

Rings and Modules
Assignment IV
Due on 12th April 2023

Q 1.

(a) Discuss whether the abelian group $\mathbb{Z}/m\mathbb{Z}$ can be written as the direct sum of two proper sub groups, where $m = p^2q^3r^4$ are p, q, r are distinct primes.

(b) Determine the number of non-isomorphic abelian groups of order 360.

Q 2.

(a) Find a base for the submodule M of \mathbb{Z}^3 generated by the elements $(1, 0, -1), (2, -3, 1), (0, 3, 1), (3, 1, 5)$.

(b) Let R be a PID. Prove that a vector (a_1, a_2, \dots, a_n) in R^n can be completed to a basis if, and only if, the ideal $(a_1, a_2, \dots, a_n) = (1)$.

Q 3.

(a) Find the invariant factors (that is, the Smith normal form) of

$$\begin{pmatrix} X - 17 & 8 & 12 & -14 \\ -46 & X + 22 & 35 & -41 \\ 2 & -1 & X - 4 & 4 \\ -4 & 2 & 2 & X - 3 \end{pmatrix}.$$

(b) Find all possible Jordan forms of a matrix whose characteristic polynomial is $(X + 2)^2(X - 5)^3$.

Q 5. Let $A \in M_n(\mathbb{Z})$ and consider the group homomorphism T_A from \mathbb{Z}^n to itself given by $v \mapsto Av$ (where v is written as a column). Find necessary and sufficient conditions for the image of T_A to have finite index in \mathbb{Z}^n . When that condition holds, determine the index.

Q 6. Let $A \subset B \subset C$ be commutative rings. If C is finitely generated as a B -module and B is finitely generated as an A -module, then prove that C is finitely generated as an A -module.

Q 7. Let k be a field. Prove that two matrices $A, B \in M_n(k)$ are similar if, and only if, $XI - A$ and $XI - B$ have the same invariant factors as elements of $M_n(k[X])$.

Q 8. In this problem, comments about fundamental groups are made for interest; they may safely be ignored and the relevant problem on the structure of the finitely generated abelian group can be solved.

The Klein bottle is a ‘surface’ whose fundamental group G has a presentation $\langle a, b | ab = b^{-1}a \rangle$. Show that $G/[G, G] \cong \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

The braid group B_n for $n \geq 3$ is the group with a presentation

$$\langle g_1, g_2, \dots, g_{n-1} | g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1}, g_i g_j = g_j g_i \text{ if } |i - j| \geq 2 \rangle.$$

That is, the latter relations hold only for i, j such that $|i - j| > 1$.

(It is an interesting fact that the fundamental group of the complement of the trefoil knot (see figure below) is B_3 . Knots are embeddings of S^1 in S^3 and are distinguished usually by the fundamental group of their complements).

Show that the abelianization $B_n/[B_n, B_n]$ of B_n is isomorphic to \mathbb{Z} .

For both these problems, the hint is to view any relation $x_1^{i_1} \cdots x_r^{i_r} = 1$ in a group G additively as $i_1 x_1 + \cdots + i_r x_r = 0$ in $G/[G, G]$.

A poem by Leo Moser is:

A mathematician named Klein
thought the Möbius band was divine.
Said he: "If you glue
The edges of two,
You'll get a weird bottle like mine."

