

Rings and Modules
Assignment III
Due on 27th March 2023

Throughout below, R denotes a commutative ring with unity and, by an R -module, we mean a left R -module which is unital; that is, $1 \cdot m = m$.

Q 1.

- (i) Consider a finitely generated R -module M . If $M_1 \subseteq M_2 \subseteq M$ be submodules such that $M/M_1 \cong M/M_2$ as R -modules, prove that $M_1 = M_2$. If M is not finitely generated, then is the above necessarily true?
- (ii) If $N_1 \cong N_2$ as R -modules, is it necessarily true that the annihilator ideals are the same; that is, $\text{ann}_R(M) = \text{ann}_R(N)$?

Q 2.

- (i) Let M be a finitely generated R -module, and let $\phi : M \rightarrow M$ be a surjective R -module homomorphism. Prove that ϕ must be an isomorphism.
- (ii) Recall that R is said to be Noetherian if all ideals are finitely generated. Equivalently, every ascending sequence of ideals $I_1 \subseteq I_2 \subseteq \dots$ stabilizes; that is, there exists $n_0 \geq 1$ such that $I_n = I_{n_0}$ for all $n > n_0$. If R is Noetherian, and $\theta : R \rightarrow R$ is a surjective ring homomorphism, prove that θ must be an isomorphism.

Hint. Get an increasing sequence of ideals with the aid of θ .

Q 3.

- (i) If M is a finitely generated R -module where R is Noetherian, prove that all submodules of M are necessarily finitely generated.
- (ii) If $N_1 \subseteq N_2$ are R -modules such that N_1 and N_2/N_1 are finitely generated as R -modules, then N_2 must be finitely generated as well.

Q 4. Prove that every R -module is free if, and only if, R is a field.

Q 5. (Generalization of a theorem of Cohen due to Jothilingam)

If M is a finitely generated R -module. If PM is a finitely generated submodule of M for each prime ideal P of R , show that all submodules of M are finitely generated as well.

Hint: If N is maximal among non-finitely generated submodules of M , the annihilator ideal $\text{ann}_R(M/N)$ is prime.

Q 6. Let

$$0 \rightarrow M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \rightarrow 0$$

be a short exact sequence of R -modules which splits. Recall this means α is 1-1, β is onto, $\text{Ker}(\beta) = \text{Image}(\alpha)$, and there exists a ‘splitting’ (an R -module homomorphism) $s : M'' \rightarrow M$ such that $\beta \circ s = \text{Id}_{M''}$. Prove that the set of all splittings $s : M'' \rightarrow M$ is in bijection with the set $\text{Hom}_R(M'', M')$ of all R -module homomorphisms from M'' to M' .

Q 7. (Local-Global principle)

For a multiplicative subset S of R and an R -module M , define a relation on the set $M \times S$ by

$$(m_1, s_1) \sim (m_2, s_2)$$

if, and only if, there exists $s \in S$ such that $s(s_1m_2 - s_2m_1) = 0$. This is an equivalence relation (assume this - you can verify it but not show the calculation here). Denoting the equivalence class of (m, s) by $\frac{m}{s}$, the equivalence classes form an $S^{-1}R$ -module under the addition

$$\frac{m_1}{s_1} + \frac{m_2}{s_2} = \frac{s_1m_2 + s_2m_1}{s_1s_2}$$

and the scalar multiplication

$$\frac{r}{s} \cdot \frac{m}{t} = \frac{rm}{st}.$$

Assume this also - verify it for yourself or look up the routine proof.

Prove that if $S^{-1}M$ is the zero $S^{-1}R$ -module with $S = R - \mathfrak{m}$ for each maximal ideal \mathfrak{m} , prove that $M = (0)$.

Hint: If $0 \neq x \in M$, consider a maximal ideal \mathfrak{m} containing $\text{ann}_R(M)$, and show $S^{-1}(M) \neq (0)$ where $S = R - \mathfrak{m}_0$.