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Linear Models

It is of interest to see if a nice relationship exists between two random vari-
ables, X and Y. Eventual objective may be either prediction of a future
value or utilization of the relaionship for understanding the structure.

Ex. X = height, Y = weight of indviduals. One may ask: is there an opti-
mal weight for a given height?
Data: (z;,y;), observations from n randomly chosen individuals, i = 1,2, ..., n.

Ex. X = temperature, Y = pressure of a certain volume of gas.

Data: (x;,y;), ¢ = 1,2,...,n from a controlled experiment where a certain
volume of gas is subjected to different temperatures and the resulting pressure
is measured.

Ex. In a biological assay, Y = response corresponding to a dosage level of
X =z. Again, (z;,v;),1=1,2,...,n from n laboratory subjects.

Ex. In an agricultural experiment, y is the yield of a crop. A piece of land
is divided into I plots according to soil fertility; J different fertilizer levels
are also used. Then, if y;; is the yield from the ith plot receiving jth level of
fertilizer, we might like to try the model:

Yij = p+oa;+7;+€;. Why do we need €;;7 It is a random error (measurement
error, noise or uncontrolled variability) needed to explain the variation in the
model, which is needed in each of the other cases as well.

In general,

Y :Oé—i‘ﬁxi—i‘ﬁ, (1)
where y is the response variable and x is the predictor variable, and a and
[ are unknown coefficients is called a linear model. Here ‘linear’ stands for
linear space, linear or additive in the coefficients and not for linear in z, as
will be seen later. Equation (1) expresses the linear or additive relationship
between E(Y|X = z) and the influencing factors.

Observe the following data and the scatter plot of y versus x, where x =
duration and y = interval (both in minutes) for eruptions of Old Faithful
Geyser.



r y|lr ylzr yl|lzr yl|zr y|zx v
44 78139 74140 6840 76|35 80|41 &4
23 50|47 93|17 55|49 76|17 5H8|46 T4
3.4 7|43 8|17 56|39 80|37 69|31 57
40 90| 1.8 4241 91|18 5132 79|19 53
46 82120 5145 7639 82|43 84|23 53
3.8 8|19 5146 8 |18 45|47 88|18 51
46 80|19 49|35 8240 75|37 73|37 67
43 68|36 8 |38 72|38 75|38 75|25 66
45 84 |41 70 |37 79]38 60|34 86

Table 1: Eruptions of Old Faithful Geyser, August 1 — 4, 1978



(1) is a linear model for E(y|x), so € denotes the spread or dispersion around
this line. ie., y = E(ylz) + e If we let g(z) = E(y|z), assuming g to be
smooth, we could consider the approximation:

" (k)
o) = 90+ g0+ Lo T

= 50+5137+ﬁ2372+---+ﬁk13k~

This is linear in the coefficients S, 51, . .. but not in x. Also, recall Weirstrass
theorem on being able to uniformly approximate by polynomials any contiu-
ous function on a closed interval. Thus, on a reasonable range of x values,
such a ‘linear’ approximation may be quite acceptable. More importantly,
special tools and techniques from linear spaces and linear algebra are avail-
able for studying linear models.



MULTIPLE LINEAR REGRESSION MODEL

The response y is often influenced by more than one predictor variable. For
example, the yield of a crop may depend on the amount of nitrogen, potash,
and phosphate fertilizers used. These variables are controlled by the exper-
imenter, but the yield may also depend on uncontrollable variables such as
those associated with weather. A linear model relating the response y to
several predictors has the form

y =0+ Biz1+ P+ ...+ Bpazp1 t e (2)

The parameters Sy, 51, ..., B,—1 are called regression coefficients. The pres-
ence of € provides for random variation in y not explained by the x variables.
This random variation may be due partly to other variables that affect y
but are not known or not observed. The model in (2) is linear in the
parameters; it is not necessarily linear in the x variables. Thus models such
as

y = Bo + Bix1 + Poxs + Baxs + PBysin(wy) + €

are included in the designation linear model. A model provides a theoretical
framework for better understanding of a phenomenon of interest. Thus a
model is a mathematical construct that we believe may represent the mech-
anism that generated the observations at hand. The postulated model may
be an idealized oversimplification of the complex real-world situation, but
in many such cases, empirical models provide useful approximations of the
relationships among variables. These relationships may be either associative
or causative.

Regression models such as (2) are used for various purposes, including the
following;:

Prediction. Estimates of the individual parameters [y, 51,... are of less
importance for prediction than the overall influence of the x variables
on y. However, good estimates are needed to achieve good prediction
performance.

Data Description or Explanation. The scientist or engineer uses the es-
timated model to summarize or describe the observed data.

Parameter Estimation. The values of the estimated parameters may have
theoretical implications for a postulated model.



Variable Selection or Screening. The emphasis is on determining the
importance of each predictor variable in modeling the variation in y.
The predictors that are associated with an important amount of vari-
ation in y are retained; hose that contribute little are deleted.

Control of Output. A cause-and-effect relationship between y and the x
variables is assumed. The estimated model might then be used to
control the output of a process by varying the inputs. By systematic
experimentation, it may be possible to achieve the optimal output.

There is a fundamental difference between purposes 1 and 5. For prediction,
we need only assume that the same correlations that prevailed when the data
were collected also continue in place when the predictions are to be made.
Showing that there is a significant relationship between y and the x variables
in (2) does not necessarily prove that the relationship is causal. To establish
causality in order to control output, the researcher must choose the values
of the x variables in the model and use randomization to avoid the effects
of other possible variables unaccounted for. In other words, to ascertain the
effect of the x variables on y when the x variables are changed, it is necessary
to change them.



Vector-matrix form of linear model.

Data is of the form: (y;,x;), i =1,2,...,n, X; = (o = L, i1, ..., Tip-1))"-
The linear model is:

vi = Bo+biza+... + BpaTipa) + €,

p—1
= E ﬁjl‘ij—f—@,l:1,2,...,n;1’i0:1.
j=0

Equivalently,
(7 Iz o0 Ty Bo €1
Y2 I wor ... oy Io €2
. = . . . , Or
Yn I S Tn(p—1) ﬂpfl €n
y = XfB+e

Ynx1 is the response vector, X, ., is the matrix of predictors or covariates,
Bpx1 is the vector of regression coefficients, and € is random noise. Yy is
random since € is random. X is treated as a fixed matrix and 3 is a fixed
but unknown vector of parameters. Note that the model involves random
vectors and matrices, so some preliminaries on these are needed before we
can proceed further.



Multivariate Distributions

A random vector T' is a vector whose elements have a joint distribution. i.e.,
if (9, A, P) is a probability space, Tpx; : @ — RP is such that T-'(B) € A,
and hence Pr(T € B) = P(T"!(B)).

Thus, X = (Xy,...,X,)" is a random vector if X;’s are random variables
with a joint distribution. If the joint density exists, we have f(x) > 0 for all
x € R? such that

F(x)dx =1 and P(X € A) = / fx)dx, ACTRP
A

RP

X p o?  poioy .
Example. ~ N , , —l<p<l1,if
P ( Xo ) <( M2 ) ( PO102 05 P

Flonay = Lt () () () ()}
21 10/1 = p?

Check that E(X;) = w;, Var(X;) =02, 1= 1,2 and Cov(X1, X3) = poi0,.

Example. X5 | ~ Uniform on unit ball if

if 22 4+ 23+ 23 <1,
otherwise.

3
f($1,$2,933) - { %T

Let X = (Xi,...,X,) be a random vector and assume p; = FE(X;) ex-
M1

ists for all i. Then define E(X) = /%2 as the mean vector of X. A

Hp
random matrix Z,., = ((z;;)) is a matrix whose elements are jointly dis-
tributed random variables. If G(Z) is a matrix valued function of Z, then
E(G(2)) = (E(Gy(2)).
If G(Z) = AZB, where A and B are constant matrices, F(G(Z)) = AE(Z)B.
If (Z,T) has a joint distribution, and A, B,C, D are constant matrices,
E(AZB + CTD) = AE(Z)B + CE(T)D.
If Z is symmetric and positive semi-definite (nnd) with probability 1, E(Z)
is also symmetric and positive semi-definite. i.e., show o’ E(Z)a > 0 for all
a. Note that ' E(Z)a = E(a’Za) > 0, since for all a, a’Za > 0 wp 1.

1



Suppose Z,xp is p.s.d. with wp 1. Then its spectral decomposition gives
Z = I'DyI", where I' is orthogonal and D, is diagonal. Let \;(Z) = ith
diagonal element of Dy, A\ (Z) > X(Z) > ... > M\(Z) > 0 wp 1. What
about F(Z)? Is Ni(E(Z)) = E(M\(Z))? No. However, E(Z) is p.s.d., so
XNi(E(Z)) > 0.

Suppose X1 has mean p and also E[(X; — ;) (X;— ;)] = Cov(X;, X;) = 035
exists for all 4, 7. i.e., o5 < oo for all i. Then the covariance matrix (or the
variance-covariance matrix or the dispersion matrix) of X is defined as

Cov(X) =% = E[(X — p)(X — p)] = (E[(Xi — pa)(X; = 1)])) = ((035))-

¥ is symmetric, o; = Var(X;) > 0 and ¥ is p.s.d.
Theorem. ¥, is a covariance matrix (of some X) iff ¥ is symmetric p.s.d.

Proof. (i) If ¥ = Cov(X) for some X and E(X) = p, then for any a € R?,
dYa = dCov(X)a=dE[(X —p)(X —p)]a
= El(X —p)(X —p)a] = E |{o/(X — )}
= E[(d/X —dp)?] =Var(e/X) >0,

so % is p.s.d. It is actually p.d. wunless there exists a # 0 such that
Var(o/X) =0 (i.e., /X =c w.p.1)

(ii) Now suppose ¥ is any symmetric p.s.d matrix of rank » < p. Then
Y =C0C", Cpxy of rank r. Let Yy, ... Y, beiid with E(Y;) =0, Var(Y;) = 1.
Let Y = (Y1,...,Y;). Then E(Y) =0, Cov(Y) = I,. Let X = CY. Then
E(X)=0and

Cov(X)=FEXX')=ECYY'C')=CEYY")C' =CC'" =%

For a # 0, d’Cov(X)a = 0 iff Cov(X)a = 0, or Cov(X) has a zero eigen

value.

If X, and Y, are jointly distributed with finite second moments for their
elements, and with E(X) = u, E(Y) = v, then
Cov( pthlm) = ((Cov(Xi,Y))))pxq = (E(Xi—p:)(Yi—v5))) = (E(X;Y])—

pivy)) = B(XY') — o/ = B[(X — B(X)(Y — B(Y))).

C’ov( )=Cou(X,X)=E[(X-EX))(X-E(X))]=EXX")-EX)(EX)).
Cov(AX,BY)=ACov(X,Y)B,

Cov(AX) = Cov(AX,AX) = ACou(X,X)A = ACou(X)A".



Consider X1 = ( §1 > and Y1 = ( }}j.l ) Then
2 2

Cov(X,Y) = (COU(Xl,Yl) Cov(X1,Y5) )

Cov(X3,Y1) Cov(Xs,Y3)

[ Cov(Y1,X;) Cou(Yr,Xs)
7 CoulY, X) = ( Cov(Ys, X1) Cou(Yz, X5) )

in general. Further, note,

Cov(X+Y) = Cou(X+Y,X+Y)
= Cov(X,X)+Cov(X,Y)+ Cov(Y,X)+ Cov(Y,Y)
= Cov(X) + Cou(Y)+ Cov(X,Y)+ Cov(X,Y)
v(X) + Cou(Y) +2Cou(X,Y),

in general. If X and Y are independent, we do have, Cov(X,Y) =
((Cov(X;,Y;))) = 0 since Cov(X;,Y;) =0 for all i and j.

Quadratic Forms.

X'AX is called a quadratic form of X. Note that
E(X'AX) = E[tr(X'AX)] = E[tr(AXX")| = tr[E(AX X")| = tr[AE(X X")] =
tr[A(E + pp')] = tr(AX) + tr(App') = tr(AL) + (' Ap, since Cov(X) =X =
E((X —p)(X —p)) = E(XX' = X/ — p X'+ ') = E(XX') — i’



The moment generating function (mgf) of X at a is defined as ¢x(a) =
E(exp(¢/X)). This uniquely determines the probability distribution of X.
Note that ¢x((t1,0)")E(exp(t1X1)) = ¢x,(t1). If X and Y are independent,
Oxay (t) = B(exp(t(X +Y))) = B(exp(t X) exp(tY )

= E(exp(t'X))E(exp(t'Y)) = dx (t)dy (t).

Theorem (Cramer-Wold device). If X is a random vector, its proba-
bility distribution is completely determined by the distribution of all linear
functions, o/ X, o € RP.

Proof. The mgf of &/ X, for any o € R is ¢ux(t) = E(t
this is known for all & € RP. Now, for any «, note ¢x(a) =
¢orx (1), which is then known.

o’ X). Suppose
E(exp(d/X) =

Remark. To define the joint multivariate distribution of a random vector,
it is enough to specify the distribution of all its linear functions.

Multivariate Normal Distribution

Definition. X, is p-variate normal if for every a € RP, the distribution
of /X is univariate normal.

Result. If X has the p-variate normal distribution, then both p = FE(X)
and ¥ = Cov(X) exist and the distribution of X is determined by p and X.

Proof. Let X = (Xj,...,X,). Then for each i, X; = a/X where o; =
(0,...,0,1,0,...,0). Therefore, X; = a,X ~ N(.,.). Hence, E(X;) = u;
and Var(X;) = o4 exist. Also, since |0j;| = |Cov(X;, Xj)| < /04055, 04
exists. Set pu = (p1,...,4,) and ¥ = ((0y;)). Further, E(¢/X) = o/p and
Var(o/X) = o/3a, so

o' X ~ N(a'p,a'Sa), for all a € RP.

Since {o/ X, v € RP} determine the distribution of X, u and ¥ suffice.
Notation: X ~ N,(u,X).

Result. If X ~ N,(u, ), then for any Agyyp, b1,
Y =AX +b~ Np(Ap+ b, ALA).

Proof. Consider linear functions, 'Y = o/AX + o'b = X + ¢, which
are univariate normal. Therefore Y is k-variate normal. E(Y) = Au + b,
Couv(Y) = Cov(AX) = AXA'.

Theorem. X, ~ N,(u, X) iff X;,i1 = Cpur Zyx1+p where Z = (Z4,..., Z,),
Z;iid N(0,1), ¥ = CC’, r = rank(X) = rank(C).

Proof. if part: If X = CZ+pand Z ~ N,(0, 1), then X ~ N,(u, CC" = ¥).

1



Z is multivariate normal since linear functions of Z are linear combinations
of Z;’s, which are univarite normal (as can be shown using the change of
variable (jacobian) formula for joint densities, or using the mgf of normal).

Only if: If X ~~ N,(p1, X), and rank(X) = r < p, then consider the spectral
Al 0

0 0 )’

Ay = diagonal(dy, ..., d,), 6; > 0. Now, X — pu ~ N(0,%), and

H'(X —p) ~ N(0,A). Let H(X — p) = T(Y’“X;Xl . Then,
p—r

()= ()5 0)

Therefore, T'=0 w.p. 1. Let Z = Afl/ZY. Then Z ~ N, (0, I,). Therefore,
1/2
w.p. 1, H(X — p) = ( Az

decomposition, ¥ = HAH', H orthogonal, A =

0 ) Further, w.p. 1,

1/2 1/2
X—M:H( Alo 4 ) — (H\|Hs) ( Alo 4 ) —H Az =0z

Also, CC' = HiAY?AV?H] = H A H| and

A0 H,
Y= HAH' = (Hlsz)( 01 0) ( Hz ) = H,A\H|.

Recall that if Z; ~ N(0,1), its mgf is ¢z (t) = E(exp(tZ1)) = exp(t?/2).
Therefore, if Z ~ N,(0, ) then

62u) = B(explu'2) = Blexp(Y_ ui,)) = exp(Y_1/2) = exp(Gu'u).

Jj=1

Then, if X ~~ N,(u, ), its megf is:

1
Ox(t) = exp(t'p + S1'%t),

since E(exp(t'X)) = E(exp(t'(CZ + p))) = exp(t'p)E(exp(t'CZ)) =
exp(t'p) exp(t'CC't/2) = exp(t'u + t'3t/2).



Marginal and Conditional Distributions

Theorem. If X ~~ N,(u,), then the marginal distribution of any subset
of k components of X is k-variate normal.

Proof. Partition as follows:

X — X15;1x)1 _ /vbi(fl>31 Y — Y X2
| x® T (2) ) =\ . % .
(p—k)x1 Fp—kyx1 12 =22

x@
X2
independence) do not determine the joint distribution, the converse is not
true.

Note that X1 = (I,,]0) ) ~ N (pV,%;). Since marginals (without

Example. Z ~ N(0, 1) independent of U which takes values 1 and -1 with
equal probability. Then Y = UZ ~ N(0,1) since

PY <y) = P(UZ<y)
1 1
= §P(Z <ylU=1)+ §P(—Z <ylU =-1)
1 1

= §<1>(y) + 5@@) = ®(y).

Therefore, (Z,Y) has a joint distribution under which the marginals are
normal. However, it is not bivariate normal. Consider Z +Y =

27 1/2
Z+UZ = 0 12
0,and Z +Y = 27 ~ N(0,1) with probability 1/2, it cannot be normally
distributed.

X(l) (1) > >
Result. Let X, = X(2§€Xl ~ N, (/;)k:xl ’ ( 2’11 E12 ) .
(pfk)X1 lu’(pfk)xl 12 22

Then X® and X® are independent iff £, = 0.
Proof. Only if: Independence implies that Cov(X™M, X®) = 2, = 0.

Since P(Z +Y = 0) = 1/2 (i.e., a point mass at



If part: Suppose that ¥15 = 0. Then, note that

M xm) x@)(s1, 52)

/
= E(exp(siXV + 55X %) = E(exp (( 2 > X>)

ame 1 VA YRS
S1 o 51 11 12 S1
= E -
(eXp<(82) (u(”>+2(82> (2’12 222)(52»)

1 1
= exp <3/1M(1) + 5/2M(2) + 53/121181 + 55/222252 + 5/121282>

1 1
= exp <3’1,u(1) + 55’121131) exp (3’2,u(2) + 53’222232)
= Mx, (SI)MX2(82)7
for all s; and sy iff 215 = 0.

Result. Suppose X ~ N,(u,>) and let U = AX, V = BX. Then U and V
are independent iff Cov(U,V) = ALB' = 0.

Proof. Same as above, since ( \[i ) = ( g )X ~ N(.,.).

Theorem. If X ~ N,(y,X) and ¥ is p.d. then

Fe(o) = @) PPE exp (<3 - S e - ) o € R

Proof. Let ¥ = CC’ where C = £/2 is nonsingular. Then X = CZ + p,
Z ~ N(0,1,). Since Z; are i.i.d N(0,1),

p

Falz) = (2m) PP exp(—3 D7 ) = (2m) P2 exp(—7'2).

=1

Since X = CZ + pu, Z = C~YX — p). Jacobian of the transformation is
dz = |C| ' dzx = |X|7! dx. Therefore,

Felo) = @RS e (<o - ()0 - )
= (n RS e (e - e ).

Note. fx(z) is constant on the ellipsoid, {x : (z — pu)'S~ (x — u) = r?}.

2



Ex. Check for p = 2 to see if the above results agree with those of the
bivariate normal.

Theorem. Let X ~ N,(i,%), ¥ >0 (i.e, p.d.), and let

Xy H1 X X2
X_(X2>’ 'u_(/m)’ Z_(Em 222)’
where X7 and p; are of length k. Also, let 3119 = 311 — 21222_21221. Then
Y112 >0 and,
(1) Xl — 21222_21)(2 ~ Nk(ul — 21222_21u2, 211'2) and is independent of XQ;
(ii) The conditional distribution of X; given X5 is
N, (,ul + 21285 (Xo — po), 211.2)-

_ 1
Proof. (i) Let C' = ( I =222 ) Then

0 I,
CX = ( X = Zp X ) ~ N, (( o = R ) ,CEC/) .
Xo M2
I —312354 ¥y X I 0
CEC/ — k 124499 11 12 _k;
{ 0 I, 4 Y1 Yo —Y0 S Ly

_ E11—21222_21221 0 Iy, 0 _ Y112 O
2o 229 —Y0 N1 Ly 0 g )

Now, independence of X; — 1335, X5 and X, follows from the fact that
Cov(X) — L1255, Xo, Xo) = 0.

(ii) Note that X; = (X — Y1935 Xo) + 21255 Xo. Therefore, from the inde-
pendence of these two parts, X1|(Xy = 23) = 1550 0o+ (X1 — 12555 Xo) ~
N (X135 T2 + 11 — L1250 fi2, S11.2)-

Remark. Under multivariate normality, the best regression is linear. If
we want to predict X; based on Xy, the best predictor is F(X;|X5), which
is equal to pu, — 21222_21;;2 + 21222_21x2. The prediction error, however, is
independent of X5.



Quadratic Forms.
Recall that, Y'AY is called a quadratic form of Y when Y is a random vector.
Result. If X ~ N,(u,%), £ > 0, then (X — ) S X — p) ~ X;Q)-

Proof. Z = X7Y2(X — pu) ~ N,(0,1,). i.e., Z1, Za, ..., Z, are i.id. N(0,1),
Therefore Z'Z =377 | Z7 ~ x. Note that (X —p)S (X —p)=2'Z.

Result. If Xy, Xy,..., X, is a random sample from N (s, 0?), then X and
S =3"" (X;— X)? are independent, X ~ N(u,0?/n) and S?/o? ~ x2_,.

Proof. First note that X = (X, Xy,...,X,) ~ N,(ul,0I,). Now con-
sider an orthogonal matrix A,., = ((a;;)) with the first row being a] =
(\/Lﬁ, \/Lﬁ, e \/Lﬁ) = \/Lﬁl’. (Simply consider a basis for R™ with a; as the
first vector, orthogonalize the rest.) Now let Y = AX. ie., Y; = a/X, i =
1,2,...,n. Since X ~ N,(ul,0?l,), we have that Y ~ N,(uAl,0%AA") =
N,(nA1,0%1,). Therfeore, Y; are independent normal with variance 2. Fur-
ther, E(Y;) = F(a,X) = pall. Thus, E(Y;) = pajl = u\/iﬁl’l = /npu.
For i > 1, E(Y;) = pajl = py/naja; = 0. ie., Y, ..., Y, are iid N(0,0%).
Therefore, > 1", Y? ~ x2_,. Further, V] = ¢/ X = \/iﬁ Yo X = \/E_X ~
N(y/np,0?) and is independent of (Y3,...,Y;). Also, S* = 37" | (X; - X)* =
S X7 =X =X'X Y2 =YY —Y?=3",Y? ~ xi_, which is inde-
pendent of Y7, and therefore of X.

If X ~ Ny(0,1), then X'X = 37" | X2 ~ x2. ie, X'IX ~ x2. Also, note
X’(\/iﬁlx/iﬁl’)X =pX? ~ x? and X'(I — 11—)11’)X ~ X;_l.

What is the distribution of X’AX for any arbitrary A which is p.s.d.? With-
out loss of generality we can assume that A is symmetric since

X'AX = X'(%(A—i—A'))X = X'BX, where B = %(A—"A/) is always symmetric.
Since A is symmetric p.s.d., A =T'D,I", so X’AX = X'TD\["X =Y'D,Y,
where Y = IYX ~ N,(0,I'T = I). Therefore X’AX = Y7  d;Y}?, where
d; are eigen values of A and Y; are i.i.d N(0,1). Therefore X’AX has the
x? distribution if d; = 1 or 0. Equivalently, X’AX ~ x? if A2 = A or
A is symmetric idempotent or A is an orthogonal projection matrix. The
equivalence may be seen as follows. If d; > dy > ... > d, > 0 are such that



di=dy=...=d,=1land d,y; =... =d, =0, then
B L. 0 ;
aer(h )

I, 0 I. 0O
2 T / r r
o =50 )er (4 )

If A2 = A then TD\I"I'D,\I" = I'D3I” = I'D,I" implies that D3 = D,, or
that d? = d;, or that d; = 0 or 1.

We will show the converse now. Suppose X’AX ~ x? and A is symmetric
p.s.d. Then the mgf of X' AX is:

*© exp(—u/2)u"/>7!
MX’AX (t) = /0 exp(tu) 27«/21—\(7,/2) du
_ /°° exp(—%(1 — 2t))u"/?! s
0 2721 (r /2)
= (1—2t)7"/2 for 1—2t > 0.

But in distribution, X’AX ="  d;Y?, Y; i.id. N(0,1), so

p
=F Hexp(tdin)

i=1

Mxiax(t) = FE

p
exp(t Z diY;‘Q)
i=1

P p
= H E [exp(td;Y??)] = H(l — 2td;)"Y?, for 1 — 2td; > 0.

i=1 i=1

Now note that X’AX ~ x2 implies X’AX > 0 wp 1. ie, > 0  d;Y? >0
wp 1, which in turn imples that d; > 0 for all 4. (This is because, if d; < 0,
since Y;? ~ x? independently of Y;, ¢ # [, we would have Y7 | d;Y;? < 0 with
positive probability.) Therefore, for ¢ < min; 2%1" equating the two mgf’s, we
have (1 — 2¢)7"/2 = TP, (1 — 2td;)~Y2, or (1 —2t)/% = TV, (1 — 2td;)"?,
or (1 —2t)" =T["_,(1 — 2td;). Equality of two polynomials mean that their
roots must be the same. Check that r of the d;’s must be 1 and rest 0. Thus
the following result follows.

Result. X’AX ~ x?iff Aisasymmetric idempotent matrix or an orthogonal
projection matrix of rank r.



Result. Suppose Y ~ N,(0,7,) andlet Y'Y = Y'AY+Y'BY. f Y/AY ~ ¥2,
then Y'BY ~ x2_, independent of Y'AY".

Proof. Note that Y'Y ~ x2. Since Y’AY ~ xZ, A is symmetric idempotent
of rank r. Therefore, B = I — A is symmetric and B? = (I — A)? =
I —2A+ A?>=1— A= B, so that B is idempotent also. Further, Rank(B)
= trace(B) = trace(I — A) = p —r. Therefore, Y'BY ~ x2_,. Independence
is shown later.

Result. Let Y ~ N,(0,1,) and let Q; = Y'PY, Q2 =Y'RY, Q1 ~ X2, and
Q2 ~ x%. Then Q; and @, are independent iff P, P, = 0.

Corollary. In the result before the above one, A(I — A) =0, so Y’AY and
Y'(I — A)Y are independent.

Proof. P, and P, are symmetric idempotent. If PP, = 0 then
Cov(PY,P,Y) = 0 so that Q; = (PY)(PY) = Y'PY = Y'PY is in-
dependent of @y = (RY) (RY) = Y'RY. Conversely, if ()1 and @), are
independent xZ? and x2, then Q1+ Q2 ~ x2,,. Since Q1+ Q2 =Y'(Pi+P)Y,
Py + P is symmetric idempotent. Hence, P, + Py = (P, + P)? = P2 + P} +
PP, + P, Py, implying P, P, + P, P, = 0. Multiplying by P, on the left, we
get, P2Py+ P PP, = PLPy+ P, P,P, = 0 (*). Similarly, multiplying by P, on
the right yields, PP, P, + P,P; = 0. Subtracting, we get, PP, — PP, = 0.
Combining this with (%) above, we get P, P, = 0.

Result. Let Ql = Y/P1Y, QQ = Y/P2Y7 Y ~ Np(O,]p). If Ql ~ X%,
Q2 ~ x? and Q; — Q2 > 0, then Q; — Q2 and @y are independent, r > s and
Q1 — Q2 ~ Xz_s-

Proof. P} = P, and P} = P, are symmetric idempotent. Q; — Q > 0
means that Y'(P,— P,)Y > 0, hence P, — P, is p.s.d. Therefore, from Lemma
shown below, P, — P, is a projection matrix and also P/P, = PP, = Ps.
Thus (P, — P2)P, = 0. Also, Rank(P; — P2) = tr(P, — Py) = tr(Py) - tr(F2)
= Rank(P)) - Rank(P,) = r —s. Hence, Q1 — Q2 = Y'(P, — P)Y ~ x2__,
and is independent of Qy = Y'PY ~ 2.

Lemma. If P, and P, are projection matrices such that P, — P is p.s.d.,
then (a) PP, = PP, = P, and (b) P, — P; is also a projection matrix.

Proof. (a) If Pix = 0, then 0 < 2/(P, — Py)x = —a’Pyx < 0, implying
0 = 2'Pyx = o' Pix = (Pyx)' Pz, 50 Pyx = 0. Therefore, for any y,

Py(I — Py)y = 0since Py(I — P1)y =0 (Take x = (I — P;)y.) Thus, for any
Y, ngly:PQyOI' P2P1:Pg,andsoszPQ’:(PgPl)/:Png.

(b) (Pl—P2)2:P12—|—P22—P1P2—P2P1:P1—|—P2—P2—P2:P1—P2.



Result. Any orthogonal projection matrix (i.e., symmetric idempotent) is
p.s.d.

Proof. If P is a projection matrix, 2’ Pz = 2/ P*r = (Pz) Pz > 0.

Result. Let C' be a symmetric p.s.d. matrix. If X ~ N,(0,1,), then AX
and X'CX are independent iff AC' = 0.

Proof. (i) If part: Since C' is symmetric p.s.d., C = TT". If AC = 0, then
ATT =0, so ATT'A" = (AT)(AT)" = 0 and hence AT = 0. Thus AX and
T'X are independent, so AX and (T"X)(7T"X)" = X'CX are independent.

(ii) Only if: If AX and X'CX are independent, then X'A’AX and X'CX
are independent. But the mgf of X’BX for any B is E(exp(tX'BX)) =
|I —2tB|~'/2 for an interval of values of t. Therefore, the joint mgf of X'CX
and X'A’AX is |I — 2(t;C + t, A’ A)|7Y/2, but because of independence this
is given to be equal to

[ =26, C[7V2 |1 = 2 APA[TV2 = T = 20,0 = 26, AP A + At t, CA'A| Y2,

Show that, for this to hold on an open set, we must have CA’A = 0, implying
CA’AC" =0, and thus AC" =0. But ¢' = C.

Lemma. If X ~ N,(u,X), then Cov(AX, X'CX) =2AXCp.
Proof. Note that (X — pu)'C(X —p) = X'CX +p/'Cpu—2X'Cpu = X'CX —
2((X — p)'Cp— p/'Cpand E(X'CX) =tr(CY) + (/Cu. Therefore X'CX —

EXCX)=XCX —p/Cu—tr(CY) = (X —p)C(X —p)+2(X —p)Cu—
tr(C). Hence,

Cov(AX, X'CX)
= E[(AX — Ap)(X'CX — E(X'CX))]
= AE{(X =) [(X = p)C(X = p) +2(X — p)'Cp — tr(CE)]}
= 24AE{(X — p)(X — p)'Cp} — tr(CE)AE(X — p)
+AE{(X — p)(X — p)'C(X — p)}
= 2AYCup,

since E(X —p)=0and E{(X —pu)(X —p)C(X —p)} =

E {(X — 1) [Zl > Ci(Xi — i) (X — uj)} } = 0. To prove this last equal-
ity, it is enough to show that E {(X; — u)(X; — p:)(X; — pj)} = 0 for all
1, 7,1. For this note:

() ifi=j=1 B(X; —u)*=0.

(i) if i = j # I, E{(X; — 1:)*(Xi — u)} = 0 since X; — = Z4(X; — 1) + e,
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where € ~ N(0,.) is independent of X;, so this case reduces to (i).

(iii) if 4, j and [ are all different, the case reduces to (i) and (ii). Alterna-
tively, consider Y = (Y1,Y5,Y3) ~ N3(0,%). Then Y = XV2(Z,, Z,, Zs3),
where Z; are i.i.d. N(0,1). Then to show that E(Y;Y2Y3) = 0, simply note
that Y1Y5Y3 is a linear combination of Z2, Z2Z; and Z;Z,Zs, all of which
have expectation 0.

Loynes’ Lemma. If B is symmetric idempotent, () is symmetric p.s.d. and
I — B—Qispsd., then BQ =QB =0.

Proof. Let 2 be any vector and y = Bx. Then ' By = y' B?x = ' Bx = 'y,
s0y(I-B—Q)y=—9y'Qy <0. But [-B—Qisp.s.d.,soy(I—B—Q)y >0,
implying —y'Qy > 0. Since @ is also p.s.d., we must have y'Qy = 0. (Note,
y is not arbitrary, but Bz for some z.) In addition, since @) is symmetric
p.s.d., @ = L'L for some L, and hence 3/'Qy = y'L' Ly = 0, implying Ly = 0.
Thus L'Ly = Qy = QBx = 0 for all z. Therefore, QB = 0 and hence
(@B) = B'Q' = BQ =0.



Theorem. Suppose X; are n X n symmetric matrices with rank k;, ¢+ =
1,2,...,p. Let X = >" X, have rank k. (It is symmetric.) Then, of the
conditions

(a) X; idempotent for all 4

(b) XiX; =0,i#j

(¢) X idempotent

(d) X ki =k,

it is true that

I. any two of (a), (b), and (c) imply all of (a), (b), (c) and (d)

II. (c¢) and (d) imply (a) and (b)

III. (c) and {X;, ..., X,_1 idempotent, X, p.s.d.} imply that X, idempotent
and hence (a), and therefore (b) and (d).

Proof. I (i): Show (a) and (c) imply (b) and (d). For this, note, given (c),
I—X is idempotent and hence p.s.d. Now, given (a), X —X;—X; = Z#i’j X,
is p.s.d, being the sum of p.s.d matrices. Therefore, (I —X)+(X —-X,—X;) =
I — X; — X, is p.s.d., hence X;X; =0 from Loynes’ Lemma. i.e., (b). Also,
given (c¢), Rank(X) = tr(X) = tr(D>_ X;) = > tr(X;) = > ky, if (a) is also
given. i.e., (d).

(ii): Show (b) and (c) imply (a) and (d). Let A be an eigen value of X; and
u be the corresponding eigen vector. Then Xju = Au. FEither A = 0, or,
it A #£0, u= Xliu. Therefore, for ¢ # 1, X;u = X,-Xliu = 0 given (b).
Therefore, given (b), Xu = Xju = Au, and so A is an eigen value of X. But
given (c), X is idempotent, and hence A = 0 or 1. Therefore eigen values of
X are 0 or 1, or X is idempotent. Similarly for the other X;’s. i.e., (a).

(iii): (a) and (b) together imply (c). (Note that then they imply (d) also,
since (a) and (c) give (d).) Given (b) and (a), X? = (. X;)? =Y. X? =
> X; = X, which is (c).

II. Show (c¢) and (d) imply (a) and (b). Given (c), I — X is idempotent and
hence has rank n — k. Therefore rank of X — I is also n — k. i.e., X — I has
n — k linearly independent rows. i.e.,

(X — I)x = 0 has n — k linearly independent equations. Further,
Xox = 0 has ky linearly independent equations,

Xpx = 0 has k, linearly independent equations.



Therefore the maximum number of linearly independent equations in

X -1
X .
. xr=0 isn—k+ke+...+k,=n—Fk.
X
i.e., the dimension of the solution space is at least n—(n—k;) = k;. However,
this space is exactly X;oz = x because the above equations reduce to that.
Thus X;x = 1x has at least k; linearly independent solutions, or 1 is an
eigen value of X; with multiplicity at least k;. But since the rank of X is
k1, multiplicity must be exactly k. Also, the other eigen values must be 0.

Therefore X, is idempotent. Similar argument for the other X;’s. So, (a).
Now combine it with (c) to get (b).

III. Given (c¢), X is idempotent, so p.s.d. Therefore, I — X is idempotent
and hence p.s.d. If Xy,..., X, are idempotent, hence p.s.d., and X, is also
psd.,then X, =X -X;—Xjispsd,so (I -X)+(X - X, - X)) =
I — X, — X;is ps.d. Then X, X, =0 from Loynes’, giving (b). Now (b) and
(c) give (a) and (d).

The above theorem in linear algebra translates into a powerful result called
Fisher-Cochran theorem on the question of: when are quadratic forms inde-
pendent y2?

Theorem. Suppose Y ~ N,(0,1,), A;, i = 1,...,p are symmetric n X n
matrices of rank k;, and A =>"" | A; is symmteric with rank k. Then

(i) Y'AY ~ xi., (i) Y'A;Y are pairwise independent, and (iii) Y'AY ~ x}
iff

I. any two of (a) A; are idempotent for all 7, (b) A;A; =0, 7 # j, (¢) Ais
idempotent, are true, or

IL. (c) is true and (d) k =), k;, or

III. (c) is true and

(e) Ay,..., Ay are idempotent and A, is p.s.d. is true.

Proof. Follows from the previous theorem.



Linear Models — Estimation

Consider y; uncorrelated, E(y;) = pu, Var(y;) = o2, i = 1,2,...,n. Estimate
. In the absence of distributional assumptions, an appealing approach is
least squares. What is the estimate and what are its properties? Write the
model as:

yi =+ €, E(e) =0, Var(e;) = o2, Cov(e, e;) =0, i # j. Find

Note that,

3
3
3

YD wi—w’ = Y =9 +n@—p’ =D (-9’

i=1 i=1 i=1
with equality iff i = y. Therefore, LSE of p is firs = y. In vector-matrix
formulation,

n 1% €1
Yn H €n

1Y = ]2 = (Y = u1) (Y — i) = 3 (s — p0)? = [Jel >
i=1
Therefore, least squares is equivalent to finding the multiple of 1 which mini-
mizes ||e||. This is achieved when we take the perpendicular or the orthogonal
projection of Y onto the space spanned by 1. i.e.,

Y'1l Y'1
1+(Y — 1))=Y
11 + 11 )
ie.,
N 1Yy
HrLs = 11 =Y.

1 11
E(j = —1FE(Y =
(jus) = g VE(Y) = Lt
. 1Y 1 1 , 1,1 o2
Var(jips) = Cov( 1 ) = —1/11’C’ov(Y)—1/11 =0 1) =—



Note, that fipg is a linear unbiased estimate of p. Suppose @'Y is any linear
unbiased estimate of u. Then F(d'Y) = pa’l = p for all p implies that
a'l = 1. What is the best linear unbiased estimator of u (i.e., least MSE)?
Note,

Var(d'Y) = Cov(d'Y) = a'Cov(Y)a = o*d'a.

To minimize this we just need to find a such that o'l = 1 and @’a is minimum.
Simply note that a’'a = >, a? and

=1 "

1zn: > (29 S0 foralla s Xn:( a)? >0
— a; — | ==—— or all a since a; —a)” > 0.
i Z o =

n
=1

i.e.,

1~ , (1)’ ", 1
— a;—|—1] =0, or a; > —
n &= (n) - Z’_n

with equality iff a; = % for all i. Therefore, firs is BLUE (Best Linear
Unbiased Estimate) irrespective of the distribution of e.

Linear models: Estimation

Data: (x;,v;), 1 = 1,2,...,n with multiple predictors or covariates of y.

yi = Bo+ Biwi + Boio + ...+ Bp1Tip—1y et =1,....n
= Xf+ei=1,...,n

is a model for y|x. Let Y1 = (y1,--.,Un), Bpx1 = (Bo, B, -, Bp—1)’,
ZTio Ti1 ... Ti(p-1)
Xoxp = : S : , ;o = 1 here but can be general also.
Tno Tp1 .- Tp(p-1)
[ is called the vector of regression coefficients and X is called the regression
matrix or the design matrix (especially if z;; = 0 or 1). Quite often y is
called the dependent variable and x the set of independent variables. It is
more standard to call y the response and x, the regressor or predictor. Recall
from previous discussion that
yi = Bo + Biws + Bax? + ¢; is a linear model, but
yi = Bo + Pix; + xiﬁQ + ¢; is nonlinear. i.e., linear model means linear in j3;’s.
A general X,,x, is fine, Xy = 1 is not essential. Thus we have the linear
model:
Y1 = anpﬁpxl + €.
Since we have only n observations, it does not make sense to consider p > n,



so we take p < m. Skip bold face for vectors and matrices unless there is
ambiguity.

First task is to estimate . Most common approach is to use least squares
(again, in the absence of distributional assumptions on €). We want

n

: L IR)2 : 2 _ o . 2
,52%.1(3” ;%) min ||¢]|* = min |[Y" — X 5|
1=
= min_|[Y —0|]%
9eMc(X)

where Mc(X) = {a : a = Xb for some b € RP}. Note that Xb = b Xy +
by Xs + ...+ b, X, where X, are the column vectors of X. Now, to minimize
|V —6]||2 when § € M¢(X), we should take 6 to be the orthogonal projection
of Y onto Mc(X). ie., Y — 6 should be orthogonal to M¢(X). ie.,

X'(Y —0)=0, or X' = X'Y.

0 is uniquely determined, being the unique orthogonal projection of Y onto
Mec(X). We consider the two cases, Rank(X) = p and Rank(X) < p,
separately.

Y2

n




Full rank case. Rank(X) = p. Since the columns of X are linearly inde-
pendent, there exists a unique vector 6 such that 6 = X 5 (If the columns
of X are not linearly independent 3 is not unique. ) Therefore,

X'X3=XY.
Since X has full column rank, X’X is nonsingular. Therefore,
Brs = (X'X)'X'Y
is unique. One could also use calculus for this derivation:
Y = XB|* = (Y = XB)'(Y = XB) =YY —28'X'Y + f'X'X,
so differentiating it w.r.t. 3:
—2X'Y +2X'XB=0, or X'X3=X'Y.

Note that R X )
0=XB=XX'X)'XY=PY=Y,
where P is the projection matrix onto Mc(X).
e=Y -Y =Y —-XB=(—P)Y = residuals.
de = (Y-XB)(Y-XB) =YY - XY +B(X'X3-XY)
= Y'Y XY =YY -3XXB=Y'(I-P)Y

= sum of squares of residuals (RSS) = Z(yz — zB3)?
i=1
Example. Find least squares estimate of #; and 6, in the following:
yr="01+ 0+ €
Yo =01 — 0y + €
ys =01+ 205 + €3

Obtain X and [ by writing it in the vector-matrix formulation:

hn 1 1 9 €1
Y2 = 1 -1 ( 01 ) + 1 e |, ie.,
Ys 1 2 2 €3

Y = Xf+e

Then, noting that
1 1
1 1 1 3 2
X’X_( )1_1 _< )
1 -1 2 1 o 2 6
1

MWV1:14($<?)



we obtain

b = ( O ) = (X'X)7' XY
0
_ L6 =2 Y1+ Y2+ ys
14\ -2 3 Y1 — Yo + 2y3
L 6y +ya +ys) = 2(yn — y2 + 2y3) )
14 \ —2(y1 +y2 +y3) + 3(y1 — Y2 + 2y3)

L (A8 t2y (B ige i
14\ v1—5y2 +4ys TV — Y2 + 3us

1
—(4y1 + 8y + 2y3) (v1 + y2 + ¥3)

de = Y'Y - XY = (i +v5+v5) —

1
_ﬁ(yl — 5y + 4ys) (11 — Y2 + 2y3).

Theorem. P = X(X'X) !X’ is symmetric idempotent, being the projection
matrix onto M¢(X). Rank(P) = Rank(X) = p. I — P is the orthogonal
projection matrix. Rank(/ — P) =n —pand (I — P)X =0.

The case of Rank(X) = r < p will be discussed later.

An alternative derivation of 3:

(Y = XBY(Y = XB) = (¥ = Xp+XB—XB)(Y - XB+Xj— X)

= Y =~ XBY(Y = XB) + (X5 - XB)(Xh - Xp)
+2(XG - XBY(Y - XP)
(8-

= (Y - XB)Y(Y - Xﬂ) BYX'X(B - B),

since R R A X
(XB—-XB)(Y = XB)= (8- B)(XY - X'XB)=0.

Therefore, R R
Y = XB)(Y —=XB) > (Y = XB)(Y - XP)

with equality iff 3 — 8 = 0 since X’X is p.d.



Properties of least squares estimates

If Y = X8+ e, with E(¢) = 0 and Couv(e) = 021I,,. then E(f) =  since

E(B) = B(X'X)"'X'Y)=(X'X)"'X'E(Y)
= (X'X)'X'XB =3, and
Cov(B) = Cov((X'X)7'X'Y) = (X'X) ' X'Cov(Y)X (X' X)™
= AX'X)'X'X(X'X) =0} X'X)

Theorem (Gauss-Markov). Consider the Gauss-Markov model, Y =
XB + ¢, with E(e) = 0 and Cov(e) = o2I,. Let 6 be the least squares
estimate of 6 = X[. Fix ¢ € R? and consider estimating ¢’#. Then, in the
class of all linear unbiased estimates of '8, ¢ 0 is the unique estimate with
minimum variance. (Thus ¢ is BLUE of ¢6.)

Proof. 0 = XB = PY, where P is the projection matrix onto M¢c(X). In
particular, PX = X. Therefore,

E(0) = JEPY)=dPE(Y)=dPXB=dXB =/,

so that ¢/ = PY is a linear unbiased estimate of /6. Let d'Y be any other
linear unbiased estimate of ¢’d. Then ¢'0 = E(d'Y) = d'0, or (c—d)'0 = 0 for
all 0 € Mo (X). ie., (c—d) is orthogonal to M (X). Therefore P(c—d) = 0,
and so Pc = Pd. Now,

Var(dY) —Var(d0) = Var(dY)—Var(¢PY)
= Var(d'Y)— Var(dPY)
— 2(dd - d'PX) = o*(d'd — d' Pd)
= o*d(I — P)d=o*d (I — P)(I — P)d
> 0

with equality iff (I — P)d = 0 or d = Pd = Pc. ie., dY = ¢PY = 6.

Remark. Since we have assumed that X has full column rank,
P=X(X'X)"'X"and so, if 0 = X3, then X'0 = X'X B or B = (X' X)L X0.
Therefore, for every a € RP, '8 = a/(X'X)™1X'0 = /6, where

c = X(X'X) a. ie., every linear function of 8 is a linear function of 6.
Therefore, for every a € RP, we have that ¢/ = a’(X’X)_lX/é = d0 is
BLUE of a’3. Thus, when X has full column rank, all linear functions of
have BLUE, all components of § are estimable (BLUE exists). This will not
be the case when X has less than full column rank.



Result. In the model, Y = X3 +¢, E(e) = 0, Cov(e) = 0*I,, and X has full
column rank (p), we have that

E(RSS) = E((Y = XB)'(Y = XB)) = (n —p)o?,
so that RSS/(n — p) is an unbiased estimate of 2.
Proof. Note that Y — X3 =Y — PY = (I — P)Y. Therefore,

RSS = (Y — XB)(Y = XB) =Y'(I - P)’Y =Y'(I — P)Y,
where [ — P is symmetric idempotent with rank n — p.

E(RSS) = EXY'(I-P)Y)= tr(c*(I - P))+ (XB)' (I — P)(Xp)
= o*(n—p)+AX'(I - P)XF
= (n-p)o’
For confidence statements and testing we need distribution theory.

Distribution Theory

Suppose ¢; are i.i.d. N(0,0?). Then €,x; ~ N, (0,021,) and so,
Y ~ No(X8,021,).

Theorem. If Y ~ N, (X3, 02I,) and X has rank p, then
) & ~ N5, (X'X) ).

(i) (8 —B)X'X(B8—B)/0® ~ x5,

(iii) 3 is independent of RSS = (Y — XB) (Y — XB),

(iv) RSS/0* ~ x2_,.

Proof. Y ~ N, (X8, 0%1,), so (i)

B o= (X'X)'X'Y ~ N,(X'X) ' X'XB,0*(X'X) ' X' X (X' X))
= N(B,0*(X'X)7").

(i) Since § ~ N,(3,0%(X'X)™1), note (X'X)V2(3 — ) ~ N,(0,02L,), and
hence R

(B —B)X'X(B—B)/0* ~ X

(i) B = (X'X)'X'Y = AY and RSS = Y'(I—P)Y. Since Y ~ N, (X,021,),
independence of 3 and Y’(I — P)Y holds iff A(I — P) = 0. But (I — P)A' =
(I-P)X(X'X)"! = 0. Alternatively, § = (X'X)"'X'Y = (X'X)"'X'P'Y =
(X'X)"'X’(PY), so that it is independent of (I — P)Y".

(iv) (a) RSS=Y'(I-P)Y = (Y - XB)(I—P)(Y —Xp) since (I —P)X = 0.
Note that since Y — X8 ~ N,(0,02%I,), and I — P is idempotent of rank n—p,
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(Y = XB)(I = P)(Y = XB) ~ x5
(b) Alternatively, note that Q@ = (Y — X8) (Y — Xf3) ~ 0?x2. Now

Q = (¥ - XBY(Y - Xp) -
= (Y- XB+XB-XBY(Y —XB+X)—XB)
= (Y =XBY(Y = XB)+(B—BYX'X(B—P)
= Q1+ Qq,

where Q3 ~ o?x} and @, > 0. Therefore, from a previous result, Q; ~
0®X2_, independent of Q.



Design matrix X with less than full column rank
Consider the model,
Yij :M+ai+7j+6ijai: 1,2,,[,]: 1,2,...,J,

for the response from the ith treatment in the jth block, say. This can be
put in the usual linear model form: Y = X + € as follows:

Y11 110 ...0100...0 €11
Y12 110 ...0010 ...0 €12
Yi1g 1 10 00 00O 1 aq €1J
Y21 101 ... 010©0...0 (6D) €21
Y22 101 ...0010...0 : €22
: = : oL ar | + :
Yag 101 ...000°¢0...1 T €27
: T S S 2 :
yn 100 ...1100 ...0 : €11
Yr2 100 ... 1T 010 ...0 T €19
Yrg 100 ... 1000 ...1 €rJ

Here, X does not have full column rank. For instance, the first column is
proportional to the sum of the rest. Thus X’X is singular, so the previous
discussion does not apply. [ itself is not estimable, but what parametric
functions of 3 are estimable?

Result. For any matrix A, the row space of A satisfies M (A") = Mc(A'A).

Proof. Az = 0 implies A’Az = 0. Also, A’/Az = 0 implies 2’A’Ax = 0,
so Az = 0. Therefore the null space of A and A’A are the same. Consider
the orthogonal space and note Rank(A’A) = Rank(A) = Rank(A’). Further,
since A’Aa = A’b where b = Aa, Mc(A'A) C Mc(A’). Since the ranks (or
dimensions) are the same, the spaces must be the same.

Theorem. Let Y = 0 + ¢ where 6 = X3 and X4, has rank » < p. Then
(i) mingemeo(x) ||Y — 0]|* is achieved (i.e., least squares is attained) when

~

0=X3 where B is any solution of X' X5 = XY
(i) Y'Y — f/X'Y is unique for all nonzero Y.

Proof. (i) X’X = X'Y always has some solution (for §) since M (X'X) =
Mc(X'). However, the solution is not unique since Rank(X'X) = r < p.

1



Let 3 be any solution, and let 6 = X3. Then X'(Y — é) = 0. However, given
Y € R", the decomposition, Y = § & (Y — ) where Y — 6 is orthogonal
to Mc(X) is unique, and for such a 6, ||Y — 0| is minimized. We know
from previous discussion that minge p.(x) ||Y — 0]|? is achieved with 0 =PY
which is unique.

(ii) Note that

A ~

VY - XY =YY —0Y = (Y —0) (Y —6),
since 0'(Y —0) = 0. Also, (Y —6)'(Y —6) = ||Y —||? is the unique minimum.
Question. Earlier we could find B directly. How do we find 0 now?
Projection matrices

From the theory of orthogonal projections, given X,., (i.e., p many n-
vectors), there exists P, x, satisfying

(i) Pz =z for all z € M¢(X), and

(i) if £ € ME(X), then P = 0.

What are the properties of such a P?

1. P is unique: Suppose P; and P, satisfy (i) and (ii). Let w € R"™. Then
w=Xa+b, be MX). Then,
(Pl—P2>U) = (Pl—PQ)XO,+<P1—Pg)b:(Xa—Xa)+(P1b—P2b) = 0.

Since this is true for all w € R"™, we must have P, — P, = 0.

2. P is idempotent and symmetric:
P?z = P(Pz) = Pz = x for all z € M¢(X);

P%¢ = P(P€) = P0 =0 for all £ € ME(X).

Therefore P? satisfies (i) and (ii), and since P is unique, P?> = P. Further,
Pyl (I — P)x for all z,y, so that yP'(I — P)x = 0. ie, PP = P'P, so
P=(PYy=(PPy=PP=P.

Result. Let €2 be a subspace of the vector space R", and let Py be its
projection matrix. Then M¢c(Pq) = Q.

Proof. Note that M¢(Py) C Q. For this, take y € Mg(Pq). Then y is a
linear combination of columns of Py, or y = Pqu for some u. Since u = wdw,
w € Q, v et wehave, y = Pou = Po(w®v) = Pow = w € Q. Conversely,
if x € Q, then x = Pox € Mc(Pg).



I,, — Pq represents the orthogonal projection. i.e., R" = Q @& Q+. Thus for
any y € R", we have y = Poy ® (I — Pa)y.

If P, is any symmetric idempotent matrix, it represents a projection onto
Mc(P): if y € R, then y = Py+ (I — P)y = v+ v. Note

u'v = (Py)(I = P)y=y'P(I-Ply=y'(P— Py =0,

so that we get y = u® v, u € Mc(P), v € ME(P).



Question. Given X, how to find P such that Mo (X) = Mo(P)?

Result. If Q@ = Mg(X), then P, = X(X'X)” X', where X'X)™ is any
generalized inverse of X'X.

Definition. If B,, ., is any matrix, a generalized inverse of B is any n x m
matrix B~ satisfying BB~ B = B.

Existence. From singular value decomposition of B, there exist orthogonal
matrices Py« and Q,x, such that

Dr r Or n—r
PmeBanQan = A7n><n = ( O( x x( ) ) s

m—r)Xr O(m—r) X (n—r)

-1
where r = Rank(B). Define A, ,,, = [ D6 8 } and let B~ = QA P.

First,

_ D, 0 D1 0 D. 0\ (D, 0\ _
saa= (T ) (0 0)= (T )=
Further, B = P'A(Q)’, so that

BB™B =P AQQA™PP'AQ' = PAATAQ = PPAQ" = B.

Proof of Result. Let B = X'X. Find B~ such that BB~ B = B. For any
Y € R, let ¢ = X'Y, and let 8 be any solution of X’X3 = X'Y, or that of
BfS = c. Then

B(B~¢)= BB Bf=Bfj=c,

so that B = B~ c is a particular solution of Bf = c. Let = XB = XBc.
Then, Y =60 + (Y — 0), where

0y —0)=FX'"(Y —XB)=p XY -X'XB3) =0.

Therefore we have an orthogonal decomposition of ¥ such that € Me(X)
and (Y — 0)LMc(X). Now note that § = X3 = X(X'X)"X'Y. ie.,
for Y, its projection onto M¢(X) is given by X (X'X)~X'Y. Therefore,
Po = X(X'X)~ X’ since P, is unique.

Techniques for finding B~ are needed: if B = X'X, then Po = X(X'X)~X";
if we want to solve X' X = XY, or B = ¢, then = B~ c.



g; g;z )7 where By; (which is rxr

Bt 0
0 0

_ By Bis Bt 0 Bi1 B
BB™B =
( By B ) < 0 0 By B
_ I, 0 By, Bz \ _ ([ Bu B
Boy Byt 0 By B Byy By By'Bia )
Now note that (B21|B22> is a linear function of (BH‘BH), or (Bgl|BQQ) =

K (Bi11|B12) = (K By1| K By) for some matrix K. Therefore, K By; = Bay, or
K = Bngl_ll, SO B22 = KBlg = Bngl_llBlg.

For By, withrank r <pand B =

of rank ) is nonsingular, if we take B~ = ( ), then note that

12 5 2
Example. Let B = 3 7 12 4 . Then rank of B is 2 since 2nd
01 -3 -2
1 2] 5 2
row - 3x 1st row = 3rd row. Partition Bas: B= | 3 7|12 4 =
0 1]-3 =2
Bi1 Big
( By DBay ) Take
7T =20
- B 0 | -3 1 0
B _( 0 0>_ 0 0 0
0 0 0

Example. Consider the model:
=01+ B2t e
Yo =1+ B2+ €
ys =01+ B2t €3

This is equivalent to

n 11 ﬁ €1
Ys 1 1 2 €3

3 3 3 1/3 0
. / lA —
Xhasrankl,)()(——(g 3>——(3 3),sochoose(XX) —-( 0 O)'
2



Then check that (X'X)(X'X)™(X'X) = X'X. We have then

1/3 0 + Y2 + 3
/ (yl+y2+y3): (yl Yo ?/3)/

= [ 13 0 e
1/3 0 n Y2 Y3

Bt Bo
- |
B1 + Ba

QL

Only S; + B2 can be estimated? Note 57 + f2 = (1 1) < g1 ) and
2

Me ( 1 ) = M (X'). More on this later.



Theorem. If Y ~ N, (Xf,0%l,), where X, has rank r and B=(X'X)X'Y
is a least squares solution of 3,
(i) XB ~ No(XB,0°P),
(ii) (B = BYX'X(B—B) ~ X} . .
(iii) X3 is independent of RSS = (Y — X3)(Y — X3). and
(iv) RSS/0? ~ x2_, (independent of X f3)
Proof. (i) Since X = X(X'X)~X'Y = PY, we have
X[ ~ No(PXB,0°P%) = Ny(X8,0°P).
(i) Since X3 = PY and X3 = PX,

(B-B)X'X(B—B) = (XB—XPB)(XB—XP)
= (Y = XB)P(Y — XB) ~ ox2,

P being symmetric idempotent of rank r.

(iii) We have X3 = PY, RSS = (Y — XB)(Y — XB) = Y'(I — P)Y and

A

P(I — P) = 0. Therefore independence of X5 and RSS follows.
(iv) Note again that

RSS = V'(I = P)Y = (Y — XB)/(I - P)(Y — XB) ~ a*2_,
I — P being a projection matrix of rank n — r.
Estimability

Consider the Gauss-Markov model again: Y = X + ¢, with F(¢) = 0 and
Cov(e) = *I,. Now suppose rank of X is r < p.

Definition. A linear parametric function @’ is said to be estimable if it has
a linear unbiased estimate 0'Y".

Theorem. d'f is estimable iff a € Mo (X') = M(X'X).

Proof. &'f is estimable iff there exists b such that E()'Y) = d/f for all
B eRP. ie., VX =adpforall B &€ RP. ie, VX =ada or a= X'b for some
beR"

Theorem (Gauss-Markov). If d/f is estimable, and B is any least squares
solution (i.e., solution of X'X = X'Y),

(i) o 3 is unique,

(i) @’3 is the BLUE of /8.

Proof. (i) If d/f is estimable, a’f = ¥'X [ = ¥/ for some b € R". Since
§ is the unique projection of Y onto M (X), we note VO =VXB=dpis

1



unique. i.e., if 3 is any other LS solution, then also /X3 = VX3 = a’B.

(ii) If 'Y is any other linear unbiased estimate of '3, then
EdY)=dXp=d0=dp=0XE =100 for all 5 € R".

ie, dd =100 for all 6 € Mc(X).

ie., (d—b)0 =0 for all € Mc(X), or (d —b)LMc(X). Consider P =
Prexy = X(X'X)~X'. Then P(d —b) =0 or Pd = Pb. Therefore,

A

Var(dY) —Var(dB) = Var(dY)—Varb'0)
= Var(dY)—Var(t'PY)=Var(dY)— Var(d PY)
= o*(d'd— d'Pd) = o*d' (I — P)d >0,

with equality iff (I — P)d = 0 or d = Pd = Pb. i.e., d'Y =VPY =V = d'j3.

Remark. Parametric functions o/ are estimable when a € Mo (X') = Row
space of X.

Example. Consider again the model:
Yij :M+az+T]+€z]7 1= 1a273747 .]: 172
Suppose comparing 7; and 7y is of interest. Since

Y11 1100010 m
Y12 1100 001 Qo
Y21 1010010 e %
vyl we |=|1010001 || |+
; S Qg
Y 1000110 |
Ya2 1 00 0101 T2

p+o;+7; is estimable for all ¢ and j. Therefore, (p+a;+71) — (n+a;+ 1) =
T| — To is estimable.

(p+a;+71)— (p+a; +7) =a; — a; is estimable.

What else is estimable, apart from linear combinations of these?

Result. If ¢/ is estimable, and Y ~ N,,(X 3, 0%1,,), a 100(1—a)% confidence
interval for a/3 is given by

@B £ty (1 —/2)y/a/ (X' X)~ar/RSS/(n —r).

Proof. Note that a/8 = ¢XB = 0 for some ¢. Therefore, a/f = 0 =

dPY ~ N(d'B,0%c Pc). Now ¢ Pc =X (X'X)"X'c = a'(X'X)"a. There-

fore, X
af—adp
o2d (X'X)~a

~ N(0,1).

2



Further, since RSS/0? ~ x2_ independent of X B, and hence of X B =
0 =ap,
Jp—dp
Vo2d (X' X)~a\/RSS/(c%(n — 1))

~ lp—r.

Hence,

P <|a'3 —d' B < tpr(1 —a/2)y/d (X' X)~a RS ) =1—o.

n—r



Maximum likelihood estimation
Does LS estimate have other optimality properties?

Since we have assumed that Y ~ N, (X3, 02I,) to derive distributional prop-
erties of B , let us derive the maximum likelihood estimates of 3 and o under
this assumption. B and 62 are values of 8 and ¢ which maximize the
likelihood,

@ﬂ”ﬂw%””wp(—i%Y—XﬂﬂY—Xm)-

202

Equivalently, we may maximize the loglikelihood,
1
~log(0?) — (Y — XB)(Y — Xp).
2 2072

Fix 02 and maximize over 3, then maximize over 0. Now note that maximiz-
ing over 3 (for any fixed o2) is equivalent to minimizing (Y — X 8) (Y —X3) =
|Y — XB||?, which yields the same estimate as the least squares. i.e.,
Bmie = Pis- However, 02 = RSS/n, which is not unbiased.

Estimation under linear restrictions or constraints

Consider the following examples.

(i) vij = p+ a; + 7 + €. Test Hy : 71 = 7. i.e., test whether there is any
difference between treatments 1 and 2. Under Hy, ;4 — 5 = 0, or A = ¢
where A =da = (0,0,...,0,1,—1,0,...,0), 8= (g, 1, ..., 7,71, 72,...)"
(i) y; = Bo + rwit + ... + Bp—1ip—1) + €. Test Hy : Xy,..., X, are not
useful.

Recall that, to derive the GLRT, we need to estimate the parameters of the
model, both with and without restrictions. While testing linear hypotheses
in a linear model, we need to estimate § under the linear constraint AS = c.

Consider Y = X + €, X, «, of rank p, first. We will consider the deficient
rank case later. Let us see how we can find the least squares estimate of 3
subject to H : A = ¢, where A, of rank ¢ and c is given. We can use the
Lagrange multiplier method of calculus for this as follows.

min ||Y — XBIP+N(AB —¢)
= min{Y'Y —20/X'Y + #X'XB+ NAG — N}, (1)
differentiating which (w.r.t. ) and setting equal to 0, we get,

1
—2X'Y +2X'X5 + AN =00r X'XG = XY — ANy,

1



Therefore,
By = (X'X)™ {X’Y — %A’)\H} - %(X/X)‘lA’)\H (%).
Differentiating (1) w.r.t. A\, we get AS — ¢ = 0. Since
c=ABy = Af-— %A(X'X)*A'AH,
c—AB = —%A(X’X)lA/)\H, and hence
—%)\H = [A(X'X)_lA’r1 (¢ — AB), and therefore
B = B+ (X'X)TA [AX'X) AT (e — AB).
To establish minimization subject to A = ¢, note that
IXG-BIP = G-pxX(G-p
= (/6: - ﬁAH + Bu —Aﬁ)/)f/X(ﬁ R B + Bu — ﬁA)
= (B= BuYX'X (B Bu) + (B — Y X'X (B — )
+2(8 = Bu) X'X (B - )
= [|X(B = Bu)ll* + [|1X(Bu = B)II”,

since, from (*) above, and subject to A5 = ¢,
) 2 N\ v/ o 1 / / — / N
(BB X'X (B~ 6) = SN AXX) XX (B — B

S XA = 8) = S X (A3 — A8) =0,
Therefore,
Y -Xal = IV -XAE+IXG-AIF
1Y = XA + 11X (3 - Ba)ll* + 11X (Bn — A
> ||V = X8| +[IX(8 — Bu)ll%,
and is a minimum when 8 = (. (Note, X(BH — f) = 0 implies X’X(BH —

B) =0, so BH — B = 0 since columns of X are linearly independent.) Also,
from above, we get,

1Y = XBull® = 1Y = X8I + 11X (5 — Bu)lI*
If we let Y = XB and Yy = XBH, then
1Y = Yul[? = |IY = VI[P +||Y = Yl

Note that this can also be established using projection matrices, and not
just for the full column rank case. Let us first establish it for the case
Rank(X,,«,) = p again, and next extend it.

-4
-5
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Let 5y be a solution of A = ¢. Then Y — Xy = X (5— ) +e€or Y = Xvy+e
with Ay = A(B — [By) = 0. ie.,
Y=0+¢ 0Mc(X)=0Q, and
AXX) X0 = AX'X) XX (B — o) = A(F — ) = Ay = 0.
Set Ay = A(X'X)7'X" and w = N(A;) N Q. Then A0 = Ay = 0 and we

want the projection of Y onto w since we want:

min_||Y — 6]|? subject to A6 = 0.
0eMc(X)

We need the following series of results to solve this.

Result A. If N(C) is the null space of C, then N'(C) = M*(C").

Proof. If x € N(C), then Cz = 0 so that x is orthogonal to each row of C'.
ie., zLM(C"). Conversely, if L M(C"), then 2'C" = (Cz) =0, or Cz =0,
hence x € N(C).

Result B. (Ql N QQ)J' = Qf‘ + Qé‘

Proof. Let Q; = N (C;),i = 1,2. Then,

(N Q)* = (N ( g; ))L = M(C}|C) = M(C}) + M(CY) = QF + Q.

Result C. If w C Q, then PoP, = P,Po = P,,.

Proof. Show that PP, and P,F, both satisfy the defining properties of
P, Ifx € w CQ, then PoP,x = Pox = z; if £ € wh, PoP,¢ = Pyl = 0.
Similar is the other case.

Result D. If w C Q, then P, — P, = P,1q.

Proof. Q@ = M¢a(Py), so each x € Q can be written © = Pyy. Consider
the decomposition, Poy = P,y + (Po — Pa)y. Now P,y € w C €, and
already Poy € 0, so (Po — Pa)y = Poy — P,y € Q. Further, P,(Po — P,) =
P,Po— P, =P, — P, =0, so that (Py)(Po — P,)y = y'P.(Po — P.)y = 0.
Therefore, Poy = P,y @ (P — P,)y is the orthogonal decomposition of €2
into w @ (wt NQ).

Result E. If A; is any matrix such that w = N(4;) N Q, then wt NQ =
M (PoAY).

Proof. Note that
wrNQ=(QNN(A)) NQ = (V&N (A))NQ = (QF & Mc(4)) NQ.

1



Now, let z € wt ﬂQ( (Qrd Mc(A})) NQ). Then z € Q, so z = Pox.
Also, z € Ot & M(A), so x = (I — Po)a + A} 3. Therefore,
x = Pox = Po{(I — Pa)a + Aj8} = PoA|f € Mc(4)).

Conversely, if € Mo (PoA)), then x = PoA S = Po(A8) € Mc(Pq) = 2.
For any £ € w(C ), we have 2’ = /A1 P = A1 = 0 since w =
N (A1) N Q. Therefore, z € w™.

Result F. If A; is a ¢ x n matrix of rank ¢, then Rank(PpA)) = ¢ iff
M (A) NQt = {0}

Proof. Rank(PpA}) < Rank(A}) = Rank(A;) = ¢. Suppose Rank(PpA]) <
q. Let the rows of A; (i.e., columns of A}) be aj,...,a;. Columns of PoA)
are linearly dependent, so Y !, ¢;Poa; = Po(d!_, c;a;) = 0 for some ¢ # 0.
Then there exists a vector Y ¢, c;a; € Mc(A}) ( # 0 since rank of A; is ¢)
such that Y7  c;a; LQ. ie., Mc(A) NQ+ # {0}, If Rank(PoA)) = ¢ =
Rank(A}) then Mc(A}) = Mo(PoA)) =wtNQ C Q.

Now let us return to the problem of finding the projection of ¥ onto w =
N (A1) N Q which achieves:

mm HY 0|* subject to A;0 = 0.
feMc

From Results A and B, wt N Q= (N (4;)NQ)LNQ = (Mg(A) +QH)NQ
and from Result E, w! N Q = Mc(PoA}). Now note that

PoAl = (X(X'X) ' X)X (X'X) A = X(X'X) A = 4.

Therefore, Rank(PpA}) = Rank(A4}) < ¢. However, since Rank(PpA)) =
Rank(X(X'X)'A’) > Rank(X'X(X'X)"'A4’) = Rank(A’) = ¢, we must
have Rank(PpA|) = g. Therefore, from Result D,

Po—P, = P,ing= Pugmea)
= PoA|(APGAY) T (PoAy)
= X(X'X)A[AX'X) XX (X' X) TP AT AX X)X
= X(X'X)7'A (AX'X)TTA) T AX X)X
Therefore,
XBy— XBy= XAy = P,Y = PoY — PiqY
= PoY — XB — X(X'X)7'A (AX'X)'A) T AX'X)T'X'(Y — XBo)
— PoY — XfB— X(X'X) A (AX'X)TTA) T A ((X'X)TIXTY — )
= PyY — Xfy— X(X'X) A (A(X'X)"t4) ! (AB - c> .

-1
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Therefore,
Xfy = X3 — X(X'X)" A (AX'X)"1A) (AB - c) .
Multiplying by (X’X)~'X’ on the left, we get,

By =B — (X'X)" A (AX'X) A (AB — (;) .

This yields the minimum since ||Y — XBHH2 = H}N/ — XA



Case of X having less than full column rank

Rank(X,x,) = r < p. Since only estimable linear functions a’f can be
ay
estimated, assume a3, i = 1,2,...,q are estimable and A,x, =

a/

q
However, since a; = m;X for some m}, we have A = M, X, xp. Since A has
rank ¢, M also has rank ¢ (< r). Proceeding as before, let 5y be any solution
of AB =c. Then consider: Y =Y — Xy = X(8— o) +eorY = Xy+eor

Y =0+¢6c Ma(X)=Q, and

MO = MXy = Ay = 0. We want to find BH, the least squares solution
subject to H : AB = c. If w = QNN(M), then w!t NQ = Mc(PoM'), and
PoM' = X(X'X)"X'M' = X(X'X)"A’. Further,

MPoM' = MX(X'X)"X'M' = A(X'X)~ A’ is nonsingular. This is because,
(since X' Py = X')

q = Rank(M') > Rank(PqoM') > Rank(X'PoM’)
= Rank(X'M') = Rank(A') = ¢.

Therefore
Po— P, = PB,ino= Pucpom)
—  PoM'(MPoM')""MP,
= X(X'X) A (A(X'X)"A) AKX X)X
Hence,

XBu — XBy = XAu = P,Y = PoY — PipqY
= PoY — Xy — PaM'(MPoM') "M Po(Y — X ), so that
X'Xfy—X'XBy = X'PoY — X'XBy— X' PoM' (MPoM') " MPo(Y — X ).
Thus,
X'XBy = XY = X'M(MPoM) {MP,Y — MPoX )}
= XY - X'M'(MP,M' )" {MX(X'X)"X'Y — MXf}
= XY - X'M'(MPoM')" {AX'X)"X'Y — ABy}
= XY - (axx) ) ag -
= X'XB- A (Ax'x) A) T {ag -},

1



Now recall, a solution of Bu = d is &« = B~d. Therefore, from above, since
X'X(By — B) = —A (A(X'X)~A) " {AB _ c} ,

we have that
By =B — (X'X)" A (AX'X)"A) " {AB _ c} .

Also, these two together yield,

(Bu — BY X' X (Bu — B)
= (A — ¢ (AX'X)~A) T AX'X) A (AX'X)"A) T (AB - ¢)
= (AB—¢) (AX'X)~A) " (48 —¢).



Linear Regression

Consider the model:

Y = X3 + ¢, with E(e) = 0 and Cov(e) = 02I,. Then § = (X'X)"X'Y is a
least squares solution. If X,,,,, has rank p, it is the least squares estimate of
B. It is an optimal estimate in the sense that for all a € R?, a’ B is the BLUE
of ’B. Also, E(3) = 8 and Cov(B) = 0*(X'X)~L. If X has rank r < p, 3

is still optimal in the sense that for all estimable '3 (i.e., a = X'b), we still

have that @' is the BLUE of a'8.
If Y ~ N,(X8,02I,), then '3 ~ N(d'3,0%'(X'X)"a) and hence

A £t (1 - /2y B w(x7x)a
is a 100(1 — )% confidence interval for a8 for any estimable a’f.

Now we want to explore the question: how good is the model Y = X3 + ¢
for the given data?

Analysis of Variance (ANOVA) for Regression

Given Y, 1, we look at Y'Y = Z?:l yf as its variation around 0, in the
absence of any other assumptions. It has n degrees of freedom. If a centre
(or intercept) is considered useful, (i.e., y; = By + ¢;) then we can decompose
itas > oyl =ny*+ > 1 (yi — y)* and check how much is the reduction in
variation. If we think that the predictor set X is relevant (i.e., Y = X[ +e¢),
the sum of squares SST = Y'Y can be decomposed as follows:

SST=Y'Y = (Y-Y)(Y =Y)4+Y'YV
= Y'(I-P)Y +Y'PY
= Y(I-PY+BXXp
= Y'Y - BXY + XY
RSS + SSR,

where RSS is the residual sum of squares and SSR is the sum of squares due to
regression. If X, ., has rank r < p, then n = (n —r) +r is the corresponding
decomposition of the degrees of freedom. Thus, analysis of variance is simply
the decomposition of total sum of squares into components which can be
attributed to different factors. Then this simple minded ANOVA for Y =
X[ + e will look as follows.



source of sum of d.f. mean F-ratio
variation squares squares
model: SSR = r= MSR = F=
Y =XB+¢ XY Rank(X) | SSR/r | MSR/MSE
residual SSE = n—r MSE =
error Y'Y - XY SSE/n —r
Total SST =Y'Y n

IfY ~ N, (XB,0%1,),

(i) X3 is independent of SSE = RSS = (Y — X3) (Y — Xj3) = Y'Y — f/'X'Y,
and

(i) SSE = RSS ~ o2x2_;

(iii) if indeed the linear model is not useful, then 8 = 0 so that BX'XE =
(B—BYX'X(B - B) ~ 2.

Therefore, to check usefulness of the linear model, use

F = MSR/MSE ~ F,,_, (if 3 =0).

If B # 0, then B’X’XB ~ mnon-central x? and E(B'X'Xﬁ) =ro?+/8X' X5 >
ro?, so large values of F-ratio indicate evidence for 3 # 0.

However, this ANOVA is not particularly useful since (usually) the first
column of X is 1 indicating that the model includes an intercept or cen-
tre. This constant term is generally useful, and we only want to check
Hy: py = P2 =+ = Bp_1 = 0 to check the usefulness the actual regressors,
Xy, ..., Xp-1 (not Xy = 1). Before discussing this, let us recall a result in
probability on decomposing the variance:

If X and Y are jointly distributed (with finite second moments), then

Var(Y)=E [Var(Y|X)] + Var [E(Y|X)].

The first term on RHS is the ‘within variation’: if Y is partitioned according
to values of X, how much is left to be explained in Y for given X. The second
term is the variation between f/(X ) values, and is the ‘between variation’. In
a study, Var(Y) may be large, but if Var(Y|X) is small, it makes sense to
use X to predict Y using X. This result is known as the Analysis of Variance
formula, and the ANOVA for regression is based on it. Some more results
are needed to derive it.



The F-test (to check the goodness of linear models)

We have the model, Y = X 8+¢, X,,5, of rank r < p and with € ~ N,,(0, 021,,).
Suppose we want to test Hy : AS = ¢, Ayxp of rank ¢ < r, and c is given.
Then

RSS=SSE = (Y —XB) (Y -XB)=Y'(I-P)Y
RSSH, (Y — XBp,) (Y — XBu,), where

Buy = B+ (X'X)"A (AX'X)"A)" {c . A/%} .

Theorem. Under the above mentioned assumptions, we have,

(i) RSS ~ o®x7_,;

(ii) RSSp, — RSS = (453 — ¢) (A(X'X)~A") " (A3 — )i,

(iii) F (RSSy, — RSS) = qo* + (A8 — ¢)' (A(X'X)~ AN (AB - ¢);
(iv) under Hy : AB = ¢,

( RSSp, - RSS )/q

k= RSS /(n —r)

~ Fq,n—’r;

(v) when ¢ =0,

7o <n — r) Y'(P — Py,)Y
q Y'(I, — P)Y ’
where Py, is symmetric idempotent and Py, P = PPy, = Ppy,.
Proof. (i) Already known.
(ii) Note that
RSSp, = (Y —XBu,) (Y — XBu,)
(Y = X3+ XB— XBn,) (Y = XB+XB — Xpn,)
(Y = XBY(Y = XB) + (XB — XBu,) (X3 — X B
F2(XA — X)) (Y — XB)
= RSS+ (B — BHO)/X/X(B — BHO),

since (X3 — XBHO) (Y - XpB) = (ﬁ B, (XY -X 'Xf3) = 0. Now from an

earlier result, (ﬁ B ) X' X (B = Bry) = (Af —¢) (A(X'X)~ A" (Aﬂ —c).
(i) AB = ]\/[Xﬁ MPY ~ N,(AB,0%(A(X'X)~A')), so that E(AfB — ¢) =
AB — ¢ and Cov(AfB) = 02A(X'X)~ A'. Therefore,

E(RSS;, — RSS)

= E{(4B -y (AX'X)"4) " (4B -0}

= (AB— o) (A(X'X)"A) (A8 — o) + tr{ 2 A(X'X)~ A’ (A(X'X)—A’)*l}
= o+ (A8 — o) (A(X'X)"A) " (AB —¢),

1



which is large if Af is far from c.
(iv) Note that

RSSp, — RSS = (A5 — ¢) (A(X'X)~A) " (AB — ¢) ~ 0%,

under Hy since AB—c ~ N (AB—c, 02 (A(X'X)~A")) = N, (0, 02A(X' X))~ A’).
Also, RSS ~ 02y2_, from (i). Further, RSS is independent of X3 = PY.
Since Af is estimable, A = MX, so that A3 = MXS = MPY, which is
independent of RSS.
(v) If ¢ = 0, we have,

Xby, = x{b- (A(X X)) 1A5}
x{(x'x ) A (AX'X)"A) T AXX) XY |
- {X(X X)X’ — )~A (AX'X)"A) 1A(X’X)—X’}Y

= (P-P)Y = PHOY.

Clearly, Py, is symmetric. Further, P; is symmetric, P? =

X(X'X) A (AX'X)"A) T AX' X)) X'X(X'X)~ A (AX'X)~A)7! AX'X) X' =
X(X'X) A (AX'X)"A) " {AX'X) X' X(X'X) A} (AX'X)~A) HAX X) !
= X(X'X) A (AX'X)"A) T H{AX'X)" AV (A(X'X)~A) T AX' X))~ X!

= X(X'X)" A (AX'X)~A) " A(X'X)~ X' = P, since the term in the mid-

dle of the expression,

AX'X) X' X(X'X)"A' = MX(X'X)" X'X(X'X)"X'M' = MP?>M'

=MPM = A(X'X)"A’. Also,

PP =X(X'X)"A(AX'X)"A) " AX'X)" X' X(X'X) X'

= X(X'X) A (AX'X)"A) AKX X)X = P,

since X'X(X'X)" X' = X'P = X'P' = (PX) = X'. Note, P, = (P) =

(P,P) = PP,. Therefore,
PI%IO:(P—P1)2:P2—PP1—P1P+P12:P—2P1+P1:p—P1:PHO

and Py,P = (P — P)P = P — P, = Py, = PPy,. Therefore,

RSSh, = ||V = X8|l = (V = XBu,)' (Y = X Bu,)
= (Y = Py,Y) (Y — PgY) =Y'(I — Ppy,)Y

and

RSSy, — RSS = Y/(I — Py, )Y —Y'(I — P)Y =Y'(P — Py,)Y.



Now we use the above result for checking the goodness of the linear fit.
ANOVA for checking the goodness of Y = X3 + ¢, or y; = Bo + SBixs1 +
o+ Bip—1) + €, or equivalently for testing Hy : 8y = --- = B,y = 0 is
what is needed. Intuitively, if X;,...,X,_; provide no useful information,
then the appropriate model is y; = By + €;, so y is the only quantity that
can help in predicting y. Then RSSy, = > 7, (y; — §)? is the sum of squares
unexplained, and it has n —1 d.f. If X;,..., X,_; are also used in the model,
then (Y — XA3) (Y — Xj3) = RSS is the unexplained part with n — r d.f.
How much better is RSS compared to RSSg,? Let SS,¢, denote the sum of
squares due to Xy,..., X,_; and without an intercept. Then,

RSSy, = RSS+ SS,.

n n

Z(yi -9 =

=1

i —3i)? + SSreq

In other words,

1

Y'Y — =Y'U1Y = Y'(I = P)Y 4SS, or
n
1
Y'Y = Y'(I-P)Y + <ssreg + —Y’l’lY) , or
n
S 1
SSR = FX'XB=pfXY = (ssreg + —Y’1’1Y> ,
n

since Y'Y =Y'(I-P)Y+Y'PY = Y’(]—P)Y—i—B’X’XB. Now, 1(1'1)7 11’ =
%11’ = Pum1) = Pum(xo), so that SSR = ng®+ SS,., is the orthogonal decom-
position of SSR into components attributed to M(1) and M(Xy, ..., X,_1).
Therefore SS,., with r — 1 d.f. is the quantity to measure the merit of the

regressors, Xi,..., X, 1.
ANOVA with mean
source of d.f. sum of mean F-ratio
variation squares squares
mean 1 SSM = MSM = Frean =
ny? SSM/1 MSM/MSE
regression r—1 SSreg = MS, ¢y = Freg =
on Xi,..., X, 1 BX'Y —nig® | SSpeg/(r —1) | MS,.y/MSE
residual n—r | SSE = RSS = MSE =
error Y'Y — XY | SSE/(n —1)
Total n SST =YY

1




ANOVA for regression (corrected for mean)

source of d.f. sum of mean F-ratio
variation squares squares
regression | r — 1 SSreg = MS,eq = Freg =
(corrected) BX'Y — nj? SSreg/(r — 1) | MS,¢,/MSE
residual | n—r SSE = RSS = MSE =
error Y'Y — XY SSE/(n —r)
Total n —1 | SST(Corrected) =
(corrected) Sy — 9)?
How good is the linear fit? There are two things to consider here.
(i) The ANOVA F-test: Under Hy : /1 = --- = [,_1 = 0, the F-ratio,

Freq ~ F._1 - and large values of the statistic provide evidence against H,
or equivalently indicate that the regressors are useful.

(ii) The proportion of variability in y not explained by the actual regressors
is: RSS/SST (corrected), so the proportion of variability in y around its
mean, explained by the actual regressors is

1— ST (cRoifected) = R? = (oefficient of determination.

In other words,

RSS _1 Y'(I — P)Y
SST (corrected) Y/(I-111)Y
il =g =Y U= P)Y Sy -yt =Y (I - P)Y

> i1 (yi —9)? > i1 (Yi —9)?

Y'Y —ng? =YY +Y'PY  Y'PY —nj?

> e (Wi — ) > iy — 9)?
_ SSR —ny® SSreq

S (yi— )2 SST (corrected)

= proportion of variability explained by regressors.

R = 1-

Also,
R SSreq _ SSreg
SST (corrected) RSS + SS,¢4
SS,eq/RSS (5=5) Freg

1+ SS;eg/RSS 1+ (Z=L)F,



is an increasing function of the F-ratio.

Note that to interpret the F-ratio, normality of ¢; is needed. R?, however, is
a percentage with a straightforward interpretation.



Example 1 (socio-economic study). The demand for a consumer prod-
uct is affected by many factors. In one study, measurements on the relative
urbanization (X;), educational level (X5), and relative income (X3) of 9 ran-
domly chosen geographic regions were obtained in an attempt to determine
their effect on the product usage (Y'). The data were:

Xy | Xo | X; Y

42.2 | 11.2 | 31.9 | 167.1
48.6 | 10.6 | 13.2 | 1744
42.6 | 10.6 | 28.7 | 160.8
39.0 | 10.4 | 26.1 | 162.0
34.7 1 9.3 | 30.1 | 140.8
44.5 1 10.8 | 8.5 | 174.6
39.1 | 10.7 | 24.3 | 163.7
40.1 | 10.0 | 18.6 | 174.5
459 | 12.0 | 20.4 | 185.7

We fit the model: Y = X +¢, with E(¢) = 0 and Cov(e) = 0?1,. In this case,
n=29,p=4. y=167.07 and the model is y; = By + P11 + Boxi2 + P32z + €;.

60.0
We get § = (X'X) XY = 100'2742 . The detailed ANOVA (with mean)
—0.75
is
source d.f. SS MS F-ratio
mean 1 | SSM =ngy? = | MSM =
251201.44 251201.44
regression 3 SSreg = MS, ¢, = Freg =
(X1, Xo, X;) 1081.35 360.45 | 3808 —9.11
residual 5 | SSE=RSS=| MSE =
error 197.85 39.57
Total (corrected) | 8 1279.20
Total 9 252480.64

From this note that s> = RSS/(n —r) = MSE = 39.57, so s = 6.29 = &, and
R?* = 1081.35/1279.20 = 84.5%. Abridged ANOVA is



source d.f. SS MS F-ratio
regression 3 SSreg = MS, ¢4 = Freg =
(X1, X5, X3) 1081.35 360.45 | 38045 =9.11
residual 5 | SSE = RSS = | MSE =
error 197.85 39.57
Total (corrected) | 8 1279.20

R? = 84.5% is substantial. What about F' = 9.11? F35(.95) = 5.41 and
F35(.99) = 12.06, so there is some evidence against the null and justifying
the linear fit.

Example 2. X = height (cm) and Y = weight (kg) for a sample of n = 10
eighteen-year-old American girls:

X Y
169.6 | 71.2
166.8 | 58.2
157.1 | 56.0
181.1 | 64.5
158.4 | 53.0
165.6 | 52.4
166.7 | 56.8
156.5 | 49.2
168.1 | 55.6
165.3 | 77.8

Upon ﬁtting the simple linear regression model, y; = By + fix; + €;, we
Bo\ ([ —36.9 9 B B 9

get ( Bl = 0582 )05 = MSE = 71.50, s = 8.456, R* = 21.9%,

y = 59.47. ANOVA is

source | d.f. SS MS F R?
X 1 159.95 | 159.95 | 2.24 | 21.9%
error 8 |512.01 | 71.50
Total (C) | 9 | 731.96

Note the following. (i) X is expected to be a useful predictor of Y, but the
relationship may not be simple. (ii) F;g(.90) = 3.46 = (1.86)* = t3(.95), so
is there a connection between the ANOVA F-test and a t-test?

Consider simple linear regression again: y; = By + f1z;i + 6,1 =1,...,n, €
i.i.d. N(0,0%). Then the F-ratio is the F statistic for testing the goodness of
fit of the linear model, or for testing Hy : 1 = 0. Writing the linear model



in the standard form, we have

1 T1
1 $2 ’ n Zn €Ti
_ _ =1 "1
A= ”‘(zz;lxi z:-;w%)’a“d
1 =z,

(X'X)™ = 1 7 ( D i T

n Z?:l(xi - —nx

Therefore

< o ) = (X'X)7'X"Y = ! oE ( it T

1 ny (v —x —nz

the least squares equations, we get,

. 1 S
b = o— {—m@‘i‘zﬁz‘yi} ==,

Bo = Sex {ny _9”2%%} =5 {nyx+nyx —wzxzyz

—nx
n

= S)lcx {ySXX - (Z TiYi — n:cy) } =y— fBl-

=1

Now, (3 ~ N(B1,0%/Sxx), so that, to test Hy : 8, = 0, use the test statistic,

VSXXﬂAl ; B%SXX

~ lp-2, or ~
RSS/(n — 2) ? MSE

if Hy is true. The ANOVA table shows that

Yol o=+ )y
=1 i=1

SSreg = » (yi—17)* —RSS.

i=1

—nx
n .

)(

—9)? = ng®> + RSS + SSyeqg, SO

Z;;'Lzl Yi
Zz’:l TiYi

Letting Sxx = >.r (2 — )%, Sxy = > (2; — Z)(y; — §), and extracting

i=1

}

)



However,

n n

RSS = Z(yz — By — Blﬂﬁi)z = <yz —y—pBi(ri—T

i=1 =1

i=1 =1

Therefore, SS,ey = 42 S0, (z; — 7)?, so that

o PSxx
RSS/(n — 2)

= F-ratio of ANOVA.

In Example 1, F-ratio tests Hy : 81 = B2 = f3 = 0. What if we want to test
only 1 = B3 = 07 Then we have Hy : A = 0, where A = <

0100
0010

if of rank 2. Then apply the theorem: RSSy, = (Y — XBu,) (Y — XPBy,)
where By, = 8+ (X'X)"A'(A(X'X)”A")"*(c — ApB) and the test statistic is

(RSSu, ~RSS) /g _

k= RSS/(n — 1) a

n—r under Hy.



Multiple Correlation

As seen earlier, the proportion of variation explained by the linear regression
of Y on the regressors Xi,..., X, is given by

S RSS B Y'(I — P)Y

R? = =1- =1- .
SST (corrected) SST (corrected) Y/(I-111)Y

Consider simple linear regression: Then p =2 and y; = [y + [1x; + €.

B = XY _ 2 (i — 2)(yi — 7)
Sxx (i —2)2

n

RSS = Z(Z/i — ) — B} Z(fc -

i=1
so that

n n B 12
SSyeq = 51 (@—fﬁz{ZwN?—xﬂ%—yﬂ'
’ 1 ; > i (i — T)?
Therefore,

R — Sreg _ {Z? 1(%’@—:%)(3;1 g)}Q
Z Y yz @ -0 (- 9%

:{ " (= 3 (i — 7) }:
¢{Zl (s —:c> T (v — 9)%) o
where

2 i (i = T)(y: — 7)
Vim (@ — 2P (v — 9)?

= sample correlation coefficient between X and Y.

rxy =

This connection between R? and r? is intuitively meaningful since a good
linear fit is related to a good linear association between X and Y. What
happens when there are multiple regressors, X, Xo,..., X, 17

We define the multiple correlation coefficient between Y and Xi,..., X,
as the maximum correlation coefficient between Y and any linear function of
X1, ..., Xpo1 = maxy Corr(Y,a0+ a1 X1+ -+ a,-1X,-1) = R* (say).



Y o Oyy U/XY
If Cov (< X< )) = ( ovy S , then

Cov*(Y,d'X)  {dCou(Y,X)}  {doxy}’

Corr®(Y,d' X) = = - '
orr™(Y, a'X) Var(Y)Var(@'X)  Var(Y)Var(d'X)  oyya'Xxa

Further, taking v’ = a’Eﬁ(/Q and v = Z}Uzaxy,

a'oxy B a’Z%QZ}I/QUXY B u'v
(oyya'Sxa)'? a (oyya'Sxa)'’? a (oyya'Sxa)'?
_ (u'u)' 2 (v'v)/? _ (a’ZXa)1/2 (JS(YE}laxy)lﬂ
N (ayya’ZXa)l/2 (Uyya’EXa)1/2
B Ty S oxy 12
- ()

with equality if we take u oc v or a = E;(l(fxy. Since R* = \/US(YE;(lgxy/O'yy,
0 < R* < 1 unlike the ordinary correlation coefficient. Now let us see why
(R*)? (square of multiple correlation coefficient) is the same as the coefficient
of determination, R? (proportion of variability explained by the regressors).

Suppose
Y\ N[ oyy Oxy
X px )7\ oxy Xx .

YIX~ N (py + 0y B (X = pix), oyy — 0y Ex oxy) -
Thus, E(Y|X) = gy — 0xy Sxtix + 0y X5 X and
Var(Y|X) = oyy — oy X5 oxy). Therefore,
Cov(Y, 0y X5 X)

/ -1 -1
\/O-YYO-XYEX ZXZX Ooxy

/ -1

= = R".
VA% 24V, O'S(YE)_(IO'XY
i.e., R* = correlation coefficient between Y and the conditional expectation
of Y|X (or the regression of ¥ on X, when the conditional expectation is
linear). Further, Var(Y) — E (Var(Y|X)) = oyy — (oyy — oy Ex'oxy) =
O'/XYE)_(IO'XY*, so that the proportion of variation in Y explained by the re-
gression on X is equal to

_ Var(Y) — E (Var(Y|X)) _ oy Xy oxy — (R")?
Var(Y) oyy '

Then,

Corr(Y,E(Y|X)) =

R2



Partial Correlation Coefficients

Example. In a study, X; = weekly amount of coffee/tea sold by a refresh-
ment stand at a summer resort, and Xy = weekly number of visitors to the
resort. If X5 is large, so should X; be, right? Actually no! With a certain
resort, 1o = —0.3. Why? Consider X3 = average weekly temperature at the
resort. Both X; and X are related to X3. If temperature is high, there will
be more visitors, but they will prefer cold drinks to coffee/tea. If tempera-
ture is low, there will be fewer visitors, but they will prefer coffee/tea. Say,
rig3 = —0.7, ro3 = .8. It is then more meaningful to investigate the relation-
ship between X; and X, conditional on X3 (i.e., when Xj is kept fixed) to
eliminate the effect of Xj5.

Partial correlation coefficient between X; and X, when X3 is fixed is
T2 — 713723

\/(1 —ri3)(1 — 7“%3).

Suppose X ~ N,,(p,2) and partition X, p and ¥ as:

X, R i1 X2
X. - = E —
(x)=()== (5 )
where X is k-dimensional. Then X;|Xs ~ Ni (1 + S12355 (Xo — pt2), 11.2),
Where 211_2 = 211 — 21222_212/12 = ((O_ij.k—i-l,...,m))' Note that UU k+1,.. =

partial covariance between X; and X; conditional on Xy = (Xjy1, ... ,Xm)’ )
Therefore the partial correlation coefficient between X; and X; given X, is

T12.3 = COTT(Xlng, Xg’Xg) =

. Oijk+1,...,m
\/Oiik+1,....m7\/Ojjk+1,...m

Pijk+1,...m

Recall the notation, p for the population and r for a sample. From the
expression for X1 o note that o;;; = 0;; — 0505 /oy. Thus,

Lo Jigit
Oijl i Tij o

V Tiil\/03jj. o2 a%
o 73 o

Pij.l

Oij 0il0;1

VTii0j; 011,/Tii0 . Pij — PilPjl

\/<1 S Y (1- ) O (1)
04011 gj5501




Simultaneous confidence sets

When we have a scalar parameter, such as the mean p of X, we can construct
a confidence interval for it using a sample of observations:

X+ \/iﬁtn_l(l —a/2). What about the vector 5 of regression coefficients? We

know that if Y = X8 +¢, where € ~ N,,(0,021,,), then (3—8) X' X (3 —8) ~
o?x? independent of RSS = Y'(I — P)Y ~ o%x2_,, so that

(B-BX'X(B=B)/r _

V(I - P)Y/(nr)
and hence
P ((B ~ A X'X(B=B) < —— Y= P)Y Frur(l- a)) =l-a
Therefore,
C= {ﬁ (B BYX'X(8-8) <~ ~ - RSS Frop(1- oa)}

is a 100(1 — @)% confidence set for 3. This is an ellipsoid, and if p is not
small (1 or 2), a set which is difficult to appreciate.

Suppose we are only interested in o’ for some fixed a. Then

aB+t, .(1—a/2)y/RSS /(n—r)/d(X'X)~ais a 100(1 —a)% confidence
interval for a/8. Let us see if we can extend this when we are interested in
deriving a simutaneous confidence set of coefficient 1—a for @) 3, a4f3, . .., a} .




Scheffe’s method.

Let A;X 4 = (a1, a9, ..., aq4) where a1, as,...,aq are linearly independent and

Adt1s - - -, Qf AT€ hnearly dependent on them Then d < min{k,r}. Let
o= Aﬁ andqb Aﬁ Then

(6= ¢) (AX'X)"A) " (6 —¢)/d

F8) = RSS/(n — 1) ~ Fanr.
Therefore,
-~ = PIF(5) < Fyr(1 - a)
- P@é—@%ﬂX’) A)7 (- ¢%«f§sanxl—w}

This gives an ellipsoid as before, but consider the following result.

Result. If L is positive definite,

1'b)?
bl lb — (
i WLh

Proof. Note that
(Wb)?2  (WLY2L7'/2p)? - R'Lhb L'b

_ -1
WLh h'Lh -  WLh UL
Therefore,
N 2
1 P {h,(d)_(b)} <4 RssE,._ (1
T T A A X) AR S n—r an-r(l =)
N 2
{Wio-9)} a
- P < RSS Fy (1 — @) for all h # 0.

B (AX'X)~AYh — n—r

{ |7 (6 — sb)\ < {dFy_(1— a)}? for all h # o.}

VS VR AX) A

_ {]h’(qﬁ — )| € {dFypr(1— )} s.e.(W) for all h £ o.} ,

where s.e.(h'}) = 4/ RSS /I (A(X'X)~ A’) h. Therefore,

. RSS
) £ {dF (1 —a)}'/? m\/ag(X’X)—ai,i =1,2,...,k



is a simultaneous 100(1 — «)% confidence set for ), a,f3, . .., a3, by noting
that

P (a;ﬁ € df + {dFy,_.(1—a)}?se(df,i=1,2,..., k:> >

P {yh'(¢ — )| < {dFypr(1 — )} se.(W) for all h £ 0.} —1-a

Many other methods are also available.
Regression diagnostics

Lack of fit. Suppose the true model is Y = f(X) + ¢, € ~ N,(0,0%I,),
whereas we fit Y = Xf34+¢. We do get 3 = (X'X)"'X'Y and 62 = RSS/(n—
r). o is supposed to account for only the statistical errors (¢;), and not model
misspecification. Therefore, if f(X) # X, we have statistical errors, €;, as
well as the bias, f(X)—Xf. Then, 62 = RSS/(n—r) will estimate a quantity
which includes o2 as well as (bias)?. If o2 is known, then comparing % with
o? can act as a check for lack of fit. In other words,

RSS/c? ~ x%_, if the model, Y = X +¢, € ~ N,(0,021,) is true. Therefore
to test

Hy:Y = XB+¢,¢~ N,(0,0%1,) versus H; : Y has some other model, use
RSS/0? as the test statistic. If the observed value is too large compared to
X2_,, there is evidence against Hy.

Consider a simulation study where data are generated from y; = [y + f12; +
ﬁgl’? + €, €~ N(O,U2), with Bo = 5, ﬁl = /82 =2 and 0'2 = 222

T ) 1 1.5 2 2.5 3 3.5 4 4.5 )

y | 8.68 12.85 10.71 1854 21.67 27.3 37.56 44.64 54.09 63.83

Begress Y on X. ie, fit y; = By + frx; + €. Then we get Bo = —3.925,
£ = 12.33 and the ANOVA table:

source d.f SS MS F R?
Regression | 1 | 3134.2 | 3134.2 | 130.76 | 94.2%

Error 8 191.7 24.0

Total 9 | 3325.9

These are very good results, but RSS/0? = 191.7/4 = 47.925 >> x2(.99) =
20.08. R?* = 94.2% is high, and F-ratio of 130.76 at (1, 8) d.f. is very high,
indicating that X is a very useful predictor of Y. However this does not
mean that the fitted model is the correct one. Check the residual plot:



Now regress Y on X and X?2.

source d.f SS MS F R?
Regression | 2 | 3305.7 | 1652.8 | 572.28 | 99.4%

Error 7 20.2 2.9

Total 9 | 3325.9

RSS/0% = 20.2/4 = 5.5 << x2(.90) = 12.02.

o? is usually unknown, so this test is difficult, but what this indicates is that
residual plots are useful for checking lack of fit (see plot above). Another
possibility is to check for any pattern between fitted values and residuals.
Yet another reason to explore this is the following.

E=Y-Y =Y—-Xf=(I-P)Y and Y = X3 = PY are uncorrelated
(since (I — P)P = 0) if Cov(Y) = o%I,. If one sees significant correlation
and some trend, then the model is suspect. What if Var(y;) = o2, not a
constant? This is called heteroscedasticity (as against homoscedastcity), a
problem discussed in Sanford Weisberg: Applied Linear Regression in the

context of regression diagnostics.



With the model: Y = X3 + ¢, with E(¢) = 0 and Cov(e) = 021, normality
of € is essential for hypothesis testing and confidence statements. How does
one check this?

Normal probability plot or Q-Q plot.

This is a graphical technique to check for normality. Suppose we have a
random sample 17,75, ..., T, from some population, and we want to check
whether the population has the normal distribution with some mean p and
some variance o2. The method described here depends on examining the
order statistics, T(y),...,T(n). Let us recall a few facts about order statistics
from a continuous distribution. Since

n

from (. ty) = Hf(tz')7 (t1,....tn) € R,
i=1

Frye o by, - ty) = ] Fta), ta) <te < tw),
=1

fr

n! nei i1
(=Dl —) (1= F(tw)" F' = (tw)f(to)-

If Uy < Upy < -+ < Uy are o.s. from U(0,1), then

' n! ' 1-1 n—k+1—1
E(Uw) = /0ufU(k)(u)du:(k_1>!(n_k)!/0 ukt (1 —u) k du
B n! Fk+1)I(n—k+1) &k
(k—1)!(n —k)! I'(n+2) S+l

An additional result needed is the following. If X is a random variable which
is continuous on an interval I with c.d.f. F strictly increasing on I, then
V = F(X) ~ U(0,1). For this, note that 0 <V < 1 and for 0 < v < 1,
P(V <v)=PF(X)<v)=PX < F(v)=F(F () =v.

Now argue as follows. If Ty, Ty, ..., T, are i.i.d. from N(u,0?), then

T — , — 0.5
E(@(M))zz a=1,2,...,n.
o n

Therefore, plot of ® <M) Versus % is on the line y = x. Equivalently,

o

the plot of @ versus ®~1(=22) is on the line y = z. In other words, the
plot of T(;) versus @fl(%) is linear. To check this, y and o2 are not needed.
Since T(;) is the quantile of order i/n and ®~'(*=22) is the standard normal



quantile of order %, this plot is called the Quantile - Quantile plot. One
looks for nonlinearity in the plot to check for non-normality.

How is this plot to be used in regression? We want to check the normality of
€;, but they are not observable. Instead y; are observable, but they have differ-
ent means. We consider the residuals. ¢ =Y —Y = (I—P) ~ N,(0,62(I—P))
if normality holds. ie., & ~ N(0,0%(1 — P;)) if Y ~ N(Xg,0%I,). For a
fixed number of regressors (p — 1), as n increases, P; — 0 (Weisberg), so the
residuals can be used in the Q-Q plot.

Stepwise regression (forward selection)

Consider a situation where there are a large number of predictors. A model
including all of them is not desirable since it will be unweildy and there
may be difficulties involving multicollinearity and computational complex-
ities. There are many such situations in weather forecasting, economics,
finance, agriculture and medicine.

Consider the approach where one variable is added at a time until a good
model is available, or equivalently, a stopping rule is met. Possible rules are
(i) » many predictors are chosen (r is pre-dertmined)

(ii) R? is large enough.

Procedure. (i) Calculate the correlation coefficient between Y and X; for
all 4, say r;,. Select as the first variable to enter the regression model the one
most highly correlated with Y.

(ii) Regress Y on the chosen predictor, say X;, and compute R? = rfy. This
is the maximum possible R? with one predictor.

(iii) Calculate the partial correlation coefficients given X; of all the predictors
not yet in the regression model, with the response Y. Choose as the next
predictor to enter the model, the one with the highest (in magnitude) partial
correlation coefficient r;,;: the idea is to add a factor which is most useful
given that X; is already in.

(iv) Regress Y on X as well as the one chosen next, say X,,, and find if X,
should be added or not. Compute R?.

(v) Calculate 7y, and proceed similarly.

Example. Data on breeding success of the common Puffin in different habi-
tats at Great Island, Newfoundland:

y = nesting frequency (burrows/9m?)

x1 = grass cover (%), 2 = mean soil depth (e¢m)

xg = angle of slope (degrees), x4 = distance from cliff edge (m)



X1 | Xo | Xs | Xy | Y
45 13921 38| 3 |16
65 | 47.0 | 36 | 12 | 15
40 | 24.3 | 14 | 18 | 10

Correlation matrix:

Y X1 X5 X3
X7 | 0.158
Xy | 0.022 | 0.069
Xz | 0.836 |-0.017 | 0.066
X4 | -0.908% | -0.205 | 0.212 | -0.815

Choose X first, since ry, = -0.908 is the highest in magnitude. Then R? =
(—0.908)% = 82.4%. F = 168.79 >> Fj 34(.99). Now compute

—-0.07 =1,
0.398 = 3.

Choose X, next and note R? = 87.2%. Also, X is a useful predictor. Com-

pute
0152 =1
Ti42 = 0233 =3,

The formula for this is

Tiya — 732.4Ty2.4

Tiy.42 = .
\/(1 —15.4)(1 = 7’52.4)

If we pick X5 now, R? = 87.9%, not very different from the previous regres-
sion. Also, X3 is not particularly useful in regression.



Basics of Design of Experiments and ANOVA

So far we concentrated on analysis of a given experiment or data. Structure
of the experiment is now explored. Design of experiments is a study of
construction and analysis of experiments where purposeful changes are made
to input variables of a process or system so as to observe and identify the
reasons for changes in the output response. A cause-effect mechanism is of
interest here.

Example. Different or different amounts of fertilizers versus yield of a crop

Experimental designs are used mostly for comparative experiments:
Comparing treatments in a clinical trial
Comparing factors (fertilizers, crop patterns etc.) in agricultural experiments

Randomization, replication, blocking and confounding of effects are some im-
portant concepts in this context. Randomization means that each subject
has the same chance of being placed in any given experimental group. Then
factors which cannot be controlled need not be considered since their effects
are averaged out.

Replication means having multiple subjects in all experimental groups, en-
suring that ‘within group’ variation can be estimated.

Blocking and confounding of effects will be considered later.

Consider the following example of a completely randomized design.

Example. Monosodium glutamate (MSG), a common ingredient of pre-
served food is known to cause brain damage in various mammals. In a study
of the other effects, weight of ovaries (mg), both for a sample of rats treated
with MSG and for an independent control sample of similar but untreated
rats were obtained:

sample size (n;) | sample mean | sample s.d.
MSG 10 29.35 4.55
Control 12 21.86 10.09

Consider the linear model,

R :um+€’t i:172;"'7n1;
vi= :uc—i_ﬁi 7;:nl—+—17nl—*—27"'anl_‘_7127



€ 1.i.d N(0,0%). Write it in the vector/matrix form, Y = X + e

Y1 10
Yn, 10 ( [ >
= -+ €,
yn1+1 0 1 He
Yni+no 0 1

€ ~ Npyiny(0,0%I). Then

X'x=0"M 0 X'X) 1 = nll 0
= 0 ny , o ( )= 0 )

1
ngy

()=o) (i) (5 1))

independent of

Therefore,

ni ni1+n2
RSS = Z(yl - gl)Q + Z (yl - g2)2 ~ O_2X3L1+n2—2'
=1 i=ni+1

We want to compare i, with p.. Hy : ptr, = pte = 0 is meaningless;
Hy : piy, = pe is of interest. ie., Hy: (1 —1) ( fm ) = 0. Note,
(1 — G2 — (b — 1)) / n%Jré
\/RSS/(TLl + ng — 2)

~ tny4ng—2-

If Hy is true, then

(T —52) [\ + s
\/RSS/(TLl + ng — 2)

~ tn1+n2—27

or equivalently,
_ - \2/(1 1
(1 —92)"/ (n_1 + n_2>
RSS/(TLl + ng — 2)

The design in this experiment has complete randomization. The observations
inside the groups are independent, and also the two samples are independent.

~ Fl,n1+n2—2-

2



For this reason, the design is called a completely randomized design. We can
generalize this procedure if we want to compare k£ means, as will be done
later.

Paired differences - example of a block design

Sometimes independent samples, such as the ones in a completely random-
ized design, from two (or k > 2) populations is not an efficient way for
comparisons. Consider the following example.

Example. It is of interest to compare an enriched formula with a stan-
dard formula for baby food. Weights of infants vary significantly and this
influences weight gain more than the difference in food quality. Therefore,
independent samples (with infants having very different weights) for the two
formulas will not be very efficient in detecting the difference. Instead, pair
babies of similar weight and feed one of them the standard formula, and the
other the enriched formula. Then observe the gain in weight:

pair 1 2 3 ... n
enriched | e; ey e3 ... e,
standard | s; Ss3 s3 ... s,

However, the samples may not be treated as independent but correlated. The
n pairs of observations, (eq, s1), ..., (én, S,) may still be treated to be uncor-
related (or even independent). These n pairs are like n independent blocks,
inside each of which we can compare enriched with standard. This is the
idea of blocking and block designs. Blocks are supposed to be homogeneous
inside, so comparison of treatments within blocks becomes efficient.



Paired differences - example of a block design

Sometimes independent samples, such as the ones in a completely random-
ized design, from two (or k > 2) populations is not an efficient way for
comparisons. Consider the following example.

Example. It is of interest to compare an enriched formula with a stan-
dard formula for baby food. Weights of infants vary significantly and this
influences weight gain more than the difference in food quality. Therefore,
independent samples (with infants having very different weights) for the two
formulas will not be very efficient in detecting the difference. Instead, pair
babies of similar weight and feed one of them the standard formula, and the
other the enriched formula. Then observe the gain in weight:

pair 1 2 3 ... n
enriched | e; ey e3 ... e,
standard | s; s2 s3 ... s,

However, the samples may not be treated as independent but correlated.
The n pairs of observations, (eq,$1),..., (e, s,) may still be treated to be
uncorrelated (or even independent). These n pairs are like n independent
blocks, inside each of which we can compare enriched with standard. This
is the idea of blocking and block designs. Blocks are supposed to be homo-
geneous inside, so comparison of treatments within blocks becomes efficient.
We assume that

, 2
< Ci ) ~ N, (( i ) ,( o1 p01202 >> In the above example, we
Si 25) po10e 05

want to test Hy : up = p1 — po = 0, so consider y; = e; — s;. Then,

Yi = pp + €, E(e) = 0, Var(e;) = 0% = 0} + 03 — 2po109 = Var(y;). If
normality is assumed, then we have, yi, ..., , i.i.d. N(up,0%) and we want
to test Hy : up = 0. Consider the test statistic,

Vg
V2 i wi —9)*/(n—1)

if Hy is true, or equivalently,

~ tn—17

—2
n
Y Fl n—1-

S —g)2/n—1) "




Note that,

ny>
S (i —9)2/(n—1)
n(e —3s)
S e —e) = (si—9)
n(e —s)?
o (e =)+ 2 (s — 8)2 =20 (e — €)(si — )]
(e—9*E+12)
s (e — 2+ o (s — 5P — 250 (e — &) (50 — 3)]

Compare this test statistic with the one used for independent samples.
Cou(e, s) is expected to be positive (due to blocking), so the variance in the
denominator above is typically less than m Do (es—e)* + >0 (si — 35)%,

which appears there. This is the positive effect due to blockmg

2
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Confounding of effects.

Example. Consider two groups of similar students and two teachers. It is
of interest to compare two different training methods. Consider the design
where teacher A teaches one group using method I, whereas teacher B teaches
the other group using method II. Later the results are analyzed. The problem
with this design is that, if one group performs better it may be due to teacher
effect or due to method effect, but it is not possible to separate the effects.
We say then that the two effects are confounded. Sometimes we may not be
interested in certain effects, in which case we may actually look for designs
that will confound their effects. This will reduce the number of parameters
to be estimated.

Experiments with a single factor — One-way ANOVA

We want to compare k > 2 treatments. Treatment ¢ produces a population of
y values with mean p;, i = 1,2,..., k. Or, if treatment ¢ is applied, then the
response Y ~ N(u;,02),i=1,2,... k. Are these k populations different?

Design. n; observations are made independently from population ¢, so the k
samples are independent. Equivalently, we may look at this experiment as a
design where N subjects are available to study the k treatments. n; of these
are randomly selected and assigned to a group which will get treatment 1,
no of the remaining for treatment 2, and so on. Such a design is called a
completely randomized design (as mentioned previously). Model for such a

2



design is as follows.

Let y;; = response of the jth individual in the ith group (ith treatment),
j=12,....,n;51=1,2,... k. Then,

Vi =i te5, 1=1,2,...,n; 1=1,2,.... k. E(e;) =0, Var(e;) = o2, un-
correlated errors; €;; ~ N(0,0?) i.i.d. for testing and confidence statements.
In the usual linear model formulation:

Y1 10 ... 0
Ya1 01 ... 0 [0
: I - H2 N
Yo, | 1O 1 .00 : «
: R Mk
Yk1 00 ... 1
Ykn,y, 0 0 . 1
1
Lo 0 .
ToL 0 PRIy
Since (X'X)™! = "2 0 and X'Y = : , we get
0 () 1 27;1 Ykj
ng
f (0
: = : and
fu Yk
RSS = S0 X0 (i — ) =2 & =3 Yy — i)™
Questions.
(i) Are the group means pu; equal? i.e., test Hy : pg = g =+ -+ = pu.

(ii) If not, how are they different?



yz-j:,uiqLeZ-j,j:1,2,...,n,~;z’=1,2,...,k E(Eij):(), VCLT(EZ‘]‘):O'Q.

Y11 10 ... 0
Yin, 1 0 ... 0
Y21 01 ...0 n
: I D 2 N
yos | O 1 ... 0 : «
: R Mk
Yk1 00 ... 1
Ykny, 00 ... 1
fa 1
Fu Yk
k n; — A ~
RSS = 37, D0 (b — ) =20 D2 = >0 Do (yij — fu)*
Questions.
(i) Are the group means p; equal? i.e., test Hy: pg = pio =« -+ = fu.

(ii) If not, how are they different?

Example. It is believed that the tensile (breaking) strength of synthetic
fibre is affected by the %age of cotton in fibre:

% cotton | tensile strength (Ib/inch?) | sample mean
15 7,7,15,11,9 7 =98
20 12, 17, 12, 18, 18 o = 15.4
25 14, 18, 18, 19, 19 s = 17.6
30 19, 25, 22, 19, 23 74 = 21.6
35 7,10, 11, 15, 11 75 = 10.8

Are there substantial differences in the mean breaking strength?
(i) Plot the sample means:



20 RN
15 o
10 o °

But sample means do not tell the whole story, especially for small samples.
One must look at variation within samples and between samples. In the
plot above, the conclusions would be different according to whether the error
bands are green or red.

25

20

tensile strength

10
|

T T T T T
s1 s2 s3 s4 s5

% cotton

It is easier to do this investigation of variations using box-plots, as shown
above. Variation within samples is not too large or different, but between



sample variation is large. Note that, if within sample variation is large com-
pared to between sample variation (like the red error bands in the plot),
then the different samples can be considered to be from a single population.
However, if within sample variation is small compared to between sample
variation (like the green error bands in the plot, i.e., |g; — y;| are large com-
pared to the error) then there is reason to believe that the groups differ.

To formalize this, we return to linear models:
Yij = Hi + €ij, j = 1,2,...7711'; 1= 172,...,]€, €5 ~ N(O,O'Q) i.i.d. Are the
group means different?

H1 Y1
| = ¢ | sothat RSS =335, 30 (v — 90)*
[k Uk
To test Hy : p11 = po = - -+ = i, consider
100 -0 —1
010 0 —1
Agp—1yxk = o . Then we test Hy : Ay = 0 where A
000 -1 —1

has rank £ — 1. To test Hy, we obtain fiy,, RSSy, and consider

- k-1
_ (BSSp, —RSS)/(k—1) i o Fy_y s .y under Hy,

RSS/(Yy ni — k)

To find fig,, RSSy,, note that, under Hy : uy = g = - - - = g, these means
are equal, and so it is enough to find
k (e k nq
Cmin M (g — )’ =min Y > (g — ).
Br1=po="=py < - K :
=1 j=1 i=1 j=1
Therefore,
1 k n; k g
fir, = Zk - Z Zyij =y, and hence RSSy, = Z Z(yij —7.)>%
i=1"" =1 j=1 i=1 j=1



Yij = i+ €, 5= 1,2,...n 0 =1,2,...k, &; ~ N(0,0%) i.i.d. Are the
group means different?

M1 n
: = : so that RSS = ZZ L (Y — Bi)*
fk Yk
To test Hy: piy = o = = L, consider
100 --- 0 -1
010 ---0 -1
Ag—1yxk = o o . Then we test Hy : Ay = 0 where A
000 --0 -1

has rank £ — 1. To test Hy, we obtain jiy,, RSSy, and consider

_ (RSSy, —RSS)/(k - 1)
 RSS/(XF m— k)

, which ~ kalzlenﬁk under Hy.

To find fig,, RSSy,, note that, under Hy : yy = pg = - - - = g, these means
are equal, and so it is enough to find

min Z Z yw ,Uz = mlnz Z yw

pr=po= =L

=1 j=1 =1 j=1
Therefore,
1 k n;
fip, = Z Zyw =y, and hence RSSy, = Z Z(yij -
Zz1nw1g 1 i=1 j=1
Introduce further notation: y; = 7; = %Zm1ym , = 1,2,..., k. Note,
further, that
RSSy,
k n; k i
= DD =0 =3 ) s+~ D)
i=1 j=1 i=1 j=1
k‘ ng k‘ Ny
SD I YUEUES ICEREES ol (TR 3D wIe)
i=1 j=1 i=1 j=1

= RSS+ Z (. —7.)%,
=1



since » 7 (yi; — i) = 0 for all 4. Therefore,

k
RSSp, —RSS = > ny(5i. — 5.)?

i=1
and therefore,

Zf 1 ni(Yi. — ?j)2/(1€ —1)
Zz 1 Z] 1(?/2j 1)2/(2521 n; — k)

~ Fk—l,Zi‘:lm—k under Hy.

It is instructive to consider these sum of squares.

RSS = Zz 1 Z] 1 (Wij — 4i.)?
= the sum total of all the sum of squares of deviations from the sample means
= within groups or within treatments sum of squares, SSy;.

RSSw, = Zz 1 Zj (i — ..)2

= total sum of squares of deviations assuming no treatment effect
= total variability (corrected) in the k samples, SSr.

Therefore, Zle ni(gi. — y.)> = SSp - SSw
treatments sum of squares = SSg. Thus,

SSt = SSw + SSp is the decomposition of sum of squares along with
Zle n;—1= (Zle n; — k) + (k — 1), decomposition of d.f.

ANOVA for One-way classification

= between groups or between

source d.f. SS MS F
Treatments k—1 SSp = MSp = l\l\gg ~ (under Hy)
k _ _
(groups) D i Mi(Gi — 4.)° isﬁ Fk—LZf:l ni—k
Error d>ong—k SSw = MSE =
> 2 (i — 51) %
1=1""
Total d>omy—1 SSr =
(corrected) > 2w —9.)?
Mean 1 (Ziﬂl n;)y>
Total >n; ZZ ) Zm . y”




Example. Tensile strength data. £ =5, n; = 5. ANOVA is as follows.

source d.f. SS MS F
Factor levels (% cotton) | 4 | 475.76 | 118.94 | 14.76 >> 4.43 = F0(.99)
Error 20 | 161.20 | 8.06
Total(corrected) 24 | 636.96

2 _ A75.76
R = 636.96 75%

Now that the ANOVA Hj, has been rejected, we should look at the group
means (estimates) closely. Suppose we want to compare p, and s either
with Hy : . = ps or using a confidence interval for p, — ps.

N N _ _ 1 1
for — s = Y. — Ys. ~ N (NT_U8702 (_+_>>
N, Mg

independently of

ng

k
Z yz] 71'. ~ U XZZ i

i=1 j=1

Therefore,
) = (e — i)} L
\/Zz 1 Z] 1 yzj Ui)? /(Zle n; — k:)

~ tZi'C:l ni—k

100(1 — )% confidence interval for p, — p is

Yr. _ysitzk ni—k 1—@/2 Zzyw i. (an_k> 7’1

i=1 j=1

Further, test statistic for testing Hyg : p, = ps is
g — Vs ) / nLT + an

\/Zl L e (Y — 9i)?/ (Zle n; — k)

~ tzz 1”’4

if Hy is true.



Multiple comparison of group means
Yij :,U/Z—"_EZ]7 j = 1,2,...,71,1'; 1= 1,2,...,k, €5 ™~ N(O,O'Q) iid.

The classic ANOVA test is the test of Hy : uy = po = -+ = pyg, which is
uninteresting and the hypothesis is usually not true. What an experimentor
usually wants to find out is which treatments are better, so rejection of H
is usually not the end of the analysis. Once it is rejected, further work is
needed to find out why it was rejected.

Definition. A linear parametric function Zle a;pt; = a'p with known con-
stants aq, ..., a satisfying Zle a; = @'l = 0 is called a contrast (linear
contrast).

Example. If a = (1,—-1,0,...,0)’, then a'p = py — po.

Result. p; = o = -+ = py, if and only if @’ = 0 for all

ac A= {a: (ar, .., a) = S8 a; :0}.

Remark. Hy: py = g = -+ = py, is true iff H, : a’u = 0 for all a € A, or
all linear contrasts are zero.

Proof. py = ps = -+ = py iff p = al for some a, or p € Mc(1). Note,
A= MEQ).

Thus, if Hy fails, atleast one of the H, must fail for a € A. i.e., a'u # 0. The
experimenter may be interested in this contrast, and its inference. Consider
inference of any linear parametric function, a’'p = Zle a;p;. We have the
model,

vij ~ N(ui,0%),j = 1,2,...,n;i = 1,2,...,k independent. Then, y; ~
N(u;,0%/n;), i =1,2,... k independent, and

k k

k k
E(Z a;Yi.) = Z aip; = d'pu, Va?“(z ;i) = o’ Z %?7
i—1 i—1 i

i=1 =1

so that

k — k
Doz Ol — iz Ul g 1),

2
/2 Nk ai
g Z’i:l ng

Let S7 = >0 (i — %)% i = 1,2,...,k. Then S? ~ ox;. _; independent

of gi, i =1,2,... k. Also, (S%,...,5%) is independent of y = (¥1.,..., Js.)-

Let S = S | S2. Then Sy~ UZXQE;C . independent of y. Note that this
i=1 "M~

is just a repeat of our old result that RSS = S5 | Yo (i — 5i)? = Sy is



independent of B = f1. Thus, as discussed previously,
ay —au

52 (S ) 1)

~ thzl ni—k’

so that

05 E gy n(1-a/2),| S (Z ;) IR

=1 "

is a 100(1 — a)% confidence interval for a’p. Also, reject Hy,o : a’'p = 0 in
favour of H, 1 : a'p # 0 if

a'y

52 (S ) I )

> tew (1 a/2).

What if we want investigate a set of contrasts simultaneously? From Boole’s
Inequality,

P (U2, A) < %, P(A)), so P (U2, A9) < 5%, P(A2).

Since U2 A¢ = (N2, A;)°,

n

1= P(M,A) <Y (1= P(A) =n— i P(A;), or

P (NP, Aj) > i P(A;) = (n— 1),

This is known as the Bonferroni Inequality. Apply this to the above problem.
If we want a simultaneous confidence set for a(l)/p, e ,a(d),,u, consider

k

i)/ « (a(]))2 k
C = {a(]) Vst k(=524 5 3 = /S ni— k)G = 1,27,__,d},
! i=1

i=1

Then

P(C) = P(N_,A) > i P(A)—(d-1) = i(l—%)—(d—n =d—a—d+1=1-a.

=1 =1

This procedure is useful when d is not too large.



Reparametrization of the one-way model.

Suppose n; are all equal, and equal to J. Also, let the number of groups be
k = 1. Then Zleni =1J,and g; = ijlyij/J, fori=1,... 1.

o= 3t 1 yig/(1]). Further,

SSw = > iy >y (yi — 4i)? has d.f. (1] —1);

SSp = Zle ni(yi —9.)° = JZle(yi, —y.)? hasd.f. I —1.

We can rewrite the model, y;; = p; + €4, €;; ~ N(0,0?) i.i.d. as follows.

Wi = i, + (i — ) = p+ oy, where i, = ZZI (/I and a; = p; — fi.. Then,

S = a = > (- ) = 0. Further, Ho i = ji = - = ju

is the same as Hy : a1 = a9 = -+ = a1 = 0 (o, = 0 implies that
-1

ar=—Y._; a; =0 also.)

Similarly write
€. = €.+ €. —€_, so that
€ij = €.+ (€ —€.)+ (€; — &.). Therefore

since €. 3/ (& —€.)=0,€.51, > (e;; — &) =0 and
iy Y (@ =€) (e — &) =i (G —€) X (e — &) =0.

Now, since €;; = vy;; — 0 — o, we get €. = y; — 0 — oy, €. = §.. — p, and
further, from above,

S5

J
yzj - az
i=1 j=1
1 J J 1 J
= > > @ =YD g @)+ Y Y (v —u)
=1 j=1 =1 j=1 =1 j=1

Least squares estimates subject to Zle a; = 0 may be obtained simply by
examination of the above, and they are:

A

W=y, o=y —1Y.,

and hence RSS = Zle Z'j]:l(yij — 7i.)%



Under Hy : o = g = = ay_1 = 0, we have

DD ly—n—a)=d > (g —n)

- JZII J iIl jjl I J
= > D> @ =D W0+ ) (i — i)
i=1 j=1 i=1 j=1 i=1 j=1

so that, then, 27, ijl(yij — p)? is minimized when i = g (with oy = 0).
We then get

RSSp, = Z Z@z — 7.+ Z Z(yzg — i)

=1 j=1 =1 j=1
I 1 J
= Jz;(ziz 2+Z;X;yw i
= i=1l j=

Therefore,
I
RSSp, —RSS =7 (5. —4.)>
i=1
Note that all these can be done by just inspection, even though we have de-

rived these previously using other methods. The simplicity of this approach,
however, is very useful for higher-way classification models.

One-way ANOVA with equal number of observations per group.
source d.f SS MS F

Treatments | I —1 I (55— 17.)? SSp/(I —1) g%&j:gjz;gi)ﬂ
Error IT—1 |33 (yij — i) | SSw/(IJ —1)

Total (C) [ IJ—1 | 5 (vi; — 7.)°

This approach of reparametrization and decomposition generalizes to higher-
way classification where there are substantial simplifications.

2-factor Analysis or 2-way ANOVA

Example. An engineer is designing a battery for use in a device that will be
subjected to some extreme temperature variations. The only design param-
eter that he can select at this time is the plate material for the battery, and
he has three possible choices. When the device is manufactured and shipped

2



to the field, the engineer has no control over the temperature extremes that
the device will encounter, and he knows from past experience that temper-
ature may impact the effective battery life. However, temperature can be
controlled in the product development laboratory for the purposes of testing.

The engineer decides to test all three plate materials at three different tem-
perature levels, 15°F, 70°F and 125°F (-10, 21 and 51 degree C), as these tem-
perature levels are consistent with the product end-use environment. Four
batteries are tested at each combination of plate material and temperature,
and the 36 tests are run in random order.

Question 1. What effects do material type and temperature have on the life
of the battery?

Question 2. Is there a choice of material that would give uniformly long life
regardless of temperature? (Robust product design?)



Question 1. What effects do material type and temperature have on the life
of the battery?

Question 2. Is there a choice of material that would give uniformly long life
regardless of temperature? (Robust product design?)

Life (in hrs) data for the battery design experiment:
material temperature (°F)
type 15 70 125

1 130 155 | 34 40 |20 70
74 180 | 80 75 |82 58
2 150 188 | 126 122 | 25 70
159 126 | 106 115 | 58 45
3 138 110 | 174 120 | 96 104
168 160 | 150 139 | 82 60

Both factors, material type and temperature are important and there may
be interaction between the two also. Let us denote the row factor as factor
A and column factor as factor B (in general). Then the model for the data
may be developed as follows.

Let y;;, be the observed response when factor A is at the ith level (i =
1,2,...,I) and factor B is at the jth level (j = 1,2,...,J) for the kth
replicate (k = 1,2,..., K). In the example, I = 3,J = 3, K = 4. This design
is like having IJ different cells each of which has K observations, and one
wants to see if the I.J cell means are different or not (in various ways).

yijk:}tij+€ijk,i:1,2,...,];j:1,2,...,J;k’:1,2,...,K.

Therefore it is also called a completely randomized 2-factor design. We as-
sume, €, are i.i.d. N(0,02). As before, this is a linear model, and hence
various linear hypotheses can be tested. Let

gij. = %Zleyijlmi = 1,2,7I7j = 1,2,...,J

— 1 J K 1 J — .

Yi. = JK Zj:l D ket Yijk = Zj:l Yijot =121

s = T Yoit Dbt Yidh = § 2oim Ui = 1,2, T

Uo = T Dot Dot Do Yigh = 77 Doty gy Ui = 3 iy Ui = 23001 05
Now, fi;; = ¥;;. under no constraints, and hence

RSS = Y7, Z}']:1 S Wik — Uiy.)? has IJ(K — 1) d.f. To consider inter-
esting questions, it is best to adopt the reparametrization,

pij = pt+ i + Bj + (af)y;, where

B=p. = % Zle Z}le Mij, G = i, — fi., B; = ji; — ji.. and

(B)ij = pij — i, = fig + fo..



Then note that Zfil a; = 0, Z}]:1 B =0, Zfil(aﬁ)ij = 0 for all j and
Zj (ap);; =0 for all .

I I - _ _ I _
(Note, Zz WaB)ig =iy pig =D e — T+ Ip. = (i — ) = 0.)
These are the conditions required for identifiability of the parameters under
reparametrization.

Now consider the interpretation of these parameters. pu = fi. is the overall
effect. «; = j1;, — 1. = main effect of factor A at level i since eliminating
the effect of level j by averaging over it leaves the departure of effect i (of
factor A) from overall, and similarly, 8; = fi; — fi.. = main effect of factor B
at level j. What does (af);; = pij — fis. — fi.j + fi.. measure?

Suppose we want to see if the effect of factor A at level ¢ depends on the level
of factor B. If there were no such interaction, we would expect the difference
in means fi;,; — [i,; depend on 4; and i3 and not on j. ie.,

IIM&

Mivg — Migg = Z1722 = Z1722
J
1 _ _
= j Z(lu’ilj' - ,U/igj’) = Miy. — Hiy.,
j'=1

for all ’il, 1. OI', equivalently, Hiyj — ﬁiL = Minj — ﬂig. for all i17’i2. i.e.,

(7) (independent of 7)

I 1 I
=7 Z(Mi’j — fir.)
=1 =1

= ji; — i, forall 7, ;.

Wi — M. =

,L‘/

)
1
I
ie., pj — fi;, — i+ fi. = 0 for all ¢, j. Because of symmetry, we could have
begun with p;;, — pij, depending on ji, j2, but not on . Thus, we see that
(aB)ij = pij — . — [t.; + fi.. measures the interaction of ¢ and j. Therefore,
to investigate the existence of interaction, we should test,

Huyp : (af)yy =0 (i = 1,2,...,1;j = 1,2,...,J) as the restricted model
without interaction. Estimation of (o/f);; can also be considered. Now,
consider the main effects of factors A and B.

To test for lack of difference in levels of factor A, use, H4 : a; = 0 for all 7.
To test for lack of difference in levels of factor B, use, Hp : 5; = 0 for all
j. If Hap : (af);; = 0 has been rejected, there is evidence for significant
interaction, so main effects cannot be non-existent.



Life (in hrs) data for the battery design experiment:
material temperature (°F)
type 15 70 125

1 130 155 | 34 40 |20 70
74 180 | 80 75 | 82 58
2 150 188 | 126 122 | 25 70
159 126 | 106 115 | 58 45
3 138 110 | 174 120 | 96 104
168 160 | 150 139 | 82 60

Let y;;, be the observed response when factor A is at the ith level (i =
1,2,...,I) and factor B is at the jth level (j = 1,2,...,J) for the kth
replicate (k =1,2,..., K).

y”k:lu”—i-ﬁ”k,Z:l,Q,,[,j:1,2,,J,k'zl,Q,,K

Now, fi;; = ¥;;. under no constraints, and hence

RSS = S0, S0 Yoy Wik — ig.)? has TJ(K — 1) d.f.
Reparametrization: p;; = o+ a; + 85 + (af);, where

Zz‘lzl oy = 0, Zj:l Bj = 07 ZZZI(OKB%J' = 0 for allj and Z;]:l(ocﬁ)ij =0 for
all 7 are the identifiability conditions.

To investigate the existence of interaction, we should test,

Hapg : (af)ij = 00 = 1,2,...,1;j = 1,2,...,J) as the restricted model
without interaction. Estimation of (o/f);; can also be considered. Now,
consider the main effects of factors A and B.

To test for lack of difference in levels of factor A, use, H4 : a; = 0 for all 7.
To test for lack of difference in levels of factor B, use, Hp : 5; = 0 for all
j. If Hap @ (af8)ij = 0 has been rejected, there is evidence for significant
interaction, so main effects cannot be non-existent.

To find estimates, confidence intervals and to conduct tests, we proceed as
follows. Since

pij = f+ (i — ) + (g — i) + (i — . — g + 1) = ptai+ B+ (aB)y,
we use a similar representation for €

€ijh=€.+ (& —€. )+ (€, —€.)+ (& — €. —€j +€.)+ (€1 — &j.).



Therefore, as in one-way classification,

I J K J
YN > ey =1JKe +JKZ DPHIKY
i=1 j=1 k=1 i=1 J=1
I J I J K
‘l‘KZ Z(Eij' — € 2 + Z Z E’ij’ 61] 7
i=1 j=1 i=1 j=1 k=1

since cross products vanish. Noting that €, = yij —p—a; — B, — (af);;, with

sz o =0, Z; 1B =0, Ez 1(aB)y; = 0 for all j and Zg (aB)ij =0
for all ¢, Wegetelzy — €& = Y — p— i, €5 = Y5 — p— B
€ — B; — (af3);;. Hence,

= Yij.
DD i — =i = B — (aB)y)

i=1 j=1 k=1

1 J
= LK@y —p)+JKY (G~ 5. — @) + 1KY (55— 4.~ )
i= 1
1 J JI J K
+KZ Z yU y] _I_y O4/6 Z] 2 + Z Z Z yuk yzj
i=1 j=1 i=1 j=1 k=1

Subject to the identifiability conditions, we obtain the least squares esti-
mates:

io= Gy G = Ti — G By = G5 — 5. and (af), — Vi, —Yj + Y.
Therefore, RSS = Zi:l ijl Zkz:l(yl]k Uij.)?, as seen earher.

Consider Hyp : (af);; = 0 for all 7, j. Due to the identiability constraints on
these parameters, namely, 0 = S (af3);; = ijl(a )ij = SOk, ijl(aﬁ)ij,
there are IJ — I — J + 1 = (I —1)(J — 1) linearly independent equa-
tions, so the A matrix used to express this as a linear hypothesis has rank
IJ—1—-J+1=(I—-1)(J—1). Further, by inspection,

~
<

J
RSSHAB = Z Z Z(ywk - gij.)z + KZ Z yzg - yjA + g...>27

K
i=1 j=1 k=1 i=1 j=1

since i, &; and §; remain as before. Hence

I J J
RSSiy, —RSS = KN Gy — 0o — 75 + 5.0 = K3 Y (aB).,

=l j=1 i=1 j=1



which has d.f. (I —1)(J —1). To test Hap, use

(RSSu,, —RSS) /A = 1(J = 1)}

Fap = e
w RSS/{1J(K —1)} (-0 1)

under Hsp. Now consider Hy : «; = 0 for all ©. There are [ — 1 linearly
independent equations here, so the rank of A matrix is I — 1. Again, by
inspection, note that estimates of the remaining parameters, p, 8; and (af);;
remain unchanged, so

I

K
RSSy, = Z Z Z (Yijk — Yij.) 24 JKZ —7.)% so

i=1 j=1 k= i=1

—_

I
RSSy, —RSS=JK> (5. —3.)*=JK Y &
=1 =1
with d.f. I — 1. Similarly,

1 J K

RSSy, = Z Z Z Yiik — Yij.) +IKZ —7.)% so
j=1

i=1 j=1 k=1

7
RSSp, —RSS = [KZ(%‘ —5.)" = IKZ AJZ

j=1 j=1
with d.f. J — 1. Therefore, for the respective tests use,

(RSSm, —RSS) /I —1)
RSS/{IJ(K — 1)} ~ Fr1,15(K-1)

A=

under H 4 and

(RSSw, —RSS) /(- 1) .
RSS/{IJ(K —1)} ~ Ly110(K-1)

Fp =

under Hg. The decomposition of the total sum of squares along with its d.f.
is as follows.

DD D v =1IKP +JKZ — g HIK Y (55— 7.)°

i=1 j=1 k=1 i=1 j=1

+K Z Z Yij. — Ui =Yg+ 5. + Z Z Z(yijk — 3ij.)%

=1 ]: 1=

IJK = 1+ =D+ -1)+TJ—I-J+1)+(IJK - 1J).



ANOVA table for 2-factor analysis:

source d.f SS MS F
A main I—-1 SS4 = MS,4 = Fy =
effects JK ST a2 MS4/MSE
B main J—1 SSp = MSgp = Fg =
effects IK Y | 32 MS 5 /MSE
AB (I-1)(J-1) SSap = MSsp = Fap =
interactions K> > (o;ﬁ)jj MS4p/MSE
Error IJ(K —1) RSS = MSE =
2 Y —95)’ | miem
Total (c) IJK —1 S (yige — §..)*
Mean 1 IJKy*
Total IJK D2 Yk
ANOVA for the battery example:
source df| SS MS F
plate 2 | 10684 | 5342 | 7.91 (2, 27)
temperature | 2 | 39119 | 19559 | 28.97 (2, 27)
interactions | 4 | 9614 | 2413 | 3.56 (4, 27)
error 27 | 18231 | 675
total (c) 35 | 77647




