ = the median. i.e., the density is f(x|θ) = f0(x − θ) and the cdf
Fθ(x) = F0(x − θ), and further, Fθ(θ) = F0(0) = 1/2 and f0(0) > 0. Then
we have the following result.

Result.

√
n (median(X1, X2, . . . , Xn)− θ)

d−→
n→∞

N

(

0,
1

4f 2
0 (0)

)

.

Remark. Note that there are no conditions on the moments of X.

Proof. Let n = 2m−1, an odd integer, so that the median of X1, X2, . . . , Xn

is X(m). Also, let Y = X − θ. Then X(m) − θ = Y(m). Fix a and consider

Fn(a) = Pθ

(√
n(X(m) − θ) ≤ a

)

= P
(√

nY(m) ≤ a
)

= P

(

Y(m) ≤
a√
n

)

.

Let Sn = number of Y ’s that exceed a√
n
. Then

Sn ∼ Binomial

(

n, pn = 1− F0(
a√
n
)

)

.

Also Y(m) ≤ a√
n
iff number of Yi that exceed

a√
n
is less than or equal to m−1

iff Sn ≤ m− 1 = n−1
2
. Therefore,

P

(

Y(m) ≤
a√
n

)

= P

(

Sn ≤ n− 1

2

)

= P

(

Sn − npn
√

npn(1− pn)
≤

n−1
2

− npn
√

npn(1− pn)

)

.

From CLT for Sn, we obtain

P

(

Sn − npn
√

npn(1− pn)
≤

n−1
2

− npn
√

npn(1− pn)

)

− Φ

(

n−1
2

− npn
√

npn(1− pn)

)

−→
n→∞

0.

3



Now let

xn =
n−1
2

− npn
√

npn(1− pn)
=

√
n(1

2
− pn)− 1

2
√
n

√

F0(
a√
n
)(1− F0(

a√
n
))
.

Then

lim
n→∞

xn =
limn→∞

√
n(1

2
− pn)− 0

√

F0(0)(1− F0(0))

= 2 lim
n→∞

√
n

(

1

2
− (1− F0(

a√
n
)

)

= 2a lim
n→∞

F0(a/
√
n)− F0(0)

a/
√
n

= 2aF ′
0(0) = 2af0(0).

Therefore,

Fn(a) = Pθ

(√
n(X(m) − θ) ≤ a

)

−→
n→∞

Φ (2f0(0)a) .

Hence, the density of the asymptotic distribution is

d

da
Φ (2f0(0)a) = 2f0(0)φ (2f0(0)a)

= 2f0(0)
1√
2π

exp

(

−1

2
(2f0(0))

2a2
)

=
1√
2π

1

(2f0(0))−1
exp

(

−1

2

a2

[(2f0(0))−1]2

)

,

which is that of N (0, (2f0(0))
−2).
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Example. Let X1, X2, . . . be a random sample from a population with
symmetric density, mean θ, variance equal to 1 and fX(θ) > 0. Consider

T
(1)
n = X̄n and T

(2)
n = median(X1, X2, . . . , Xn). From the above results,

√
n
(

T (1)
n − θ

)

=
√
n
(

X̄n − θ
) d−→

n→∞
N(0, 1), and

√
n
(

T (2)
n − θ

)

=
√
n (median(X1, X2, . . . , Xn)− θ)

d−→
n→∞

N

(

0,
1

4f 2
0 (0)

)

, so

e
(

θ, T (1)
n , T (2)

n

)

=
1

4f 2
θ (θ)

.

Example. Suppose X ∼ N(θ, 1) in the above example. Then fθ(θ) =
1√
2π

=

f0(0), so that 4f 2
θ (θ) =

4
2π

= 2
π
. Therefore e

(

θ, T
(1)
n , T

(2)
n

)

= π/2 ≈ 1.57. If

we consider X such that X − θ ∼ tν for various values of ν, we obtain the

following table listing e
(

θ, T
(2)
n , T

(1)
n

)

.

ν 3 4 5 8 ∞
ARE 1.62 1.12 0.96 0.80 2

π
≈ 0.64

Note that the sample median is more efficient than the sample mean when
ν ≤ 4. In fact, the sample mean does not provide a consistent estimator
when ν = 1 since t1 which is the same as Cauchy which does not have a
mean. For ν = 2 the variance is not finite.

Information bound and asymptotically efficient estimators

Suppose Tn(X1, . . . , Xn) is an estimator of q(θ). Then the Information In-
equality says

V arθ(Tn) ≥
[

∂
∂θ
Eθ(Tn)

]2

In(θ)
,

where In(θ) = nI1(θ) if Xi are i.i.d Pθ. Suppose further that Tn is asymptot-
ically normal, in the sense,

√
n (Tn − q(θ))

d−→
n→∞

N(0, σ2(θ)) and

√
n (Eθ(Tn)− q(θ)) −→

n→∞
0.

Then Eθ(Tn) = q(θ) + o
(

1√
n

)

so that

∂

∂θ
Eθ(Tn) = q′(θ) + o

(

1√
n

)

−→
n→∞

q′(θ).

1



Then the Information bound for σ2(θ) reduces to (q′(θ))2/I1(θ).

Definition. Tn = Tn(X1, . . . , Xn) is said to be asymptotically efficient for
estimating q(θ) if its asymptotic variance is

σ2(θ) =
(q′(θ))2

I1(θ)
.

Example. Let X1, X2, . . . be i.i.d N(θ, 1). Then I1(θ) = 1. Consider T
(1)
n =

X̄n. Then
√
n
(

T
(1)
n − θ

)

d−→
n→∞

N(0, 1). Note that

1 = σ2(θ) =
12

1
=

1

I1(θ)
,

so that T
(1)
n = X̄n is asymptotically efficient. Now consider

T
(2)
n = median(X1, X2, . . . , Xn). Then

√
n
(

T
(2)
n − θ

)

d−→
n→∞

N(0, π
2
). Note

that, now,

σ2(θ) =
π

2
>

1

I1(θ)
= 1.

Thus T
(2)
n is not asymptotically efficient.

Result. Under regularity conditions on the model density, MLE is consis-

tent. i.e., θ̂(X1, X2, . . . , Xn)
P−→

n→∞
θ.

Result. Under regularity conditions on the model density, MLE is asymp-
totically normal and asymptotically efficient. i.e.,

√
n
(

θ̂(X1, X2, . . . , Xn)− θ
)

d−→
n→∞

N

(

0,
1

I1(θ)

)

.

However, the conditions are typically hard to verify. It is easier to prove the
result on a case by case basis using other standard limit theorems.

Result. Under regularity conditions on the model and the prior, the Bayes
estimate, θ̃ = Eπ(θ|X) is asymptotically normal and asymptotically efficient,
satisfying

√
n
(

θ̃(X1, X2, . . . , Xn)− θ
)

d−→
n→∞

N

(

0,
1

I1(θ)

)

.

Sketch of asymptotic normality for MLE assuming regularity conditions:

2



Let X1, X2, . . . be an i.i.d sequence from Pθ having density f(x|θ), θ ∈ Θ
which satisfies the regularity conditions to be specified in the proof below.
We have

L(θ,X) =
n
∏

i=1

f(Xi|θ),

L(θ,X) = logL(θ,X) =
n

∑

i=1

log f(Xi|θ),

Let θ̂n be the MLE of θ such that

L′(θ̂n(X),X) = 0.

Condition 1: L is differentiable three times and L′(θ̂n) = 0.

Now we obtain,

0 = L′(θ̂n) = L′(θ) + (θ̂n − θ)L′′(θ) +
1

2
(θ̂n − θ)2L′′′(θ∗n),

where θ∗n lies between θ̂n and θ. Therefore,

(θ̂n − θ)

[

L′′(θ) +
1

2
(θ̂n − θ)L′′′(θ∗n)

]

= −L′(θ).

Hence,

√
n
(

θ̂n − θ
)

=
−√

nL′(θ)

L′′(θ) + 1
2
(θ̂n − θ)L′′′(θ∗n)

=

1√
n
L′(θ)

− 1
n
L′′(θ)− 1

2n
(θ̂n − θ)L′′′(θ∗n)

.

Assuming that 1√
n
L′′′(θ∗n) is bounded (Condition 2), and that θ̂n

P−→
n→∞

θ (Con-

dition 3, consistency of MLE), we obtain,

− 1

2n
(θ̂n − θ)L′′′(θ∗n)

P−→
n→∞

0.

Note that, we can also get

1√
n
L′(θ) =

√
n
1

n

n
∑

i=1

∂

∂θ
log f(Xi|θ), with

E

(

∂

∂θ
log f(X|θ)

)

= 0, (Condition 4)

E

(

∂

∂θ
log f(X|θ)

)2

= I1(θ). (Condition) 5

3



Then it follows from CLT that

√
n

[

1

n

n
∑

i=1

∂

∂θ
log f(Xi|θ)− 0

]

d−→
n→∞

N(0, I1(θ)).

Therefore,
1√
n
L′(θ)

d−→
n→∞

N(0, I1(θ)).

Note that

− 1

n
L′′(θ) = − 1

n

∂

∂θ
L′(θ)

= − 1

n

∂

∂θ

n
∑

i=1

∂

∂θ
log f(Xi|θ) = − 1

n

n
∑

i=1

∂2

∂θ2
log f(Xi|θ).

Now assuming (Condition 6) that

−E

(

∂2

∂θ2
log f(X|θ)

)

= I1(θ),

we have from WLLN,

− 1

n
L′′(θ) = − 1

n

n
∑

i=1

∂2

∂θ2
log f(Xi|θ) P−→

n→∞
I1(θ).

Finally, we obtain

√
n
(

θ̂n − θ
)

d−→
n→∞

1

I1(θ)
N(0, I1(θ)) = N

(

0,
1

I1(θ)

)

.

Variance Stabilizing Transformations

Result. Suppose we have an i.i.d sequence X1, X2, . . . with E(Xi) = µ(θ)
and V ar(Xi) = σ2(θ) < ∞. Then, from CLT, we have

√
n
(

X̄n − µ(θ)
) d−→

n→∞
N

(

0, σ2(θ)
)

.

Note, however, that s.e.(µ̂) = s.e.(X̄n) = σ(θ)/
√
n involves the usually un-

known σ2(θ). This may pose difficulties while using this for procedures such
as large sample confidence intervals and tests. It is desirable to remove that
dependence.
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Recall that if h is differentiable and h′(µ) 6= 0, then

√
n
(

h(X̄n)− h(µ)
) d−→

n→∞
N

(

0, (h′(µ))2σ2
)

.

If (h′(µ))2σ2 = (h′(µ(θ)))2σ2(θ) can be made independent of θ for some h
then the difficulty may be alleviated. For example, then, we could use

h(X̄n)± z1−α/2
c√
n
, c2 = (h′(µ))2σ2

as our confidence interval for h(µ). (Invert it to get a CI for µ.) In other

words, h(X̄n)−h(µ)
c/
√
n

becomes a pivot. Variance stabilizing transformation then

is to find h such that σ2(θ)(h′(µ(θ)))2 ≡ c2.

Example. Sn ∼ Binomial(n, θ). X̄n = Sn/n. µ(θ) = θ.

√
n
(

X̄n − µ(θ)
) d−→

n→∞
N

(

0, σ2(θ) = θ(1− θ)
)

.

We require h such that

σ2(θ)(h′(µ(θ)))2 ≡ c2. i.e.,

(h′(θ))2 =
c2

θ(1− θ)
, or

h′(θ) =
c

√

θ(1− θ)
.

Solving it, we get h(θ) ∝ sin−1(
√
θ). Therefore the required transformation

is h(x) = sin−1(
√
x). (Note, sin(h(x)) =

√
x =⇒ cos(h(x))h′(x) = 1

2
√
x

=⇒
h′(x) = 1

2
√
x

1
cos(h(x)))

= 1
2
√
x

1√
1−(

√
x)2

.)

Example. Y1, Y2, . . . i.i.d Poisson(λ). Then µ(λ) = λ = σ2(λ). We have√
n
(

Ȳn − λ
) d−→

n→∞
N(0, λ). Find h such that

σ2(λ)(h′(λ))2 ≡ c2. i.e.,

(h′(λ))2 =
c2

λ
, or

h′(λ) =
c√
λ
.

Solving it, we get h(λ) ∝
√
λ. Therefore the required transformation is

h(x) =
√
x.
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Large Sample Theory
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Convergence and Limit Theorems – Review

Let X1, X2, . . . be a sequence of random variables. Then there are differ-
ent modes of convergence that apply (unlike sequences of real or complex
numbers).

Definition. Xn
P−→ X as n → ∞ (i.e., Xn converges to X in probability) if

P (|Xn −X| ≥ ǫ) → 0 as n → ∞ for each ǫ > 0.

Note that P (|Xn −X| ≥ ǫ) ≡ P ({ω : |Xn(ω)−X(ω)| ≥ ǫ}).
Example. By the Weak Law of Large Numbers (WLLN), in the i.i.d case,

(i) X̄
P−→

n→∞

µ;

(ii) p̂
P−→

n→∞

p.

Definition. Xn
a.s.−→ X as n → ∞ (i.e., Xn converges to X almost surely or

almost everywhere) if P (limn→∞Xn = X) = 1.

Note again that P (limn→∞Xn = X) = P ({ω : limn→∞ Xn(ω) = X(ω)}).

Example. By the Strong Law of Large Numbers (SLLN), in the i.i.d case,
(i) X̄

a.s.−→
n→∞

µ;

(ii) p̂
a.s.−→

n→∞

p.

Definition. Xn
d−→ X as n → ∞ (i.e., Xn converges to X in distribution)

if FXn
(x) → FX(x) as n → ∞ for all x where FX is continuous.

Note that Xn and X need not be on the same space, or have a joint distri-
bution.

Example. By the Central Limit Theorem (CLT),
√
n(X̄−µ)

d−→
n→∞

N(0, σ2).

Result. We have that

Xn
a.s.−→

n→∞

X =⇒ Xn
P−→

n→∞

X =⇒ Xn
d−→

n→∞

X.

1



Example. Consider independent Xn ∼ Bernoulli( 1
n
). Then

P (|Xn − 0| > ǫ) = P (Xn > ǫ) = P (Xn = 1) =
1

n
−→
n→∞

0,

so that Xn
P−→

n→∞

0, but does Xn
a.s.−→

n→∞

0?

Result. We have

Xn
d−→

n→∞

X, X ≡ c (a constant) then Xn
P−→

n→∞

X.

Proof. We have FXn
(x) → FX(x) for all x 6= c. Thus, FXn

(c + ǫ) → 1 and
FXn

(c− ǫ) → 0. Therefore,

P (|Xn − c| ≥ ǫ) = P (Xn ≤ c− ǫ or Xn ≥ c+ ǫ)

≤ FXn
(c− ǫ) + (1− FXn

(c+ ǫ/2)) → 0.

Result. Let g be a continuous function. Then

Xn −→ X =⇒ g(Xn) −→ g(X)

for all three modes of convergence.

This is easy to see for a.s. convergence.

Theorem (Slutsky). Suppose Xn
d−→

n→∞

X and Un
P−→

n→∞

u0. Then

(a) Xn + Un
d−→

n→∞

X + u0;

(b) UnXn
d−→

n→∞

u0X.

Proof. Since (Xn, Un)
d−→

n→∞

(X, u0), and g(x, y) = x + y and g(x, y) = xy

are continuous functions, the result follows from the previous result.

Result. If Xn − Yn
P−→

n→∞

0 and Xn
d−→

n→∞

X, then Yn
d−→

n→∞

X.

Proof. Note that (Xn, Xn − Yn)
d−→

n→∞

(X, 0). Therefore, Yn = Xn − (Xn −

Yn)
d−→

n→∞

X, by Slutsky.

Chebychev’s Inequality. For any random variable X, and a > 0,

P (|X| ≥ a) ≤ E(X2)

a2
.

2



Proof. If Y > 0 and a > 0, we have

E(Y ) =

∫ a

0

yfY (y) dy +

∫

∞

a

yfY (y) dy

≥
∫

∞

a

yfY (y) dy ≥ aP (Y ≥ a),

so that

P (Y ≥ a) ≤ E(Y )

a
.

Therefore,

P (|X| ≥ a) = P
(

X2 ≥ a2
)

≤ E(X2)

a2
.

The familiar form of this inequality is

P (|X − µ| ≥ ǫ) = P
(

(X − µ)2 ≥ ǫ2
)

≤ E((X − µ)2)

ǫ2
=

V ar(X)

ǫ2
.

WLLN (Khinchine). If X1, X2, . . . are i.i.d such that E(X) exists, then

X̄
P−→

n→∞

E(X).

WLLN (Chebychev). If X1, X2, . . . is a sequence of random variables with
E(Xi) = µi, V ar(Xi) = σ2

i , Cov(Xi, Xj) = 0 for i 6= j, then

1

n2

n
∑

i=1

σ2

i −→
n→∞

0 =⇒ X̄n − µ̄n
P−→

n→∞

0.

Proof. Applying Chebychev’s inequality,

P
(

|X̄n − µ̄n| ≥ ǫ
)

≤ 1

ǫ2
E
(

X̄n − µ̄n

)2

=
1

ǫ2
E

(

1

n

n
∑

i=1

(Xi − µi)

)2

=
1

ǫ2
1

n2

n
∑

i=1

V ar(Xi)

If µi ≡ µ then we obtain X̄n
P−→

n→∞

µ subject to conditions on σ2

i such as

σ2

i ≡ σ2. WLLN for an i.i.d sequence then is a special case.

SLLN (Kolmogorov). If X1, X2, . . . is an i.i.d sequence such that E(X) =
µ exists and is finite, then X̄n

a.s.−→
n→∞

µ.
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CLT (Lindberg-Levy). Let X1, X2, . . . is an i.i.d sequence such that
E(X) = µ and V ar(X) = σ2, 0 < σ2 < ∞. Then

√
n
(

X̄n − µ
)

σ

d−→
n→∞

N(0, 1).
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