
Lectures 1-5

1 Introduction and Definitions

• The basic inference problem: Population, Sample, Probability model, Pa-
rameters.

• Goal is to infer aspects of population from information in sample.

• Types of inference: Estimation, Hypothesis testing

• Sample space Ω. X = (X1, · · · , Xn) be a random vector defined on
the sample space. The outcome of the experiment is a realization x =
(x1, · · · , xn) of the random vector X. We call x the data.

• Typical model:X has distribution f(x1, · · · , xn|θ). This distribution is
known except for the parameter θ. Given the data x, the goal is to infer
the unknown parameter θ.

• F represents the set of all possible probability distributions for X. We’ll
call F the model(or probability model) for the experiment.

• Often the elements of F are indexed by one or more parameters. We’ll
often denote a vector of parameters by θ and let Θ be the collection of all
possible values of θ. Θ is called the parameter space.

• If F can be expressed as a collection of distributions indexed by finite
dimensional vectors Θ = (θ1, · · · , θk), where Θ is a subset of Rk, then F
will be called a parametric family. If F cannot be so expressed, it will be
called nonparametric.

• Suppose θ = (θ1, θ2). If θ1 is the only parameter of interest, then θ2 is
called a nuisance parameter.

• A model is said to be identifiable if Fθ1 = Fθ2 whenever θ1 = θ2.

• Let T be a real-valued or vector-valued function whose domain contains
the range of X. If T does not depend on the unknown parameter θ, then
T = T (X) is called a statistic. The probability distribution of T is called
its sampling distribution.

Example 1 Have a population of N items, possibly a shipment of manufactured
goods. An unknown number M of the N items are defective. A random sample
of size n is drawn without replacement and inspected. Let X be the number of
defectives in the sample.

Example 2 There are unknown number N number of fish in a pond. You catch
M of them, tag them and let them go. Allow them to mingle for a while. Then
you catch n fish and note the number of tagged ones among them. Let X be the
number of tagged fish in the recaptured sample.
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Example 3 Experimenter makes n independent determinations of the value of
a physical constant µ and measurements are subject to error. X1, · · · , Xn are
i.i.d. N (µ, σ2).

Example 4 Let F= family of all continuous distributions that are symmetric
about 0. Then F is a nonparametric family.

2 Sufficiency for data reduction

[CB6.2, BD 1.5]

2.1 Sufficiency

Definition 1 A statistic T (X) is a sufficient statistic if the conditional distri-
bution of X given T (X) = t does not depend on θ, regardless of what t is.

Example 5 Suppose X1, · · · , Xn are i.i.d. Poisson with mean θ. Then X̄ =
1
n

∑n
i=1Xi is a sufficient statistic.

• Basic idea of sufficiency: Given data X = (X1, · · · , Xn), can we find a
statistic T (X) of smaller dimension than n that contains as much infor-
mation about θ as X does? If a statistic exists, we can reduce (perhaps
greatly) the amount of data without throwing away information. The
search for good estimation and testing procedures can be narrowed.

• We can think of a partition of the sample space where each set At in the
partition is such that T (x) = t for each x ∈ At. All x ∈ At are equivalent
in that each one contains the same information about θ as the others.

• If T1 and T2 are any two statistics such that T1(x) = T1(y) if and only if
T2(x) = T2(y), then T1 and T2 are said to be equivalent.

• Sufficiency Principle: Consider sample X from model F , and let T (X)
be a sufficient statistic. Suppose experimenter 1 observes X = x while
experimenter 2 observesX = y. If T (x) = T (y), then experimenters 1 and
2 should make the same inference about θ.

Theorem 1 (Fisher-Neyman Factorization Theorem): Let f(x|θ) denote the
joint pdf or pmf of the data X. A statistic T (X) is sufficient if and only if
there exist functions g(t|θ) and h(x)(where h does not depend on θ) such that
f(x|θ) = g(T (x)|θ)h(x) for all x and all parameter values θ.

Example 6 Estimating the Size of a Population: Consider a population with
N members labeled consecutively from I to N . The population is sampled with
replacement and n members of the population are observed and their labels
Xl, · · · , Xn are recorded. Then X(n) is indeed sufficient.
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Example 3 (revisited): X1, · · · , Xn are i.i.d. N (µ, σ2) and θ = (µ, σ2).
T (X) = (

∑
Xi,

∑
X2
i ) is jointly sufficient for θ.

Qn: Is the dimension of a sufficient statistic the always same to the dimension
of the parameters?
HW: Eg 1.5.5 of BD: Linear Regression
Let fX(x|θ) be the joint pdf or pmf of X and q(t|θ) be the pdf or pmf of T (X).
Then T is a sufficient statistic for θ, iff, for every x, the ratio fX(x|θ)/q(T (x)|θ)
is constant as a function of θ.

Example 7 Suppose we observe X = (X1, · · · , Xn), where

Xi = ρXi−1 + Zi, i = 2, 3, · · · , n.

The quantity ρ is an unknown parameter such that |ρ| < 1. Z2, · · · , Zn are i.i.d.
N (0, σ2), where σ2 is another unknown parameter. X1 ∼ N (0, σ2/(1−ρ2)) and
X1, Z2, · · · , Zn are mutually independent.
The parameter space is Θ = (ρ, σ2) : |ρ| < 1, σ2 > 0.
This model is called an autoregressive model and is used in time series analysis.

f(x|ρ, σ) = (2πσ2)−n/2
√

1− ρ2e{−
1

2σ2
(x2

1(1−ρ
2)+

∑n
i=2(xi−ρxi−1)

2)}.

T1(X) =
∑n−1
i=2 X

2
i , T2(X) =

∑n
i=2XiXi−1 and T3(X) = X2

1 + X2
n are jointly

sufficient statistics.

Proposition 1 Let T (X) = (T1(X), · · · , Tk(X)) be a sufficient statistic and r
be a 1-1 function, not depending on θ and with domain equal to the range of
T (X). Then r(T (X)) is a sufficient statistic.

2.2 Minimal Sufficiency

Definition 2 : A statistic T (X) is a minimal sufficient statistic if it is a func-
tion of every other sufficient statistic.

Theorem 2 Let f(x|θ) be the pdf or pmf of X. Suppose there exists a statistic
T (X) such that, for any two points x and y, the ratio f(x|θ)/f(y|θ) is constant
as a function of θ iff T (x) = T (y). Then T (X) is a minimal sufficient statistic.

Example 8 X1, · · · , Xn iid Unif(θ, θ+ 1). Then T (X) = (X(1), X(n)) is mini-
mal sufficient.

Proposition 2 If T (X) is a minimal sufficient statistic for θ, then its one-to-
one function is also a minimal sufficient statistic for θ.

Proposition 3 There is always a one-to-one function between any two minimal
sufficient statistics.

Example 3 (revisited): T1(X)=(X̄, S2) is minimal sufficient.
HW: For X1, · · · , Xn iid from cauchy distn, show that the minimal sufficient
statistics is the order statistics. Does the order-statistics provide any data re-
duction?
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2.3 Ancillarity

Definition 3 A statistic S(X) is an ancillary statistic if its distribution does
not depend on θ.

Example 8 continued: The range is ancillary.

Definition 4 Let f(x) be any pdf. Then for any µ ∈ R and any σ > 0 the
family of pdfs g(x) = f((x− µ)/σ)/σ, indexed by the parameter (µ, σ) is called
the location-scale family with standard pdf f(x), and µ is called the location
parameter and σ is called the scale parameter for the family.

HW: In the above definition g is indeed a pdf.
HW: X is a random variable with pdf f if and only if there exists a random
variable Z with pdf g and X = σZ + µ.
HW: Let X1, · · · , Xn be iid from a location family. Show that the range is an
ancillary statistic. Can you think of another ancillary statistic?
HW: Let X1, · · · , Xn be iid from a scale family. Show that the following statistic
T (X) is ancillary. T (X) = (X1/Xn, · · · , Xn−1/Xn).

2.4 Completeness

Definition 5 Let fT (t|θ) be a family of pdfs or pmfs for a statistic T (X). The
family of probability distributions is called complete if E[g(T )|θ] = 0 for all θ
implies Pr[g(T ) = 0|θ] = 1 for all θ. equivalently T is a complete statistic.

Example 5 revisited: In the Poisson eg, restrict Θ = {1, 2}. Then g(0) =
2, g(2) = 2, g(1) = −2 and 0 otherwise is a function that has expectation zero
for all θ. Thus the family is not complete. When Θ = R+, then the family is
complete.

Proposition 4 For a statistic T(X), if a non-constant function of T, say r(T)
is ancillary, then T(X) cannot be complete.

Proposition 5 If T(X) is a complete statistic, then a function of T, say T ∗ =
r(T ) is also complete.

Proposition 6 If a complete sufficient statistic exists, then a minimal suffi-
cient statistic is complete.

Theorem 3 (Basu 1955) If T(X) is complete and minimal sufficient statistic,
then T(X) is independent of every ancillary statistic.

HW: For exponential distribution, find E(X1/(X1 + · · ·+Xn))
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Lectures 6-9

3 Exponential Family

[CB3.4, BD1.6]
Binomial and normal distributions have the property that the dimension of a
sufficient statistic is independent of the sample size. We would like to identify
and define a broad class of models that have this and other desirable properties.

Definition 1 Let {f(x; θ) : θ ∈ Θ} be a family of pdf’s (or pmf’s). We assume
that the set {x : f(x; θ) > 0} is independent of θ, where x = (x1, · · · , xn).
We say that the family {f(x; θ) : θ ∈ Θ} is a k–parameter exponential fam-
ily if there exist real–valued functions Q1(θ), · · · , Qk(θ) and D(θ) on Θ and
T1(X), · · · , Tk(X) and S(X) on Rn such that

f(x; θ) = exp(

k∑
i=1

Qi(θ)Ti(x) +D(θ) + S(x)).

We can express the k–parameter exponential family in canonical form for a
natural kx1 parameter vector η = (η1, · · · , ηk)′ as

f(x; η) = h(x)c(η)exp(

k∑
i=1

ηiTi(x)),

We define the natural parameter space as the set of points η ∈ W ⊂ Rk for
which the integral

∫
Rn exp(

∑k
i=1 ηiTi(x))h(x)dx is finite.

We shall refer to T as a natural sufficient statistic.
Ex: Verify that Binomial and Normal belong to exponential family.
Uniform distribution U([0, θ]), θ ∈ R+ does not belong to the exponential fam-
ily, since its support depends on θ
If the probability distribution of X1 belongs to an exponential family, the prob-
ability distribution of (X1, · · · , Xn) also belongs to the same exponential family,
where Xi are iid with distribution same as X1.

Theorem 1 Suppose X1, · · · , Xn is a random sample from pdf or pmf fX(x|θ)
where fX(x|θ) = h(x)d(θ)exp(

∑k
i=1 wi(θ)ti(x)) is a member of an exponential

family. Define a statistic T (X) by T (X) = (
∑n

j=1 t1(Xj), · · · ,
∑n

j=1 tk(Xj)).
The distribution of T (X) is an exponential family of the form fT (u1, · · · , uk|θ) =

H(u1, · · · , uk)[d(θ)]n exp(
∑k

i=1 wi(θ)ui)

Theorem 2 (3.4.2 of CB) If X is a random variable with pdf/pmf as in def-
inition 1 then, for every j,

E(

k∑
i=1

∂wi(θ)

∂θj
ti(X)) = − ∂

∂θj
D(θ)
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Var(

k∑
i=1

∂wi(θ)

∂θj
ti(X)) = − ∂2

∂θj
2D(θ)− E(

k∑
i=1

∂2wi(θ)

∂θj
2 ti(X))

Ex: Use this to derive the mean and variance of the binomial and normal dis-
tributions.

Theorem 3 If the distribution of X belongs to a canonical exponential family
and η is an interior point of W , the mgf of T exists and is given by

M(s) = c(η)/c(s+ η)]

for s in some neighbourhood of 0.

Ex: Use this to derive the mean and variance of the natural sufficient statistic
of Raleigh distribution

p(x, θ) = (x/θ2)exp(−x2/2θ2), x > 0, θ > 0.

In an exponential family, if the dimension of Θ is k (there is an open set subset
of Rk that is contained in Θ), then the family is a full exponential family.
Otherwise the family is a curved exponential family.
An example of a full exponential family is N (µ, σ2), µ ∈ R, σ > 0.

Example 1 An example of a curved exponential family is N (µ, µ2), µ ∈ R.

Curved exponential families arise naturally in applications of CLT as approxi-
mation to binomial σ2 = p(1− p)/n or Poisson σ2 = λ/n.

Theorem 4 In the exponential family given by definition 1 and the set Θ con-
tains an open subset of Rk then (T1(X), · · · , Tk(X)) is complete.

Ex: In the curved exponential family of example 1, k = 2 and the set Theta
does not contain an open subset of R2. So we cannot apply the above theorem.
Is it still true that T (X) = (

∑n
i=1Xi,

∑n
i=1X

2
i ) is complete?

Ex: Show that the Cauchy family is not an exponential family.
Ex: Multinomial is a (k − 1) parameter exponential family.
Ex: Linear Regression model is 3 parameter exponential family.
Ex: Logistic regression model is 2-parameter exponential family.

Definition 2 An exponential family is of rank k iff the natural sufficient statis-
tic T is k-dimensional and (1, T1(X), · · · , Tk(X)) are linearly independent with

positive probability. Formally, P [
∑k

j=1 ajTj(X) = ak+1] < 1 unless all aj are
0.

Ex: multinomial is rank k − 1.
Ex: Logistic with n=1 is rank 1 and θ1 and θ2 are not identifiable. For n ≥ 2,
the rank is 2.
The following theorem establishes the relation between rank and identifiability.
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Theorem 5 Suppose P = q(x, η); η ∈W is a canonical exponential family gen-
erated by (Tkxl, h) with natural parameter space W such that W is open. Let
A(η) = −log(c(η)). Then the following are equivalent.

1. P is of rank k.

2. η is a parameter (identifiable).

3. Var(T) is positive definite.

4. η → Ȧ(η) is 1-1 on E

5. A is strictly convex in E.

Ex: Multivariate normal. Show that this family is full rank and E is open.

3



Lectures 10-17

4 Methods of Point Estimation

[CB7.2, BD2]
Point estimate: Any function of the data. That is, any statistic.
Estimate vs estimator.

4.1 Method of Moments

Definition 1 Let X1, · · · , Xn be iid with pdf (or pmf) fθ, θ ∈ Θ. We as-
sume that first k moments m1, · · · ,mk of fθ exist. If θ can be written as
θ = h(m1, ...,mk), the method of moments estimate of θ is

θ̂MOM = T (X1, ..., Xn) = h(

n∑
i=1

Xi, · · · ,
n∑
i=1

Xk
i )

Note:

• The Definition above can also be used to estimate joint moments. For
example, we use

∑n
i=1XiYi to estimate E(XY ).

• If θ is not a linear function of the population moments, θ̂MOM will, in
general, not be unbiased. However, it will be consistent and (usually)
asymptotically Normal.

• Method of moments estimates do not exist if the related moments do not
exist.

• Method of moments estimates may not be unique. If there exist multi-
ple choices for θ̂MOM , one usually takes the estimate involving the low-
est–order sample moment.

eg. Normal
eg. Binomial with both n and p unknown.

Example 1 X1, · · · , Xn iid Gamma(p, λ). The first two moments of the gamma
distribution are E(X) = p/λ and E(X2) = p(p+ 1)/λ2. Use this to obtain the
MOM estimator.

Example 2 (Different MoM estimators)Example: X1, · · · , Xn iid Poisson(λ).
The first moment is λ . Thus, the method of moments estimator based on the
first moment is X̄. We could also consider using the second moment to form a
method of moments estimator.. The method of moments estimator based on the
second moment solves X̄2 = λ+ λ2 Solving this equation (by taking the positive

root), we find that λ̂ = −1/2 + (1/4 + X̄2)1/2 . The two method of moments
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estimators are different. For example, for the data
rpois(10,1) 2 3 0 1 2 1 3 1 2 1,
the method of moments estimator based on the first moment is 1.1 and the
method of moments estimator based on the second moment is 1.096872. We
choose rthtet one based on the lower moment.

Example 3 (Hardy-Weinberg proportions) Consider (first generation of) a pop-
ulation in which the alleles A and a are encountered with probabilities θ and 1-θ
respectively, θ ∈ (0, 1). If the alleles are chosen at random and independently
for each individual in the next generation, then the probability of having the AA
genotype is θ2, the aa genotype is (1− θ)2 and Aa genotype 2θ(1− θ). Suppose
we sample n individuals from the population, observe their genotypes and would
like to estimate the probability (proportion) of A allele in the population. The
corresponding statistical model is an i.i.d. sample X1, · · · , Xn, where Xi takes
values in AA, Aa,AA with probabilities θ2, 2θ(1 − θ)and(1 − θ)2 respectively.
Note that EθNAA = θ2 and EθNaa = (1 − θ)2. Also, E(NAA + 1/2NaA = θ.
Each of these can be used to find a method of moments estimator for θ.

Example 4 (The method of moments does not use all the information that is
available.) X1, · · · , Xn iid Uniform(0,θ). The method of moments estimator

based on the first moment is θ̂ = 2X̄. If 2X̄ < max(Xi) , we know that θ > θ̂.

Definition 2 Suppose we are given a function Ψ : Ω× Rd → Rd and define

V (θ0, θ) = Eθ0Ψ(X, θ)

Suppose V (θ0, θ) = 0 has θ0 as its unique solution for all θ0 ∈ Θ. Then we say

θ̂ solving
Ξ(X, θ̂) = 0

is an estimating equation estimate.

eg: Take Ξ = (µ̂1 − µ1, · · · , µ̂d − µd) to get the method of moments estimator.
eg: Least squares as estimating equation.

Definition 3 Consider a parameter that can be written as a function of F , i.e.,
θ = T (F ) . The plug-in estimator of θ is T (F̂n where Fn is the empirical cdf.

For parametric models plug-in estimators are not generally optimal. But they
are good starting points for numerical algorithms.
Sample median is a plug-in estimator of population median theta = F−1(1/2),
but not a MoM estimator.

4.2 Maximum likelihood estimation

Definition 4 Let (X1, · · · , Xn) be a random vector with pdf (or pmf) f(x1, · · · , xn; θ), θ ∈
Θ. We call the function L(θ;x1, · · · , xn) = f(x1, · · · , xn; θ) of θ the likelihood
function.
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Definition 5 A maximum likelihood estimate (MLE) is an estimate θ̂ML such
that

L(θ̂ML;x1, · · · , xn) = supθ∈ΘL(θ;x1, · · · , xn).

Note: It is often convenient to work with log L when determining the maximum
likelihood estimate. Since the log is monotone, the maximum is the same.
Use the derivative to find potential MLE. Use the double derivative to confirm
local maximum. Check boundary and confirm global maximum.
If the function is NOT differentiable with respect to θ. Use numerical methods.
Or perform directly maximization, using inequalities, or properties of the func-
tion.
For multivariate θ, second derivative test for maxima entails checking that the
Hessian matrix (matrix of second derivatives) is negative definite. Sign of de-
terminant of any principal minor is (−1)r, where r is the order.
Eg: X1, X2, X3, X4 i.i.d. Bernoulli(p), 0 < p < 1. Plot the likelihood function
for x = (1, 1, 1, 1), x=(0,0,0,0) and x=(1,1,0,0).
Eg (bivariate parameter) Normal.
Eg (non-unique) Unif(θ − 1/2, θ + 1/2)
Eg Unif(0, θ).
Eg Ber(p), with Θ = (1/2, 3/4). Here MLE is worse in the sense of MSE to
p̂ = 1/2. Eg: MLE of θ in the Hardy Weinberg set-up.
Eg: MLE(discrete parameter space) Hypergeometric. Total 12, marked θ, pick

5. If X = 3 then θ̂ = 7.
In this case, MoM estimator does not exist. 12*3/5=7.2 is not in parameter
space.
The likelihood function is not a probability mass function or a probability den-
sity function: in general, it is not true that L integrates to 1 with respect to θ .
The MLE is the parameter point for which the observed sample is most likely.

Theorem 1 Let T be a sufficient statistic for fθ, θ ∈ Θ. If MLE of θ exists, it
is a function of T .

Proof: Since T is sufficient, we can write

f(x, θ) = h(x)g(T (x), θ)

due to the Factorization Criterion. Maximizing the likelihood function with
respect to θ takes h(x) as a constant and therefore is equivalent to maximizing
g(T (x), θ) with respect to θ. But g(T (x), θ) involves x only through T .

• MLE may not exist.

• MLE may not be unique.

• Computation may be difficult.

Theorem 2 (Invariance of MLE) Let {fθ : θ ∈ Θ} be a family of pdf’s (or
pmf’s) with Θ ⊆ Rk, k ≥ 1. Let h : Θ→ ∆ be a mapping of Θ onto ∆ ⊆, Rp1 ≤
p ≤ k. If θ̂ is an MLE of θ, then h(θ̂) is an MLE of h(θ).
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Proof: For each δ ∈ ∆, we define Θδ = {θ : θ ∈ Θ, h(θ) = δ}
and M(δ;x) = supθ∈Θδ

L(θ;x), the likelihood function induced by h.

Let θ̂ be an MLE let and δ̂ = h(θ̂).

It holds M(δ̂;x) = supθ∈Θδ̂
L(θ;x) ≥ L(θ̂, x) since θ̂ ∈ Θδ̂

But alsoM(δ̂;x) ≤ supδ∈∆M(δ;x) = supδ∈∆(supθ∈Θδ
L(θ;x)) = supθ∈ΘL(θ;x) =

L(θ̂;x).

Therefore, M(δ̂;x) = L(θ̂;x) = supδ∈∆M(δ;x).

Thus, δ̂ = h(θ̂) is an MLE.
eg Let X1, ..., Xn be iid Ber(p). Let h(p) = p(1 − p). Since the MLE of p is
X =

∑
(Xi), the MLE of h(p) is X(1−X).

4.3 Bayesian methods

Model: X, · · · , Xn ∼ f(X|θ).
In the frequentist approach, θ is a fixed unknown constant.
In the Bayesian approach, we put a prior probability distribution on θ, say π(θ).
The model is then the conditional distribution of the data given a value of θ.
The joint distribution is, therefor the product of the prior and the model.
We use Bayes Rule to obtain the conditional distribution of θ given the data.
This is called the posterior distribution and is given below:

f(θ|X) =
joint

marginalofX
=

π(θ)f(X|θ)∫
η∈Θ

π(η)f(X|η)dη
.

The Bayes estimator is the conditional expectation of θ given the data, that is,
the expectation of the posterior distribution and is given by:

E(θ|X) =

∫
η∈Θ

ηf(η|X)dη =

∫
η∈Θ

ηπ(η)f(X|η)dη∫
η∈Θ

π(η)f(X|η)dη
.

Eg: Xi ∼ iidN (θ, 1), θ ∼ N (0, σ2).
Eg Bernoulli with beta(r,r) prior

Definition 6 A family of prior probability distributions π is said to be conjugate
to a family of likelihood functions L(x; θ) if the resulting posterior distributions
are in the same family as prior; the prior is called a conjugate prior for the
likelihood.

eg Poisson with Gamma prior as conjugate.

5 Numerical methods for finding MLE’s

5.1 Bisection

The bisection method is a method for finding the root of a one-dimensional
function that is continuous on R , for which f is monotone increasing or de-
creasing. It can be used when the likelihood equation is (or can be reduced to)
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a one-parameter equation. The bisection method works by repeatedly dividing
an interval in half and then selecting the subinterval in which the root exists.

5.2 Coordinate ascent

The coordinate ascent method is an approach to finding the maximum likelihood
estimate in a multidimensional family. The coordinate ascent method works
by using the bisection method iteratively. Suppose we have a k-dimensional
parameter (θ1, · · · , θk). The coordinate ascent method is: Choose an initial

estimate (θ̂1, · · · , θ̂k).

1. Set (θ̂1, · · · , θ̂k)old=(θ̂1, · · · , θ̂k)

2. Maximize l(θ1, θ̂2, · · · , θ̂k) over θ1 using the bisection method. Reset θ1 to

the value that maximizes the likelihood as θ̂1.

3. Maximize l over θ2 using the bisection method. Reset θ̂2.

4. continue to θK

5. Stop if the distance between (θ̂1, · · · , θ̂k)old and (θ̂1, · · · , θ̂k) is less than
some tolerance ε. Otherwise return to step 1.

The coordinate ascent method converges to the maximum likelihood estimate
when the log likelihood function is strictly concave on the parameter space. See
Figure 2.4.1 in Bickel and Doksum.

Example (Beta Distribution) This is a two parameter full rank exponential
family and hence the log likelihood is strictly concave. We found the method of
moments estimates and use them as initial estimates. r̂ = x̄(x̄− x̄2)/(x̄2 − x̄2)
ŝ = (1− x̄)(x̄− x̄2)/(x̄2 − x̄2)

R code for finding the MLE:

# Code for beta distribution MLE

# xvec stores the data

# rhatcurr, shatcurr store current estimates of r and s

# Generate data from Beta(r=2,s=3) distribution)

xvec=rbeta(20,2,3);

#xvec = (0.3184108, 0.3875947, 0.7411803, 0.4044642, 0.7240628, 0.7247060, 0.1091041, 0.1388588, 0.7347975, 0.5138287, 0.2683177, 0.4685777, 0.1746448, 0.2779592, 0.2876237, 0.5833377, 0.5847999, 0.2530112, 0.5018544, 0.5295680)

# Set low and high starting values for the bisection searches

rhatlow=.001;

rhathigh=20;

shatlow=.001;

shathigh=20;

# Use method of moments for starting values

rhatcurr=mean(xvec)*(mean(xvec)-mean(xvec^2))/(mean(xvec^2)-mean(xvec)^2);

shatcurr=((1-mean(xvec))*(mean(xvec)-mean(xvec^2)))/(mean(xvec^2)-mean(xvec)^2);

#rhatcurr=2.239774

#shatcurr=2.893378
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rhatiters=rhatcurr;

shatiters=shatcurr;

derivrfunc=function(r,s,xvec){

n=length(xvec);

sum(log(xvec))-n*digamma(r)+n*digamma(r+s);

}

derivsfunc=function(s,r,xvec){

n=length(xvec);

sum(log(1-xvec))-n*digamma(s)+n*digamma(r+s);

}

dist=1;

cc=1;

toler=.0001;

while(dist>toler){

rhatnew=uniroot(derivrfunc,c(rhatlow,rhathigh),s=shatcurr,xvec=xvec)$root;

shatnew=uniroot(derivsfunc,c(shatlow,shathigh),r=rhatnew,xvec=xvec)$root;

dist=sqrt((rhatnew-rhatcurr)^2+(shatnew-shatcurr)^2);

rhatcurr=rhatnew;

shatcurr=shatnew;

rhatiters=c(rhatiters,rhatcurr);

shatiters=c(shatiters,shatcurr);

cc=cc+1}

rhatmle=rhatcurr;

shatmle=shatcurr;

#rhatmle=2.401314

#shatmle=3.117656

#cc=21

Example of nonconcave likelihood: Cauchy model. Log likelihood is not concave
and has two local maxima between 0 and 10. There is also a local minimum. The
local maximum (i.e., the solution to the likelihood equation) that the bisection
method finds depends on the interval searched over.

R program to use bisection method

derivloglikfunc=function(theta,x1,x2,x3){

dloglikx1=2*(x1-theta)/(1+(x1-theta)^2);

dloglikx2=2*(x2-theta)/(1+(x2-theta)^2);

dloglikx3=2*(x3-theta)/(1+(x3-theta)^2);

dloglikx1+dloglikx2+dloglikx3;

}

plot(x,derivloglikfunc(x,x1=3,x2=1,x3=10),type="l")

uniroot(derivloglikfunc,interval=c(0,5),x1=3,x2=1,x3=10);

#$root=2.653812

uniroot(derivloglikfunc,interval=c(0,10),x1=3,x2=1,x3=10);

#$root=9.721143

6



5.3 Newton’s Method

Newton’s method is a numerical method for approximating solutions to equa-
tions. The method produces a sequence of values that, under ideal conditions,
converges to the MLE . To motivate the method, we expand the derivative of the
log likelihood around θ̂MLE : 0 = l′(θ̂MLE) ≈ l′(θ(j)) + (θ̂MLE − θ(j))l′′(θ(j))

Solving for θ̂MLE gives θ̂MLE = θ(j) − l′(θ(j))/l′′(θ(j)) This suggests the fol-
lowing iterative scheme: θ(j+1) = θ(j) − l′(θ(j))/l′′(θ(j)) Newton’s method can
be extended to more than one dimension (usually called Newton-Raphson)
θ(j+1) = θ(j) − l̈−1(θ(j))/l̇(θ(j)) where l̇ denotes the gradient vector of the like-
lihood and l̈ denotes the Hessian.

Comments on methods for finding the MLE:

1. The bisection method is guaranteed to converge if there is a unique root
in the interval being searched over but is slower than Newton’s method.

2. Newton’s method does not work if l′′(θ(j)) ≈ 0

3. Newton’s method does not always converge.

4. For the coordinate ascent method and Newton’s method, a good choice
of starting values is often the method of moments estimator or plug-in
estimator.

7



5. When there are multiple roots to the likelihood equation, the solution
found by the bisection method, the coordinate ascent method and New-
ton’s method depends on the starting value. These algorithms might con-
verge to a local maximum (or a saddlepoint) rather than a global maxi-
mum.

5.4 EM Algorithm

Complete data, incomplete data.
E step: Expectation of complete data log likelihood given incomplete data.
M step: Maximize
Iterate.
This is a famous example from Rao (1973)[Linear Statistical Inference and Its
Applications]. We consider the genetic linkage of 197 animals, in which the
phenotypes are distributed into 4 categories: Y = (y1, y2, y3, y4) = (125, 18,
20, 34) with cell probabilities (1/2 + θ/4, (1− θ)/4, (1− θ)/4, θ/4).
Though it is by no means impossible to maximize this multinomial likelihood
directly, we illustrate how the EM algorithm brings a substantial simplification,
by using the augmentation method. Specifically, we augment the observed data
Y by dividing the first cell into two, with respective cell probabilities 1/2 and
θ/4. This gives an augmented data set X = (x1, x2, x3, x4, x5), where x1 + x2
= y1, and x3 = y2, x4 = y3, x5 = y4.
E-step: E(l) = (E(X2) + x5)log(θ) + (x3 + x4)log(1− θ).
X2 ∼ Bin(y1, θ/(θ + 2))
M-step: θn+1 = (159θn + 68)/(197θn + 144)
The alternation between estimation and maximization is clearly seen in this
iteration formula. Starting with θ0 = 0.5 we obtain the sequence as follows
0.6082, 0.6243, 0.6265, 0.6268, 0.6268.

8



Lectures 18-21

4 Criteria for estimators

[CB7.3, BD3.4]

Definition 1 The bias of an estimate T (X) of a parameter q(θ) in a model
(non-empty set of pdf/pmf) mathcalP = Pθ : θ ∈ Θ as Biasθ(T ) = Eθ(T (X))−
q(θ). An estimate such that Biasθ(T ) = 0 is called unbiased. Any function q(θ)
for which an unbiased estimate T exists is called an estimable function.

This notion has intuitive appeal, ruling out, for instance, estimates that ignore
the data, such as T (X) = q(θ0), which can’t be beat for θ = θ0 but can obviously
be arbitrarily terrible.
Eg: X̄ and s2 in normal distribution are unbiased for µ and σ2. However,
note that S is not an unbiased estimate of σ. Eg: (Unbiased estimates may be
absurd) Let X ∼ Poisson(λ) and let q(λ) = e−2λ. Consider T (X) = (−1)X

as an estimate. It is unbiased but since T alternates between -1 and 1 while
q(λ) > 0, it is not a good estimate.
Eg: (Unbiased Estimates in Survey Sampling) Suppose we wish to sample from
a finite population, for instance, a census unit, to determine the average value of
a variable (say) monthly family income during a time between two censuses and
suppose that we have available a list of families in the unit with family incomes
at the last census. Write xl, · · · , xN for the unknown current family incomes
and correspondingly u1, · · · , uN for the known last census incomes. We ignore
difficulties such as families moving. We let Xl, · · · , Xn denote the incomes of a
sample of n families drawn at random without replacement. The parameter of
interest is 1

N

∑N
i=1 xi. The model is

P (X1 = a1, · · ·Xn = an) =

(
N

n

)−1
if {a1, · · · , an} ⊆ {x1, · · · , xn}

Ex: X̄ is unbiased and has variance σ2

n (1− (n−1)
(N−1) ) where σ2 = 1

N

∑N
i=1(xi− x̄)2.

This method of sampling does not use the information contained in u1, · · · , uN .
One way to do this, reflecting the probable correlation between (u1, · · · , uN )
and (xl, · · · , xN ), is to estimate by a regression estimate

X̄R = X̄ − b((̄U)− ū)

Ex: For each b this is unbiased.
Ex: If the correlation between Ui and Xi is positive (population) and b <
2Cov(Ū , X̄)/V ar(Ū), this is better than X̄.
Ex: The optimal choice of b is Cov(Ū , X̄)/V ar(Ū). This value is unknown and
can be estimated by

bopt =
1
n

∑n
i=1(Xi − X̄)(Ui − Ū)
1
N

∑N
i=1(ui − ū)2

1



. Ex: This estimator is biased.

4.1 Uniform Minimum Variance Unbiased (UMVU)

Note: If there exist 2 unbiased estimates T1 and T2 of θ, then any estimate of
the form αT1 + (1− α)T2 for 0 ≤ α ≤ 1 will also be an unbiased estimate of θ.
Which one should we choose?
For unbiased estimates mean square error and variance coincide.

Definition 2 An unbiased estimate T ∗ (X) of q(θ) that has minimum MSE
among all unbiased estimates for all θ is called UMVU (uniformly minimum
variance unbiased). If this happens for a single parameter value θ0 then it is
locally minimum variance unbiased.

Theorem 1 Let U be the class of all unbiased estimates T of θ ∈ Θ with
Eθ(T

2) < ∞∀θ, and suppose that U is non–empty. Let U0 be the set of all
unbiased estimates of 0, i.e., U0 = {ν : Eθ(ν) = 0, Eθ(ν

2) < ∞∀θ ∈ Θ}. Then
T0 ∈ U is UMVUE iff Eθ(νT0) = 0∀θ ∈ Θ∀ν ∈ U0.

Eg: Let X be unif(θ, θ + 1). Then T = X − 1/2 is unbiased for θ. An unbiased

estimator ν(X) of zero has to satisfy
∫ θ+1

θ
ν(x)dx = 0 for all θ. One such

function is ν(x) = sin(2πx).

Cov(X − 1/2, sin(2πX)) = −cos(2πθ)/2π.

This is non-zero. So T is not UMVU.
Eg: X1, · · · , Xn iid unif(0,θ). Here Y = (n + 1)T/n is unbiased with T as
X(n). Note that T is a sufficient statistic. We need to check if this is un-
correlated with all unbiased estimators of zero. Suppose W is an unbiased
estimator of zero and cov(W,Y)>0. Then cov(E(W—Y),Y)=E(YE(W—Y))-
E(W)E(Y)=EE(WY—Y)-E(W)E(Y)=cov(W,Y)¿0. So wlog, W can be consid-
ered a function of Y , equivalently a function of T . But T is complete sufficient
implying W=0. Since Y is uncorrelated with W , Y is UMVE.

Theorem 2 Let U be the non–empty class of unbiased estimates of θ ∈ Θ as
defined in Theorem 1. Then there exists at most one UMVUE T ∈ U for θ.

Theorem 3 (Rao–Blackwell) Let W be any unbiased estimator of τ(θ) and T
be a sufficient statistic for θ. Define φ(T ) = E(W | T ). Then φ(T ) is an
estimator with E(φ(T )) = τ(θ) and var(φ(T )) ≤ var(W ).

Pf: CB pf 342
This process of conditioning an unbiased estimator on a sufficient statistic is
called Rao Blackwellization and leads to another unbiased estimator with uni-
formly lower variance. In other words, it is enough to consider the class of
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unbiased estimators that are functions of sufficient statistics as any other unbi-
ased estimator will have higher variance than one of them (the corresponding
conditional correlation).

Eg: Suppose that X1, · · · , Xn comes from density λexp(−λx). Suppose that
we want an estimate of θ = exp(−10λ). This corresponds to the probability P[
Xi > 10 ]. The maximum likelihood estimate of λ is 1/X̄, so we could certainly
claim T = exp(−10/X̄) is the MLE of θ. This is certainly not unbiased.
Use statistic u(X) = I(X1 > 10). This statistic takes only the values 0 and 1,
and it only depends on the first observation, so it’s certainly a bad estimate. It
is, however, unbiased.
The Rao-Blackwell theorem says that we can get a better unbiased estimate by
using u∗(X) = E[u(X)|V ] where V =

∑
Xi is a sufficient statistic.

The conditional distribution of X1/V given V is beta(1,n).
u∗(X) = P [X1 > 10|V ] = P (beta(1, n) > 10/V ) = (1− 10/V )n

Eg (conditioning on an insufficient statistic): X1, X2 iid N(θ, 1). Then X̄ is
unbiased for θ. Let φ((̄X)) = E(X̄|X1). Then this is unbiased and has lower
variance. But it is not an estimator (depends on θ).

4.2 Mean squared Error

Definition 3 The Mean Squared Error (MSE) of an estimator W of a param-
eter θ is the function of θ defined by Eθ(W − θ)2.

Alternatively, Mean absolute error or expectation of any other increasing
function of |W − θ| can be used as a measure of performance of an estimator.
The advantage of MSE id easy tractability and the interpretation MSE =
V ar + Bias2. (prove). For an unbiased estimator MSE=var. But a biased
estimator might have lower MSE and will be preferred in most cases.

In the iid normal case, (n − 1)S2/σ2 ∼ χ2
n−1. Here E(S2) = σ2, var[(n −

1)S2/σ2] = 2(n − 1), var(S2) = 2σ4/(n − 1) = mse. Now let us consider

σ̂2
MLE = (n− 1)S2/n. Bias=σ2/n. Var=2(n− 1)σ4/n2. MSE=(2n− 1)σ4/n2.

This is smaller than MSE of the unbiased estimator S2. Thus by trading off
variance for bias, MSE is improved.

Eg Let X1, · · ·Xn be iid Ber(p). The MLE of p is X̄ with MSE=Var=p(1-
p)/n.
Consider the Bayes estimator with Beta(α, β) prior. The estimator equals
p̂B(
∑
Xi + α)/(n + α + β). Taking α = β =

√
n/2 makes MSE(p̂B) con-

stant as a function of p. With this prior, for small n, X̄ has lower MSE than p̂B
unless p is close to zero or one. For large n, p̂B has lower MSE than X̄ unless
p is close to half.
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4.3 Information Inequality

Assumptions I. The set A = x : p(x, θ) > 0 does not depend on θ. For all
x ∈ A, θ ∈ Θ, ∂/partialθlogp(x, θ) exists and is finite.
II. If T is any statistic such that E(|T |) ¡∞ for all θ ∈ Θ, then the operations of
integration and differentiation can be interchanged in ∂/partialθ

∫
T (x)p(x, θ)dx.

Theorem 4 If p(x, θ) = h(x)exp{η(θ)T (x) − B(θ)} is an exponential family
and η(θ) has a nonvanishing continuous derivative on Θ, then I and II hold.

The Fisher Information is defined as I(θ) = E(logp(X, θ))2.

Theorem 5 Suppose that I and II hold and that E|logp(X, θ)| < ∞. Then
E(logp(X, θ)) = 0 and I(θ) = V ar(logp(X, θ)).

Theorem 6 (Information Inequality/ Cramer Rao Lower Bound) Let T(X) be
any statistic such that Var(T(X)) ¡ ∞ for all θ. Denote E(T(X)) by ψ(θ). Sup-
pose that I and II hold and 0 < I(θ) <∞. Then for all θ, ψ(θ) is differentiable
and

V ar(T (X)) ≥ (ψ′(θ))2

I(θ)
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5 Large Sample (Asymptotic) Properties of Es-
timators

[CB10.1, BD5.2-5.3]
Asymptotics in statistics is usually thought of as the study of the limiting be-
havior of statistics or, more specifically, of distributions of statistics, based on
observing n i.i.d. observations X1, · · · , Xn as n → ∞. Asymptotics, in this
context, always refers to a sequence of statistics {Tn(X1, · · · , Xn)}n≥1, for in-
stance the sequence of means {X̄n}n≥1, or the sequence of medians, or it refers
to the sequence of their distributions {LF (Tn(X1, · · · , Xn))}n≥1. Asymptotic
statements are always statements about the sequence.

The strong law of large numbers (Kolmogorov) tells us that ifX1, X2, · · · , Xn

are independent and identically distributed, the existence of a finite constant c
for which X̄

a.s.→ c holds iff E(X1) is finite and equals c. [Serfling pg 27]
We interpret this as saying that, for n sufficiently large, Xn is approxi-

mately equal to its expectation. The trouble is that for any specified degree of
approximation, say, ε = .01, this does not tell us how large n has to be for the
approximation not holding to this degree, that is |X̄(ω) − c| > ε. Is n > 100
enough or does it have to be n > 100, 000?

Central Limit Theorem(Lindeberg-Levy) If X1, X2, · · · , Xn are independent
and identically distributed (distribution F ) with finite mean (EF (X1) = µ) and
variance (V arF (X1) = σ2), then

√
n(X̄n − µ)⇒ N (0, σ2).

Relaxation of assumptions lead to other CLT’s like Lindeberg Levy where in-
dependence is assumed but different means and variances are allowed satisfying
suitable conditions.

As an approximation, this reads P (X̄ ≤ x) ≈ Φ(
√
n(x − µ)/σ). Again we

are faced with the questions of how good the approximation is for given n, x and
F . What we in principle prefer are bounds, which are available in the classical
situations of WLLN and CLT above.

By Chebychev’s inequality, if EF (X2
l ) < ∞, then PF [|X̄n − µ| ≥ ε] ≤

σ2/nε2.As a bound this is typically far too conservative. If |X1| ≤ 1, the much
more delicate Hoeffding bound gives PF [|X̄n − µ| ≥ ε] ≤ 2exp(−nε2/2). Be-
cause |X1 ≤ 1 implies that σ2 ≤ 1 when σ2 is unknown the RHS of Chebychev
becomes 1/nε2. For ε = .1, n = 400 Chebychev is 0.25 whereas Hoeffding is
0.14. Of course |X1 ≤ 1 can be replaced with |X1 ≤M.

The celebrated Berry-Esseen bound states that if EF |X1|3 <∞, supx|P (
√
n(X̄n−

µ)/σ ≤ x) − Φ(x)| ≤ CEF |X1|3/σ3
√
n where C is a universal constant known

to be < 33/4.

5.1 Consistency

Consistency refers to convergence in probability (weak) or almost surely (strong).
In the iid case, by LLN, X̄n is consistent.

Ex: X1, · · ·Xn iid Bernoulli(p). p̂n = X̄n is consistent for p by LLN. Con-
sider θ = p(1 − p) which is the variance of X1 and its method of moments
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estimator p̂n(1− p̂n). This is consistent.
Result: If Xn converges to X in probability and g is a continuous function,

then g(Xn) converges to g(X) in probability.

Theorem 1 (Consistency of MoM estimators) X1, · · · , Xn iid. Xi ∈ X . Let
g = (g1, · · · , gd) map X onto Y ⊆ Rd. Suppose Eθgj(X1) < ∞, 1 < j < d,∀θ.
Let mj(θ) = Eθgj(Xl), 1 < j < d and q(θ) = h(m(θ)), where h : Y → Rp.
Then, if h is continuous q̂ = h(ḡ) is consistent for q(θ).

Theorem 2 (Consistency of MLE in exponential family) Suppose P is a canon-
ical exponential family of rank d generated by T . Suppose E the support of the
canonical parameter η, is open. Then, if Xl, · · · , Xn are a sample from Pη ∈ P

1. P(The MLE η̂ exists) → 1

2. η̂ is consistent.

Pf: Pg 304 of BD. Not to be done in class.
We begin the discussion of the consistency of the MLE by defining the so-

called Kullback-Liebler information.

Definition 1 If fθ0(x) and fθ1(x) are two densities, the Kullback-Leibler infor-

mation number equals K(fθ0 , fθ1) = Eθ0 log
fθ0 (X)

fθ1 (X) . If Pθ0 (fθ0(X) > 0 and fθ1(X) = 0) >

0, then K(fθ0 , fθ1) is defined to be 1.

We may show that the Kullback-Leibler information must be nonnegative using
Jensen’s inequality.

Theorem 3 (Jensen’s inequality) If g(t) is a convex function, then for any
random variable X, g(EX) ≤ Eg(X). Furthermore, if g(t) is strictly convex,
then Eg(X) = g(EX) only if P (X = c) = 1 for some constant c.

Considering the Kullback-Leibler information once again, we first note that

Eθ0
fθ1(X)

fθ0(X)
= Eθ1

(
Ifθ0 (X)>0

)
≤ 1.

Therefore, by the strict convexity of the function − log x,

K(fθ0 , fθ1) = Eθ0 − log
fθ1(X)

fθ0(X)
≥ − logEθ0

fθ1(X)

fθ0(X)
≥ 0, (1)

with equality if and only if Pθ0fθ0(X) = fθ1(X) = 1. Inequality (1) is sometimes
called the Shannon- Kolmogorov information inequality.

IfX1, · · · , Xn are iid with density fθ0(x), then l(θ) =
∑n
i=1 log fθ0(xi). Thus,

the Shannon-Kolmogorov information inequality may be used to prove the con-
sistency of the maximum likelihood estimator in the case of a finite parameter
space.
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Theorem 4 (Consistency of MLE) Suppose Ω is finite and that X1, · · · , Xn

are iid with density fθ0(x). Furthermore, suppose that the model is identifiable,
which is to say that different values of θ lead to different distributions. Then if

θ̂n denotes the maximum likelihood estimator, θ̂n
P→ θ0.

Proof: Notice that

1

n

n∑
i=1

log
fθ(Xi)

fθ0(Xi)

P→ Eθ0 log
fθ(Xi)

fθ0(Xi)
= −K(fθ0 , fθ) (2)

The value of −K(fθ0 , fθ) is strictly negative for θ 6= θ0 by the identifiability of

the model. Therefore, since θ̂n is the maximizer of the left hand side of Equation
(2),

P (θ̂n 6= θ0) = P

(
maxθ 6=θ0(

1

n

n∑
i=1

log
fθ(Xi)

fθ0(Xi)
) > 0

)
≤
∑
θ 6=θ0

P

(
1

n

n∑
i=1

log
fθ(Xi)

fθ0(Xi)
> 0

)
→ 0.

(3)

5.2 Asymptotic normality

In the simplest form of the central limit theorem, we consider a sequence
X1, X2, ...Xn of independent and identically distributed (univariate) random
variables with mean µ and finite variance σ2. In this case, the central limit
theorem states that √

n(X̄n − µ)⇒ N (0, σ2)

5.2.1 Delta Method

In this section, we wish to consider the asymptotic distribution of, say, some
function of X̄n. In the simplest case, the answer depends on results already
known: Consider a linear function h(t) = at + b for some known constants a
and b. Clearly E(h(X̄n)) = aµ + b = h(µ) by the linearity of the expectation
operator. Therefore, it is reasonable to ask whether

√
n(h(X̄n)−h(µ)) tends to

some distribution as n→∞. But the linearity of h(t) allows one to write

√
n(h(X̄n)− h(µ)) = a

√
n(X̄n − µ)

We conclude that √
n(h(X̄n)− h(µ))⇒ N (0, a2σ2)

None of the preceding development is especially deep; one might even say that
it is obvious that a linear transformation of the random variable Tn alters its
asymptotic distribution by a constant multiple. Yet what if the function h(t)
is nonlinear? It is in this nonlinear case that a strong understanding of the
argument above, as simple as it may be, pays real dividends. For if Tn is
consistent for θ (say), then we know that, roughly speaking, Tn will be very
close to θ for large n. Therefore, the only meaningful aspect of the behavior of

3



h(t) is its behavior in a small neighborhood of θ. And in a small neighborhood
of θ, h(θ) may be considered to be roughly a linear function. Formally we use
the Taylor expansion to obtain the following result:

Theorem 5 (First Order Delta Method) If

√
n(Tn − θ)⇒ N (0, τ2) (4)

then √
n(h(Tn)− h(θ))⇒ N (0, τ2(h′(θ))2)

provided h′(θ) exists and is not zero.

Proof: Step 1: It follows from equation (4) that Tn → θ in probability.
Step 2: Consider the Taylor expansion of h around θ.

h(x) = h(θ) + (x− θ)(h′(θ) + r)

where r → 0 as x→ θ.
Define Rn as the remainder in

h(Tn) = h(θ) + (Tn − θ)(h′(θ) +Rn)

By step 1, Tn → θ in probability.
Hence Rn → 0 in probability.
This implies h′(θ) +Rn → h′(θ) in probability.

Step 3: The result follows by applying Slutsky’s theorem to
√
n(h(Tn)−h(θ)).√

n(h(Tn)− h(θ)) =
√
n(Tn − θ)× (h′(θ) +Rn).

Let Yn = (h′(θ) +Rn) and Xn =
√
n(Tn − θ) as above.

Xn ⇒ X and Yn → c in probability where c = h′(θ), X ∼ N (0, τ2).
By Slutsky’s theorem,

√
n(h(Tn)− h(θ)) = YnXn ⇒ cX.

The distribution of cX is N (0, τ2(h′(θ))2).
Example 1(Exponential Rate) Let Xi, i = 1, 2, · · · , n be independent

Exponential(λ) random variables and let Tn = 1
n

∑n
i=1Xi. Then by CLT,

√
n(Tn − λ)⇒ N (0, λ2)

Suppose we are now interested in the large sample behavior of the estimate 1
Tn

of the rate h(λ) = 1
λ .

Since h′(λ) = − 1
λ2 , it follows from Theorem 5 that

√
n(

1

Tn
− 1

λ
)⇒ N (0,

(
− 1

λ2

)
λ2 =

1

λ2
)

Example 2 (Binomial Variance) Let Xi, i = 1, 2, · · · , n be independent
Bernoulli random variables and let Tn = 1

n

∑n
i=1Xi. Then by CLT,

√
n(Tn − p)⇒ N (0, p(1− p))
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Suppose we are now interested in the large sample behavior of the estimate
Tn(1− Tn) of the variance h(p) = p(1− p).
Since h′(p) = 1− 2p, it follows from Theorem 5, when p 6= 1/2, that

√
n(Tn(1− Tn)− p(1− p))⇒ N (0, (1− 2p)2p(1− p))

What happens when h′(θ) = 0?

Theorem 6 (Second Order Delta Method) If

√
n(Tn − θ)⇒ N (0, τ2) and h′(θ) = 0 (5)

then

n(h(Tn)− h(θ))⇒ 1

2
τ2h′′(θ)χ2

1

Proof Consider the Taylor expansion of h(Tn) around h(θ) upto the second term.

h(Tn) = h(θ) + (Tn − θ)h′(θ) +
1

2
(Tn − θ)2(h′′(θ) +Rn)

where Rn → 0 as Tn → θ.
Step 1: It follows from equation (5) that Tn → θ in probability.

Hence Rn → 0 in probability. This implies h′′(θ) +Rn → h′′(θ) in probability.
Step 2: 1

τ2n(Tn − θ)2 ⇒ χ2
1.

This follows from equation (5) after dividing by τ and squaring a standard
normal random variable.

Step 3: The result follows by applying Slutsky’s theorem to n(h(Tn)−h(θ)).
n(h(Tn)− h(θ)) = n(Tn − θ)2 × (h′′(θ) +Rn) since h′(θ) = 0.
Let Yn = τ2(h′′(θ) +Rn) and Xn = 1

τ2n(Tn − θ)2.
Xn ⇒ X and Yn → c in probability where c = τ2h′′(θ), X ∼ χ2

1.
By Slutsky’s theorem, n(h(Tn)− h(θ)) = YnXn ⇒ cX.
The distribution of cX is τ2h′′(θ)χ2

1.
Example 3’(Binomial Variance at p = 1/2) For h(p) = p(1 − p), we

have at p = 1/2, h′(1/2) = 0 and h′′(1/2) = −2. Hence from theorem 6, at
p = 1/2,

n

[
Tn(1− Tn)− 1

4

]
⇒ −1

4
χ2

1 (6)

Although the equation (6) might appear strange, note that Tn(1 − Tn) ≤ 1/4,
so the left side is always negative. An equivalent form is

4n

[
1

4
− Tn(1− Tn)

]
⇒ χ2

1

We now present a result on multivariate Delta method without proof.

Theorem 7 (Multivariate Delta Method) Let (X1ν , · · · , Xsν), , ν = 1, · · · , n
be n independent s-tuples of random variables with E(Xiν) = ξi and Cov(Xiν , Xjν) =

5



σij. Let X̄i =
∑n
ν=1Xiν/n, and suppose that h is a real valued function of s

arguments with continuous first partial derivatives. Then

√
n
[
h(X̄1, · · · , X̄s)− h(ξ1, · · · , ξs)

]
⇒ N (0, υ2), where υ2 =

s∑
i=1

s∑
j=1

σij
∂h

∂ξi

∂h

∂ξj

Example 4 (Variance of Variance estimator) Suppose X1, · · · , Xn are
iid random variables with mean µ and variance σ2. We are interested in the
joint distribution of s2 = 1

n

∑
(Xi − X̄)2, the estimator of σ2. Denoting E(Xk)

by mk, we have

E(X̄) = m1

E(X̄2) = m2

Cov(X̄, X̄2) = (m3 −m1m2)/n

Var(X̄) = (m2 −m2
1)/n

Var(X̄2) = (m4 −m2
2)/n

The parameter of interest is σ2 = h(m1,m2) = m2 −m2
1. The derivatives of h

are ∂h
∂m1

= −2m1 and ∂h
∂m2

= 1.

√
n
[
h(X̄, X̄2)− h(m1,m2)

]
⇒ N (0, υ2), where

υ2 = DhΣDhT =
(
−2m1 1

)( m2 −m2
1 m3 −m1m2

m3 −m1m2 m4 −m2
2

)(
−2m1

1

)
= −4m4

1 + 8m2
1m2 +m4 −m2

2 − 4m1m3

The central limit theorem and the delta method will prove very useful in
deriving asymptotic distribution results about functions of sample moments.

Example 9 (Distribution of sample T statistic) SupposeX1, X2, · · · , Xn

are iid with E(Xi) = µ and Var(Xi) = σ2 < ∞. Define s2
n = 1

n

∑
(Xi − X̄)2,

and let

Tn =

√
n(X̄n − µ)

sn
.

Letting An =
√
n(X̄n−µ)

σ and Bn = σ/sn, we obtain Tn = AnBn. Therefore,

since An ⇒ N(0, 1) by the central limit theorem and Bn
P→ 1 by the weak law

of large numbers, Slutsky’s theorem implies that Tn ⇒ N (0, 1). In other words,
T statistics are asymptotically normal under the null hypothesis.
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5.2.2 Asymptotic Normality of MLE

It will be necessary to review a few facts regarding Fisher information before we
proceed. For a density (or mass) function fθ(x), we define the Fisher information
function to be

I(θ) = Eθ

{
d

dθ
log fθ(X)

}2

(7)

If η = g(θ) for some invertible and differentiable function g(∆), then since

d

dη
=
dθ

dη

d

dθ
=

1

g′(θ)

d

dθ
(8)

by the chain rule, we conclude that

I(η) =
I(θ)

{g′(θ)}2
(9)

Loosely speaking, I(θ) is the amount of information about θ contained in a sin-
gle observation from the density fθ(x).
Suppose that fθ(x) is twice differentiable with respect to θ and that the oper-
ations of differentiation and integration may be interchanged in the following
sense:

Eθ

{
d

dθ
log fθ(X)

}
= Eθ

{
d
dθfθ(X)

fθ(X)

}
=

∫
d

dθ
fθ(X)dx =

d

dθ

∫
fθ(X)dx =

d

dθ
1 = 0

(10)

Eθ

{
d

dθ

d
dθfθ(X)

fθ(X)

}
= Eθ

{
d2

dθ2 fθ(X)

fθ(X)

}
− I(θ) =

d2

dθ2

∫
fθ(X)dx− I(θ) = −I(θ)

(11)
Equations (10) and (11) give two additional expressions for I(θ). From Equation
(10) follows

I(θ) = Varθ

{
d

dθ
log fθ(X)

}
(12)

and Equation (11) implies

I(θ) = −Eθ
{
d2

dθ2
log fθ(X)

}
. (13)

In many cases, Equation (13) is the easiest form of the information to work with.
Equations (12) and (13) make clear a helpful property of the information, namely
that for independent random variables, the information about θ contained in
the joint sample is simply the sum of the individual information components.
In particular, if we have an iid sample from fθ(x), then the information about
θ equals nI(θ). The reason that we need the Fisher information is that we will
show that under certain regularity conditions,

√
n(θ̂n − θ0)⇒ N

{
0,

1

I(θ0)

}
, (14)
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where θ̂n is the MLE.
Example 1 (Poisson case) Suppose that X1, · · · , Xn are iid Poisson(θ0)

random variables. Then the likelihood equation has a unique root, namely
θ̂n = X̄n, and we know that by the central limit theorem

√
n(θ̂n−θ0)⇒ N (0, θ0).

However, the Fisher information for a single observation in this case is

−Eθ
{
d2

dθ2
log fθ(X)

}
= Eθ

X

θ2
=

1

θ
(15)

Thus, in this example, equation (14) holds.

Rather than stating all of the regularity conditions necessary to prove Equa-
tion (12), we work backwards, figuring out the conditions as we go through the

proof. The first step is to expand l′(θ̂n) in a power series around θ0:

l′(θ̂n) = l′(θ0) + (θ̂n − θ0)l′′(θ0) +
1

2
(θ̂n − θ0)2l′′′(θ∗n) (16)

for some θ∗n between θ̂n and θ0. Clearly, the validity of Equation (16) hinges on
the existence of a continuous third derivative of l(θ). Rewriting equation (16)
gives

√
n(θ̂n − θ0) =

√
n{l′(θ̂n)− l′(θ0)}

l′′(θ0) + 1
2 (θ̂n − θ0)l′′′(θ∗n)

=

1√
n
{l′(θ0)− l′(θ̂n)}

− 1
n l′′(θ0)− 1

2n (θ̂n − θ0)l′′′(θ∗n)
(17)

Let’s consider the pieces of Equation (17) individually. If the MLE is consistent,

then l′(θ̂n)
P→ 0. If Equation (10) holds and I(θ0) <∞, then

1√
n

l′(θ0) =
√
n

(
1

n

n∑
i=1

d

dθ
log fθ0(Xi)

)
⇒ N (0, I(θ0)) (18)

by the central limit theorem and Equation (12). If Equation (11) holds, then

1

n
l′′(θ0) =

1

n

n∑
i=1

d2

dθ2
log fθ0(Xi)

P→ −I(θ0) (19)

by the weak law of large numbers and Equation (13). Finally, we would like to
have the term involving l′′′(θ∗n) disappear, so clearly it is enough to show that
1
n l′′′(θ) is bounded in probability in a neighborhood of θ0. Putting all of these
facts together gives a theorem.

Theorem 8 Let θ̂n denote a consistent root of the likelihood equation. Assume
also that l′′′(θ) exists and is continuous, that equations (10) and (11) hold,
and that 1

n l′′′(θ) is bounded in probability in a neighborhood of θ0. Then if
0 < I(θ0) <∞, (14) holds.
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The theorem is proved by noting that under the stated regularity conditions,

l′(θ̂n)
P→ 0 so that the numerator in (17) converges in distribution to N{0, I(θ0)}

by Slutsky’s theorem. Furthermore, the denominator in (17) converges to I(θ0),
so another application of Slutsky’s theorem gives the desired result.

Sometimes, it is not possible to find an exact zero of l′(θ). One way to get a
numerical approximation to a zero of l′(θ) is to use Newton’s method, in which
we start at a point θ0 and then set

θ1 = θ0 −
l′(θ0)

l′′(θ0)
. (20)

Ordinarily, after finding θ1 we would set θ0 equal to θ1 and apply Equation
(20) iteratively. However, we may show that by using a single step of Newton’s
method, starting from a

√
n-consistent estimator of θ0, we may obtain an esti-

mator with the same asymptotic distribution as θ̂n. The proof of the following
theorem is left as an exercise:

Theorem 9 Suppose that θ̃n is any
√
n-consistent estimator of θ0 (i.e.,

√
n(θ̃n−

θ0) is bounded in probability). Then under the conditions of Theorem 7, if we
set

δn = θ̃n −
l′(θ̃n)

l′′(θ̃n)
(21)

then √
n(δn − θ0)⇒ N (0,

1

I(θ0)
) (22)

5.3 Relative efficiency

we have considered various cases where the distribution of estimators converged
at rate

√
n to the normal distribution. If there are multiple estimators of the

same parameter with this property, then all of them are
√
n consistent. We can

use the asymptotic variance as a means of comparing such estimators. This is
the idea of asymptotic relative efficiency.

Definition 2 If two estimators Wn and Vn satisfy

√
n[Vn − θ]⇒ N (0, σ2

V )
√
n[Wn − θ]⇒ N (0, σ2

W )

The asymptotic relative efficiency(ARE) of Vn with respect to Wn is

ARE(Vn,Wn) =
σ2
W

σ2
V

(23)

Example 1(ARE of Poisson Estimators) SupposeX1, · · · , Xn are iid Poisson(λ),
and we are interested in estimating τ = Pλ(X1 = 0) = exp(−λ). For example
number of customers who come into a bank in a given time period is modeled as

9



a Poisson random variable and we are interested in the probability that no one
will enter the bank in one time period. A natural (but somewhat naive) esti-
mator comes from defining Yi = I(Xi = 0). The Yis are iid Bernoulli(exp(−λ))
and hence it follows that

√
n(Ȳn − exp(−λ))⇒ N (0, exp(−λ)(1− exp(−λ)))

Additionally,the MLE of exp(−λ) is τ̂ = exp(−λ̂) where λ̂ = X̄n is the MLE of
λ. Using the Delta method, we have

√
n(τ̂ − τ)⇒ N (0, λ exp(−2λ))

The ARE of Ȳn wrt the MLE is

ARE(Ȳ , exp(−X̄)) =
λ exp(−2λ)

exp(−λ)(1− exp(−λ))
=

λ exp(−λ)

(1− exp(−λ))

Examination of this function shows that it is strictly decreasing with a maximum
of 1 at λ = 0 and tailing off rapidly (< 0.1 when λ = 4) to 0 as λ→∞ . So in
this case the MLE is better in terms of ARE.

5.4 Asymptotic Bias and Efficiency

(CB 470-471)
There are two ways in which we can look at the bias as sample size goes

to infinity. We can look at the finite sample bias Bias(Tn) and take the limit
as n → ∞. This is called the limiting bias. We can also look for a suitably
scaled version of the estimator converges in distribution to a non-degenerate
random variable and look at the bias of that limiting distribution. This is the
asymptotic bias. Here are the precise definitions:

Definition 3 An estimator Tn of τ(θ) is unbiased in the limit, if limn→∞ E(Tn) =
τ(θ).

Definition 4 For an estimator Tn, suppose that kn(Tn − τ(θ)) ⇒ H. The
estimator Tn is asymptotically unbiased if the expectation of H is zero.

Example 1 (Asymptotically biased estimator) Let X1, · · · , Xn are iid
U(0, θ).

The MLE of θ is X(n) (24)

P (X(n) ≤ a) = (a/θ)n and E(X(n)) = θ (25)

Hence P (n(θ−X(n)) ≤ a) = P (X(n) ≥ θ−a/n) = 1− (1−a/nθ)n → 1− e−a/θ.
Thus n(θ −X(n)) ⇒ Exp( 1

θ ). The expectation of the limiting random variable
is not zero. So X(n) is not asymptotically unbiased. From (25) X(n) is unbiased
in the limit.

Similar concepts exist for efficiency, which concerned with the asymptotic
variance of the estimator.
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Definition 5 For an estimator Tn, if limn→∞ knVar(Tn) = τ2 <∞, where kn
is a sequence of constants, then τ2 is called the limiting variance.

Definition 6 For an estimator Tn, suppose that kn(Tn − τ(θ)) ⇒ H. Then
V ar(H) is called the asymptotic variance of Tn.

In most cases these two are the same. But in complicated cases, this may not
hold. It is always the case that the asymptotic variance is smaller than the
limiting variance (Lehmann and Casella Sec 6.1).

Example 2 Let us consider the mean X̄n of n iid normal observations with
mean µ and variance σ2. Suppose we are interested in estimating 1

µ and we use

the estimator Tn = 1
X̄n

. For each finite n the distribution of
√
nX̄n is N (0, σ2).

Var(
√
nTn) =∞, by direct integral of

1

x2
with respect to the normal pdf.

(26)
So, the limiting variance of Tn is infinity. On the other hand, by Delta method,

√
n(Tn −

1

µ
)⇒ N (0,

σ2

µ4
)

So the asymptotic variance of Tn is σ2

µ4 .

In the spirit of the Cramer Rao lower bound, there is an optimal asymptotic
variance.

Definition 7 A sequence of estimators Wn is asymptotically efficient for a pa-
rameter τθ if

√
n(Wn − τ(θ)⇒ N (0, ν(θ) and

ν(θ) =
(τ ′(θ)2)

Eθ((
∂
∂θ log f(X | θ))2)

=
(τ ′(θ)2)

I(θ)
, (27)

that is the asymptotic variance of Wn achieves the Cramer-Rao lower bound.

For a long time it was believed that if
√
n(Wn − τ(θ)⇒ N (0, ν(θ), (28)

then

ν(θ) ≥ (τ ′(θ)2)

I(θ)
(29)

under regularity conditions on the densities. This belief was shattered by the
example (due to hodges; see LaCam 1953) below:

Example 3 (Superefficient Estimator): Let X1, · · · , Xn be iid N (θ, 1)
and the parameter of interest is θ. In this case, h(θ) = θ, and

I(θ) = Eθ((
∂

∂θ
log f(X | θ))2)

= Eθ((
∂

∂θ

1

2
(X − θ)2)2)

= Eθ(X − θ)2

= 1

11



Thus equation(29) reduces ν(θ) ≥ 1. Now consider the sequence of estimators

Tn =

{
X̄ if | X̄ |≥ 1/n1/4

aX̄ if | X̄ |< 1/n1/4

Then,
√
n(Tn − θ)⇒ N (0, ν(θ)), (30)

where ν(θ) = 1 when θ 6= 0 and ν(θ) = a2 when θ = 0. (31)

If a < 1, inequality (29) is violated at θ = 0.
This phenomenon is quite common and is called superefficiency. There will

typically exist estimators satisfying (28) but with ν(θ) violating (29) at least for
some values of θ. However, it was shown by LaCam(1953) that for any sequence
of estimators satisfying (28), the set S of points of super-efficiency has Lebesgue
measure zero.

5.5 Results and concepts from probability

1. Convergence almost surely(a.s), convergence in probability(P), conver-
gence in distribution(d).

2. a.s.⇒ P⇒ d. But not the other way around.

3. Strong and weak laws of large numbers.

4. Central Limit Theorem

5. Chebyshev and Jensen inequalities

6. Continuous mapping Theorem: (pg 24 od Serfling) g is a continuous func-
tion. Then,

(a) Xn ⇒ X implies g(Xn)⇒ g(X).

(b) Xn
P→ X implies g(Xn)

P→ g(X)

(c) Xn
a.s.→ X implies g(Xn)

a.s.→ g(X)

7. Slutsky’s Theorem:(pg 19 of Serfling) Xn ⇒ X and Yn
P→ c, where c is a

constant. Then

(a) Xn + Yn ⇒ X + c

(b) XnY n⇒ cX

(c) Xn/Y n⇒ X/c provided c 6= 0.

12



6 Elements of hypothesis testing

[CB8.3,BD4.2-4.3]

6.1 Introduction

Hypothesis testing begins with an assumption, called a hypothesis, that we make
about a population parameter.
The bottom line in hypothesis testing is when we ask whether a population
like we think this one is would be likely to produce a sample like the one we are looking at.

In hypothesis testing, we must state the assumed or hypothesized distribu-
tion of the population before we begin sampling.
The assumption we wish to test is called the null hypothesis (H). In para-
metric inference this will be in terms of a finite number of parameters.
Whenever we reject the hypothesis, the conclusion we draw is called alterna-
tive hypothesis (K).
Note: Null hypotheses are either rejected, or else there is insufficient evidence
to reject them. (i.e., we don’t accept null hypotheses.)

Type I Error: rejecting a true null hypothesis.
Max value of P(Type I error)=α Significance level of the test
Type II Error: not rejecting a false null hypothesis.
P(Type II error) = 1-β=1-Power of the test

Definition 1 The power of a test φ against the alternative θ is the probability
of rejecting H when θ is true and is denoted by β(θ, φ).

Example 1: The null hypothesis is that the battery has an average life of 300
days, with the alternative hypothesis being that the battery life is more than
300 days. You are the quality control engineer for the battery manufacturer.
(a) Would you rather make a Type I or a Type II error?

1



(b) Based on your answer to part (a), should you use a high or a low significance
level?

Testing procedure: Fix H, K, α. Obtain sample. Calculate a test statistic
based on the sample. If the test statistic has a low probability (fixed at α) when
H is true, then H is rejected. Otherwise H is not rejected.

One and two sided alternative hypotheses. The null hypothesis is usually
stated as an equality. The alternative hypothesis can be either an equality or
an inequality.

One and two tailed tests. Depending on the type of the alternative the
rejection region can be right-tailed, left-tailed or two-tailed.

Example 2: A drug will be released in the market only if it’s efficacy is more
than 30%. What are the null and alternative hypotheses? Which is appropriate,
a one-tailed or a two-tailed test?

Figure 1: Example 3

Example 3: In figure 6.1, we have a sample of size n from a normal population
with unknown mean µ. H: µ = 2400, K: µ > 2400. At α = 0.05, we reject H for
values of X̄ > 2400 + 1.645σX̄ . In this case, the observed value of X̄ is 2430,
which is 1.06σX̄ . Hence we fail to reject H.

Parametric set-up: Data: X ∈ X , X ∼ Pθ, H : θ ∈ Θ0,K : θ ∈ Θ1. If Θ0

consists of a single point, we call it a simple null, otherwise, a composite
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null. Similarly, with K.
In example 2, H : θ = θ0,K = θ > θ0, then we have a simple null vs a

composite alternative. If we allow H : θ ≤ θ0, then we have a composite null.
In most cases (Monotone Likelihood Ratio situations), the solutions to both
problems are the same. In this example with H : θ = θ0, it is reasonable to
reject H if X= number of cases in which the drug is effective in n trials, is
”much” larger than what would be expected by chance if H is true and the
value of θ is θ0.
Thus, we reject H if X exceeds or equals some integer, say k.

Critical region or rejection region denotes the values of the test statistic
X for which we reject H. In this example the critical region C is {X : X > k}.
This is equivalent to specifying a test function φ : X → {0, 1}, where 1 denotes
rejection.

Thus P (typeIerror) = Pθ=θ0(X ≥ k)
and P (typeIIerror) = Pθ(X < k), θ < θ0.
k is called the critical value.
The power is obtained as

∑n
i=k

(
n
k

)
θi(1 − θ)n−i. A plot of the function for

n = 10, θ0 = 0.3, k = 6 is in figure 4.1.1 below (taken from BD).
Note that in this example the power at θ = θ1 > 0.3 is the probability that

the level 0.05 test will detect an improvement of the recovery rate from 0.3 to
θ1. When θ1 is 0.5, a 67% improvement, this probability is only .3770. What is
needed to improve on this situation is a larger sample size n. One of the most
important uses of power is in the selection of sample sizes to achieve reasonable
chances of detecting interesting alternatives

Also, the power function is increasing. It follows that the level and size of
the test are unchanged if instead of Θ0 = {θ0} we used Θ0 = [0, θ0]. That is,

α(k) = sup{Pθ(X ≥ k) : θ < θ0} = Pθ0(X ≥ k).
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6.2 Neyman-Pearson Theory

We start with the problem of testing a simple hypothesis H : θ = θ0 versus a
simple alternative K : θ = θ1. Simple likelihood ratio statistic is defined by

L(x, θ0, θ1) =
p(x, θ0)

p(x, θ1)

where p(x, θ) is the density (pdf) or frequency (pmf) function of the random
vector X.
We call φk a likelihood ratio or Neyman-Pearson (NP) test (function) if for some
0 < k <∞ we can write the test function φk as

φk(x) =

{
1 if L(x, θ0, θ1) < k
0 if L(x, θ0, θ1) > k

(1)

with φk(x) any value in (0,1) if equality occurs.

Because we want results valid for all possible test sizes α in [0, 1], we consider
randomized tests φ, which are tests that may take values in (0, 1). If 0 < φ(x) <
1 for the observation vector x, the interpretation is that we toss a coin with
probability of heads φ(x) and reject H iff the coin shows heads.

Theorem 1 (Neyman-Pearson Lemma)

1. If α > 0 and φk is a size α likelihood ratio test, then φk is MP in the class
of level α tests.

2. For each 0 < α < 1 there exists an MP size α likelihood ratio test provided
that randomization is permitted, 0 < φ(x) < l,for some x.

3. If φ is an MP level α test, then it must be a level α likelihood ratio test;
that is, there exists k such that Pθ(φk(x) 6= φ(x), L(X, θ0, θ1 6= k) = 0 for
θ = θ0 and θ = θ1

It follows from the Neyman-Pearson lemma that an MP test has power at
least as large as its level; that is,

Corollary 1 If φ is an MP level α test, then Eθ1φ(x) > α with equality iff
p(x, θ0) = p(x, θ1)∀x.

In example 2, suppose the alternative is θ1 = 0.5. As before θ0 = 0.3.
Thus we have a simple null vs simple alternative situation where the model is
X ∼ Bin(n, θ). The likelihood ration is

L(X, θ0, θ1) =

(
n
X

)
(0.3)X(0.7)n−X(

n
X

)
(0.5)X(0.5)n−X

= (3/7)X(7/5)n

L < k is equivalent to X > (n log(7/5) − k)/ log(7/3) = k1 (say). So the test
that rejects the null hypothesis for large values of X is MP in the class of level
α tests by NP lemma.
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In order to determine the test explicitly given α = 0.05 and n=10, we find
the highest k1 such that P (X > k1) < α.
From R, 1-pbinom(4,10,0.3)=0.1502683=P (X > 4)
and 1-pbinom(5,10,0.3)=0.04734899=P (X > 5).
So, k1=5 and a=(α − P (X > k))/P (X = 5)=0.02575813. So the test function
is

φ(x) =

 1 ifX > 5
0.02575813 ifX = 5
0 ifX < 5

(2)

That is, reject H if X > 5 and with probability a if X = 5.
For θ = 0.5, the power is

β(θ, φ) = P (X < 5) + aP (X = 5)

= 1− pbinom(5, 10, 0.5) + a ∗ dbinom(5, 10, 0.5)

= 0.383292

6.3 UMP tests and MLR families

Now we want to consider the case of composite null H : θ ∈ Θ0 vs composite
alternative K : θ ∈ Θ1

Definition 2 A level α test φ∗ is uniformly most powerful (UMP) for H vs K
if

β(θ, φ∗) ≥ β(θ, φ)∀θ ∈ Θ1

for any other level α test φ.

Definition 3 The family of models {Pθ : θ ∈ Θ} with Θ ⊂ R is said to be
a monotone likelihood ratio (MLR) family if for θ1 < θ2 the distributions Pθ0
and Pθ2 are distinct and the ratio p(x, θ2)/p(x, θ1) is an increasing function of
a statistic T (x).

In example 2, for θ1 < θ2,

p(x, θ2)/p(x, θ1) =
θX2 (1− θ2)n−X

θX1 (1− θ1)n−X
=

(
θ2(1− θ1)

θ1(1− θ2)

)X (
1− θ2

1− θ1

)n
is increasing in X and the model is MLR in T (X) = X.

Result: Consider the one-parameter exponential family model

p(x, θ) = h(x)exp{η(θ)T (x)−B(θ)}.

If η(θ) is strictly increasing in θ ∈ Θ, then this family is MLR. Example 2 is of
this form with T (x) = x and η(θ) = log(θ/(1− θ)).
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Define the Neyman-Pearson (NP) test function

δt(x) =

{
1 if T (x) > t
0 if T (x) < t

(3)

with δt(x) any value in (0,1) if T (x) = t. Consider the problem of testing
H : θ = θ0 versus K : θ = θ1 with θ0 < θ1 . If {Pθ : θ ∈ Θ},Θ ⊂ R, is an
MLR family in T (x), then L(x, θ0, θ1) = g(T (x)) for some increasing function
g. Thus, δt equals the likelihood ratio test φg(t) and is MP. Because δt does not
depend on θ1 it is UMP at level α := Eθ0δt(X) for testing H : θ = θ0 versus
K : θ > θ0.

Theorem 2 Suppose {Pθ : θ ∈ Θ},Θ ⊂ R is an MLR family in T (x). Then

1. For each t ∈ (0,∞), the power function β(θ) = Eθδt(X) is increasing in
θ.

2. If Eθ0δt(X) = α > 0, then δt is UMP level α for testing H : θ ≤ θ0 versus
K : θ > θ1 for θ1 > θ0.

6.4 Unbiased tests

Definition 4 A test φ is unbiased if βφ(θ) ≥ α for all θ ∈ Θ1 and βφ(θ) ≤ α
for all θ ∈ Θ0.

Remark: If φ is a UMP level α test, then φ is unbiased. Proof: compare φ
with the trivial test function φ̃ ≡ alpha.

Definition 5 A uniformly most powerful unbiased level α test is a test φ̃ for
which Eθφ̃ ≥ Eθφ for all θ ∈ Θ1 and for all unbiased level α tests φ.

That is, φ̃ is uniformly (for all θ ∈ Θ1) most powerful (Eθφ̃ ≥ Eθφ) among all
unbiased tests φ.

Theorem 3 Consider testing H : θ = θ0 versus K : θ 6= θ0 in a one parameter
exponential family with natural parameter θ and natural sufficient statistic T .
The test φ with Eθ0φ(T ) = α given by

φ(T (x)) =

{
1 if T (x) > c2 or T (x) < c1
0 if c1 < T (x) < c2

(4)

with φ(T (x)) any value in γ ∈ (0, 1) if T (x) = ci, i = 1, 2. is UMPU for H
versus K.

6



7 Likelihood Ratio and related tests

[CB8.2, CB10.3, BD4.9]

Definition 1 The likelihood ratio test statistic for testing H : θ ∈ Θ0 vs K :
θ ∈ Θ1 is

λ(x) =
supθ∈Θ0

L(θ | x)

supθ∈ΘL(θ | x)

where Θ = Θ0

⋃
Θ1.

A likelihood ratio test is of the form

φ(x) =

{
1 if λ(x) ≤ c
0 if λ(x) > c

(1)

The value of c is determined from the level of the test such that PH(λ ≤ c) = α.
Example 1: Consider testing H : µ = µ0 vs K : µ 6= µ0 where X1, · · · , Xn are
iid N (µ, 1).
For the numerator, supθ∈Θ0

L(θ | x) = 1
(2π)n/2 exp(− 1

2

∑n
i=1(xi − µ0)2)

The sup in the denominator is attained at θ = x̄ which is mle.
Hence supθ∈ΘL(θ | x) = 1

(2π)n/2 exp(− 1
2

∑n
i=1(xi − x̄)2)

λ(x) = exp(−1

2
(

n∑
i=1

(xi − µ0)2 −
n∑
i=1

(xi − x̄)2))

λ(x) < c ⇐⇒
∑n
i=1(xi−µ0)2−

∑n
i=1(xi− x̄)2 > c1 ⇐⇒ | x̄−µ0 |> c2.

Thus the likelihood ration test rejects H when x̄ differs from µ0 by a large
amount. The amount is determined from the constraint given by the level of
the test, that is, Pµ0

(| x̄− µ0 |> c2) = α.

Exercise: Find the likelihood ration test for H : θ ≤ θ0 vs K : θ > θ0

when X1, · · · , Xn are iid from the exponential distribution with pdf f(x | θ) =
exp(−x+ θ)I(x > θ).

7.1 Large Sample Distribution of LRT

Let X1, · · · , Xn be iid with density f(x, θ). We are interested in testing H : θ =
θ0 against K : θ 6= θ0, where θ is of dimension k, using a likelihood ratio test. To
carry out the test, we need to determine the appropriate critical value c. Recall
that c is determined by the requirement that PH(λ(x) < c) = α. In order to
determine the critical value, we thus need to determine the distribution of λ(X)
when the null hypothesis is true. We now develop a large sample approximation
to solve this problem.

Let θ̂ = argmaxθL(θ) denote the mle, and write the maximized likelihood
ratio statistic as

λ(x) =
L(θ0)

L(θ̂)
(2)

1



Define the statistic ξLR(x) = −2 ln(λ(x)) = 2(l(θ̂)− l(θ0)) where l(θ) = lnL(θ).
Since ξLR is a monotonic decreasing transformation of λ, the LR test can be
implemented by rejecting the null hypothesis when ξLR(x) is large.

To find the approximate distribution of ξLR(X) under the null hypothesis,
write

l(θ0) = l(θ̂) + (θ0 − θ̂)′
∂l(θ̂)

∂θ
+

1

2
(θ0 − θ̂)′

∂2l(θ̃)

∂θ∂θ
(θ0 − θ̂) (3)

where θ̃(ω) is between θ0 and θ̂(ω). Since mle is the root of the likelihood

equation, ∂l(θ̂)
∂θ = 0. We have

ξLR = −(θ0 − θ̂)′
∂2l(θ̃)

∂θ∂θ
(θ0 − θ̂) (4)

=
√
n(θ0 − θ̂)′

(
− 1

n

∂2l(θ̃)

∂θ∂θ

)
√
n(θ0 − θ̂) (5)

Proceeding as in our derivations of the properties of the maximum likelihood
estimator,

√
n(θ̂ − θ0) ⇒ N (0, I(θ0)−1) (6)

− 1

n

∂2l(θ̃)

∂θ∂θ′
P→ I(θ0) (7)

so that by Slutsky and the Continuous Mapping Theorem,

ξLR
H0⇒ χ2

k (8)

An asymptotically justified level 1− α confidence set based on the LR statistic
is hence of the form

θ∗ | (θ̂ − θ∗)′V̂ −1(θ̂ − θ∗) < c (9)

where V̂ =
(
−∂

2l(θ̃)
∂θ∂θ′

)−1

and c solves P (χ2
k > c) = α. This confidence set may be

recognized as the interior of an ellipse centered at θ = θ̂. In the one-dimensional
case, we obtain a confidence interval (θ̂− c∗V̂ −1/2, θ̂+ c∗V̂ −1/2) where c∗ is the
positive number that solves P (N (0, 1) > c∗) = α/2.

7.2 Wald statistic

A close cousin of the LR statistic is the Wald statistic

ξW =
√
n(θ̂ − θ0)

(
− 1

n

∂2l(θ̂)

∂θ∂θ′

)
√
n(θ̂ − θ0) (10)

which differs from ξLR only because the estimated information matrix is evalu-
ated at θ̂ rather than θ̃. Note that we can compute the Wald statistic without
doing any computations under the null hypothesis.
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Since both θ̂ and θ̃ converge in probability to θ0 under the null hypothesis,

ξW − ξLR
P,H0→ 0

The motivation of the Wald statistic is that under the null hypothesis, the
difference between the estimator θ̂ and θ0 satisfies

√
n(θ̂−θ0)⇒ N (0, I(θ0)−1)and

− 1
n
∂2l(θ̂)
∂θ∂θ′ consistently estimates I(θ0)−1. Under the alternative, || θ̂ − θ0 || is

large and we reject.

7.3 Lagrange Multiplier statistic

Another approximation to ξLR is given by the Lagrange Multiplier test statistic

ξLM =
√
nSn(θ0)

(
− 1

n

∂2l(θ0)

∂θ∂θ′

)−1√
nSn(θ0) (11)

=

(
n−1/2

n∑
i=1

si(θ0)

)′(
− 1

n

∂2l(θ0)

∂θ∂θ′

)−1
(
n−1/2

n∑
i=1

si(θ0)

)
(12)

with the advantage that we do not need to compute θ̂ in order to compute ξLM.

Since under the null hypothesis n−1/2
∑n
i=1 si(θ0)⇒ N (0, I(θ0)) and− 1

n
∂2l(θ0)
∂θ∂θ′

P→
I(θ0) we also find ξLM

H0⇒ χ2
k.

7.4 Pearson’s chi-square

[Lehman 5.5, Ferguson 9,10, Rao 6b]
Let X1, X2, · · · , Xn be iid from a multinomialk(1, p) distribution, where p is a
k-vector with nonnegative entries that sum to one. That is,

P (Xi = ej) = pj for all 1 ≤ j ≤ k (13)

where ej = the k vector with 1 at the j-th position and 0’s everywhere else.

Note that the multinomial distribution is a generalization of the binomial
distribution to the case in which there are k categories of outcome instead of only
2. Also note that we ordinarily do not consider a binomial random variable to
be a 2-vector, but we could easily do so if the vector contained both the number
of successes and the number of failures. Equation (13) implies that the random
vector Xi has expectation p and covariance matrix

Σ =


p1(1− p1) −p1p2 · · · −p1pk
−p1p2 p2(1− p2) · · · −p2pk

...
...

. . .
...

−p1pk −p2pk · · · pk(1− pk)

 (14)

Using the Cramer-Wold device, the multivariate central limit theorem implies

√
n(X̄n − p)⇒ Nk(0,Σ). (15)

3



Note that the sum of the j-th column of Σ is pj − pj(p1 + · · ·+ pk) = 0, which
is to say that the sum of the rows of Σ is the zero vector, so Σ is not invertible.

We wish to derive the asymptotic distribution of Pearson’s chi-square statis-
tic

χ2 =

k∑
j=1

(nj − npj)2

npj
, (16)

where nj is the random variable that is the j-th component if nX̄n , the number
of successes in the j-th category for trials 1, · · · , n. We will discuss two different
ways to do this. One way avoids dealing with the singular matrix Σ, whereas
the other does not.

In the first approach, define for each i, Y i = (Xi1, · · · , Xik−1). That is, let
Y i be the k− 1-vector consisting of the first k− 1 components of Xi. Then the
covariance matrix of Y i is the upper-left (k−1)× (k−1) submatrix of Σ, which
we denote by Σ∗. Similarly, let p∗ denote the vector (p1, · · · , pk−1). First, verify
that Σ∗ is invertible and that

Σ∗−1 =


1
p1

+ 1
pk

1
pk

· · · 1
pk

1
pk

1
p2

+ 1
pk
· · · 1

pk
...

...
. . .

...
1
pk

1
pk

· · · 1
pk−1

+ 1
pk

 (17)

Second, verify that

χ2 = n(Ȳ n − p∗)t(Σ∗)−1(Ȳ n − p∗) (18)

The facts in equations (17) and (18) are checked in exercise 1. If we now define

Zn =
√
n(Σ∗)−1/2(Ȳ n − p∗), (19)

then clearly the central limit theorem implies Zn ⇒ Nk−1(0, I). By definition,
the χ2

k−1 distribution is the distribution of the sum of the squares of k − 1
independent standard normal random variables. Therefore,

χ2 = (Zn)tZn ⇒ χ2
k−1, (20)

which is the result that leads to the familiar chi-square test.
In a second approach to deriving the limiting distribution (20), we use some

properties of projection matrices.

Definition 2 A matrix P is called a projection matrix if it is idempotent; that
is, if P 2 = P .

The following lemmas, to be proven in exercise 2, give some basic facts about
projection matrices.

Lemma 1 Suppose P is a projection matrix. Then every eigenvalue of P equals
0 or 1. Suppose that r denotes the number of eigenvalues of P equal to 1. Then
if Z ∼ Nk(0, P ), then, ZtZ ∼ χ2

r.

4



This can be derived from the Fisher-Cochran Theorem.

Lemma 2 The trace of a square matrix equals the sum of its eigenvalues. For
matrices A and B whose sizes allow them to be multiplied in either order,
Tr(AB) = Tr(BA).

Define Γ = diag(p). Clearly, equation (15) implies

√
nΓ−1/2(X̄n − p)⇒ Nk(0,Γ−1/2ΣΓ−1/2). (21)

Since Σ may be written in the form Γ− ppt,

Γ−1/2ΣΓ−1/2 = I − Γ−1/2pptΓ−1/2 = I −√p√pt (22)

clearly has trace k− 1; furthermore, (I −√p√pt)(I −√p√pt) = I − 2
√
p
√
pt +

√
p
√
pt
√
p
√
pt = I −√p√pt because

√
pt
√
p = 1, so the covariance matrix (22)

is a projection matrix.
Define ∆n =

√
nΓ−1/2(X̄ − p). Then we may check (exercise 2) that

χ2 = (∆n)t∆n (23)

Therefore, since the covariance matrix (22) is a projection with trace k − 1,
Lemma 1 and Lemma 2 prove that χ2 ⇒ χ2

k−1 as desired.
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8 Confidence intervals

[CB9, BD4.4-4.5]
Let X1, · · · , Xn be a random sample from a distribution Pθ which belongs to a
family of distributions P = {Pθ : θ ∈ Θ}.

Definition 1 For fixed α ∈ (0, 1), a random interval [T1(X), T2(X)], where
P (T1 < T2) = 1, such that Pθ(T1 ≤ θ ≤ T2) = 1 − α∀θ ∈ Θ, is called a
100(1 − α)% Confidence Interval (CI) for θ. Random variables T1 and T2 are
called the lower and upper limit, respectively; 1 − α is called the confidence
coefficient.

T1(X) and T2(X) are rvs, hence their value may be different for different realiza-
tions of the sample X . For some observed samples x, the interval [T1(x), T2(x)]
may not be covering the true unknown parameter θ. If the sampling procedure
is repeated a large number of times, then the proportion of samples for which
the interval actually covers θ should be approximately equal to 1−α. Note that
here the interval is random, while θ is an unknown constant. 1 − α is usually
taken to be 0.9, 0.95 or 0.99.

8.1 Pivotal method for finding CI

Definition 2 Let X = (X1, · · · , Xn) be a random sample from a distribution
Pθ, θ ∈ Θ. A function Q(X, θ) is called a pivot for θ if its distribution is
completely known.

Example 1: Let Xi
iid∼ N (µ, σ2

0), σ2
0 known.

Then Q(X,µ) := (X̄ − µ) ∼ N (0, σ2
0/n) is a pivot for µ.

It is a function of the sufficient statistic X̄.

Example 2: Let Xi
iid∼ N (µ, σ2), where both parameters are unknown.

Then Q(X,µ) := (X̄−µ) ∼ N (0, σ2/n) is not a pivot for µ since its distribution
depends on σ.
However, Q1(X,µ) :=

√
n(X̄ − µ)/S ∼ tn−1 is a pivot for µ, where S2 =∑n

i=1(Xi − X̄)2/(n− 1).
Also, Q2(X,σ2) := (n− 1)S2/σ2 ∼ χ2

n−1 is a pivot for σ2.
Note, that these pivots are functions of sufficient statistics, which is usually the
case.

To construct a CI we choose such values, say a and b, such that for a given
α ∈ (0, 1) we have Pθ(a ≤ Q(X, θ) ≤ b) = 1 − α∀θ ∈ Θ. Note that a and
b are non-random since the distribution of Q is free of parameters. If Q is
a strictly monotonic and continuous function of θ then this can be written
as P (T1(X; a, b) ≤ θ ≤ T2(X; a, b)) = 1 − α∀θ ∈ Θ. Then the CI for θ is
[T1(X; a, b), T2(X; a, b)].

1



In eg 2, Q1 is strictly monotonic and continuous function of the parameter
of interest µ. Note a and b can be chosen to be the p-th and q-th quantiles of the
t distribution with n− 1 df, such that q − p = 1− α. The most common choice
is q = 1− α/2 and p = α/2. Then a (1− α) level CI for µ is X̄ ± tn−1,α/2 S√

n
.

Exercise: Show that, in the setting of example 2, using Q2 as pivot, a (1−α)
level confidence interval for σ2 is(

(n− 1)S2

χ2
n−1,1−α/2

,
(n− 1)S2

χ2
n−1,α/2

)
.

8.2 Approximate confidence intervals

If we cannot find an exact pivot, we will use an asymptotic pivot. This will often
be based on the maximum likelihood estimator, which has an asymptotic normal
distribution, i.e.,

√
n(θ̂−θ) =⇒ N (0, 1/I(θ)) Here AN stands for asymptotically

normal. Hence, an asymptotic pivot is a function is obtained as Q with its
approximate distribution as follows:

Q = (X, θ) =
√
nI(θ)(θ̂ − θ) ∼ N (0, 1).

Usually I(θ) will depend on the parameter. Then we use further approxima-
tion by substituting all the unknown parameters by their estimates (preferably

consistent) to obtain I(θ̂). Therefore, for large n, we obtain

Q = (X, θ) =

√
nI(θ̂)(θ̂ − θ) ∼ N (0, 1).

Example 3: Suppose that Xi
iid∼ Poisson(λ) random variables. There is no

obvious pivot in this case. The maximum likelihood estimator of λ is λ̂ = X̄,
and, for large n, we know that

√
n(λ̂ − λ) ⇒ N (0, λ). Thus, an approximate

95% confidence interval for λ is X̄ ± 1.96
√
X̄/n.

Exercise: Use the above method to find an approximate CI for binomial
parameter p.

8.3 Duality of CI and Tests

There is a duality between confidence intervals and hypothesis tests.
Example 1: Let X1, . . . , Xn be a random sample from a normal distribution

having unknown mean µ and known variance σ2
0 . We are interested in testing

H : µ = µ0 versus K : µ 6= µ0. At significance level α, consider the following
test: Reject H if | X̄−µ0 |> σ0zα/2/

√
n, and do not reject otherwise. Thus the

test accepts H when

−σ0zα/2/
√
n < X̄ − µ0 < σ0zα/2/

√
n.

The latter statement is also equivalent to a (1− α) level CI for µ0 given by

X̄ − σ0zα/2/
√
n < µ0 < X̄ + σ0zα/2/

√
n.
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In other words, the CI consists precisely of all those values of µ0 for which
the null hypothesis H : µ = µ0 is accepted. The theorems below shows that the
duality between CIs and hypothesis tests holds more generally.

Theorem 1 Suppose that for every value θ0 in Θ there is a test at level α of
the hypothesis H : θ = θ0. Denote the acceptance region of the test by A(θ0).
Then the set C(X) = θ : X ∈ A(θ) is a (1− α) confidence region for θ.

Theorem 2 Suppose that C(X) is a (1− α) confidence region for θ. Then an
acceptance region for a test at level α of the hypothesis H : θ = θ0 is A(θ0) =
X|θ0 ∈ C(X).
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