

Mock Exam - Open Book
B. Math. (Hons.) IIInd year
Algebra II
Instructor — B. Sury
April 5, 2023

Q 1. Show that $\mathbf{Z}[X]$ is not a Euclidean domain.

Q 2. Let M be a free module of finite rank over a PID. Show that any submodule $N \neq 0$ of M is free, of rank $r \leq \text{rank}(M)$.

Q 3. Use the fact that $\mathbf{Z}[i]$ is a UFD to determine all solutions of $x^2 + 1 = y^3$ in integers x, y .

Q 4. Given a matrix $M \in M_n(K)$, where K is a field, what is meant by its rational canonical form? Further, by assuming the existence of the rational canonical form, compute the characteristic polynomial of M .

Q 5. Prove that the rings $\mathbf{C}[X]/(X^2 + 1)$ and $\mathbf{C}[t, t^{-1}]$ are isomorphic.

Q 6. Prove that the norm $N(a + b\omega) = a^2 - ab + b^2$ gives a Euclidean algorithm on $\mathbf{Z}[\omega]$ where $\omega = \frac{-1 + \sqrt{3}i}{2}$.

Q 7. Let S be any ring with unity. In the ring $M_2(S)$, give examples of left ideals which are not of the form $M_2(I)$ for any left ideal I of S .

Q 8. Find all maximal ideals of $\mathbf{Z}[X]$ containing 4.

Q 9. Let $\theta : \mathbf{C}[X, Y] \rightarrow \mathbf{C}[T]$ be the ring homomorphism given by $X \mapsto T^2, Y \mapsto T^3$. Prove that $\text{Ker } \theta = (X^3 - Y^2)$.

Q 10. Let M be a left R -module over a commutative ring with unity, and let N be a submodule. If N and M/N are finitely generated, prove that M is finitely generated. Further, give an example of a free module over \mathbf{Z} which has two minimal spanning sets of different cardinalities.

Q 11. Define the Jacobson radical $\text{Jac}(R)$ of a commutative ring R with unity and prove that $x \in \text{Jac}(R)$ if and only if $1 + xy$ is a unit for all $y \in R$.

Q 12. Define the companion matrix $C(f)$ of a monic polynomial $f \in K[X]$ for a field K . Prove that its characteristic polynomial is f . Further, if $\deg f = 2$, prove by direct calculation that $C(f)$ is conjugate to its transpose.

Q 13. Determine all $c \in \mathbf{Z}_3$ such that $\mathbf{Z}_3[X]/(X^3 + X^2 + cX + 1)$ is a field.

Q 14. Let A be a commutative ring with unity. If I is an ideal which is maximal with respect to the property of not being principal, prove that I is a prime ideal. Further, if I is such an ideal, prove that A/I is a principal ideal ring.

Q 15. Let A be a commutative ring with unity, I be an ideal and P_1, \dots, P_m be prime ideals such that $I \subseteq P_1 \cup P_2 \cup \dots \cup P_m$. Then show that $I \subseteq P_i$ for some i .

Q 16. Let A be a commutative ring with unity. If I is an ideal which is maximal with respect to the property of not being principal, prove that I is a prime ideal. Further, if I is such an ideal, prove that A/I is a principal ideal ring.

Q 17. Let A be a commutative ring with unity, I be an ideal and P_1, \dots, P_m be prime ideals such that $I \subseteq P_1 \cup P_2 \cup \dots \cup P_m$. Then show that $I \subseteq P_i$ for some i .

Q 18. Show that the ring $C[0, 1]$ is not Noetherian.

Q 19. Show that if $f = \sum_{i=0}^m a_i X^i, g = \sum_{j=0}^n b_j X^j \in (\mathbb{Z}/2^{100}\mathbb{Z})[X]$ are such that $fg = 0$, then $a_i b_j = 0$ for all i, j .

Q 20. Show that there is no commutative ring A with unity such that $A[X]$ is isomorphic to the ring of integers.

Q 21. If A is an integral domain, and I, J are ideals such that IJ is a principal ideal, prove that I, J are finitely generated.

Q 22. Let A be a local ring with the maximal ideal \mathbf{m} . Let M be a finitely generated A -module and $x_1, \dots, x_n \in M$ be elements such that $M/\mathbf{m}M$ is generated as an A/\mathbf{m} -module by the images of the x_i 's. Then prove that M is generated by the x_i 's.

Hint: You may use the NAK lemma.

Q 23. Let A be a commutative ring with unity. and M be a finitely generated A -module. If $\theta : M \rightarrow M$ is an onto A -module homomorphism, prove that θ is 1 – 1 as well.

Q 24. Let A be a commutative ring with unity.

(i) If I, J are ideals such that there exists an onto A -module homomorphism from A/I to A/J , prove that $I \subseteq J$.

(ii) If an ideal P is free as an A -module, prove that P must be principal.

Q 25. Prove that $\mathbf{Z} + X\mathbf{Q}[X]$ is not a UFD.

Q 26. Let $R = \text{End}(V)$, where V is a countably infinite-dimensional vector space. Elements of R can be regarded as column-finite matrices (that is, each column has only finitely many non-zero entries). The matrices x, y, u, v in R are defined as follows:

$1 = x_{2n-1, n} \forall n$, and $x_{ij} = 0$ for other i, j 's;

$1 = y_{2n, n} \forall n$, and $y_{ij} = 0$ for other i, j ;

$u = x^t, v = y^t$.

Demonstrate how these matrices provide an isomorphism between left R -modules R and R^2 .

Q 27. Let M be the $\mathbb{Z}[i]$ -module given as the quotient of the free module $\mathbb{Z}[i]^3$ modulo the relations $f_1 = (1, 3, 6), f_2 = (2 + 3i, -3i, 12 - 18i), f_3 = 2 - 3i, 6 + 9i, -18i$. Find the cardinality of M .

Q 28. Prove that two matrices $A, B \in M_n(\mathbb{C})$ are conjugate if and only

if the matrices $(zI_n - A)^k$ and $(zI_n - B)^k$ are conjugate for all $z \in \mathbb{C}$ and positive integer k .

Q 29. Are the matrices $B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

similar?

Hint: You may use results on rational canonical forms.

Q 30. Let R be a ring with unity and let I be a left ideal. Prove that $S = \{r \in R : Ir \subseteq I\}$ is a subring containing I as a 2-sided ideal. Further, show that the ring $\text{End}_R(R/I)$ of left R -module endomorphisms of R/I is isomorphic to the opposite of the ring S/I .