

Statistics-III – Assignment 5

1. If columns of X are linearly dependent in the Gauss-Markov model, prove that there is no matrix C such that $C\mathbf{Y}$ is an unbiased estimator of β .
2. Prove that all linear functions $\mathbf{a}'\beta$ are estimable in the Gauss-Markov model iff the columns of X are linearly independent.
3. If $\mathbf{a}'_1\beta, \mathbf{a}'_2\beta, \dots, \mathbf{a}'_l\beta$ are estimable, prove that any linear combination of these is also estimable (in the Gauss-Markov model).
4. Prove that in the Gauss-Markov model $\mathbf{a}'\beta$ is estimable if and only if $\mathbf{a}'(X'X)^{-1}X'X = \mathbf{a}'$.