

Statistics-III – Assignment 4

1. If C is a generalized inverse of $X'X$ prove the following.

- (a) C' is also a generalized inverse of $X'X$.
- (b) A symmetric generalized inverse of $X'X$ exists.
- (c) CX' is a generalized inverse of X .
- (d) XCX' is unique.
- (e) XCX' is symmetric and idempotent.
- (f) Column spaces of XCX' and X are the same.

2. Consider the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & 1 & -3 \\ 1 & 2 & 0 \end{pmatrix}$.

- (a) Find a generalized inverse $(A'A)^-$ of $A'A$.
- (b) Find a generalized inverse $(AA')^-$ of AA' .

3. (a) For all matrices $A_{m \times n}$, is it true that if B is a g-inverse of A , then A is a g-inverse of B ?

(b) Let $A = \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$, where B is $r_1 \times s_1$ and C is $r_2 \times s_2$. Let B^- and C^- be any g-inverses of B and C respectively. Show then that $G = \begin{pmatrix} B^- & 0 \\ 0 & C^- \end{pmatrix}$ is a generalized inverse of A . Must all g-inverses of A have the form G ?

(c) Find a generalized inverse of $A = \begin{pmatrix} \mathbf{1}_3 \mathbf{1}'_3 & 0 \\ 0 & 2 \mathbf{1}_2 \mathbf{1}'_2 \end{pmatrix}$, where $\mathbf{1}_k$ is the k -vector $(1, 1, \dots, 1)'$.