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Linear Models

It is of interest to see if a nice relationship exists between two random vari-
ables, X and Y . Eventual objective may be either prediction of a future
value or utilization of the relaionship for understanding the structure.

Ex. X = height, Y = weight of indviduals. One may ask: is there an opti-
mal weight for a given height?
Data: (xi, yi), observations from n randomly chosen individuals, i = 1, 2, . . . , n.

Ex. X = temperature, Y = pressure of a certain volume of gas.
Data: (xi, yi), i = 1, 2, . . . , n from a controlled experiment where a certain
volume of gas is subjected to different temperatures and the resulting pressure
is measured.

Ex. In a biological assay, Y = response corresponding to a dosage level of
X = x. Again, (xi, yi), i = 1, 2, . . . , n from n laboratory subjects.

Ex. In an agricultural experiment, y is the yield of a crop. A piece of land
is divided into I plots according to soil fertility; J different fertilizer levels
are also used. Then, if yij is the yield from the ith plot receiving jth level of
fertilizer, we might like to try the model:
yij = µ+αi+τj+ǫij. Why do we need ǫij? It is a random error (measurement
error, noise or uncontrolled variability) needed to explain the variation in the
model, which is needed in each of the other cases as well.

In general,
yi = α + βxi + ǫi, (1)

where y is the response variable and x is the predictor variable, and α and
β are unknown coefficients is called a linear model. Here ‘linear’ stands for
linear space, linear or additive in the coefficients and not for linear in x, as
will be seen later. Equation (1) expresses the linear or additive relationship
between E(Y |X = x) and the influencing factors.

Observe the following data and the scatter plot of y versus x, where x =
duration and y = interval (both in minutes) for eruptions of Old Faithful
Geyser.
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x y x y x y x y x y x y

4.4 78 3.9 74 4.0 68 4.0 76 3.5 80 4.1 84
2.3 50 4.7 93 1.7 55 4.9 76 1.7 58 4.6 74
3.4 75 4.3 80 1.7 56 3.9 80 3.7 69 3.1 57
4.0 90 1.8 42 4.1 91 1.8 51 3.2 79 1.9 53
4.6 82 2.0 51 4.5 76 3.9 82 4.3 84 2.3 53
3.8 86 1.9 51 4.6 85 1.8 45 4.7 88 1.8 51
4.6 80 1.9 49 3.5 82 4.0 75 3.7 73 3.7 67
4.3 68 3.6 86 3.8 72 3.8 75 3.8 75 2.5 66
4.5 84 4.1 70 3.7 79 3.8 60 3.4 86

Table 1: Eruptions of Old Faithful Geyser, August 1 – 4, 1978
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x

y

(1) is a linear model for E(y|x), so ǫ denotes the spread or dispersion around
this line. i.e., y = E(y|x) + ǫ. If we let g(x) = E(y|x), assuming g to be
smooth, we could consider the approximation:

g(x) = g(0) + g′(0)x+
g′′(0)

2!
x2 + . . .+

g(k)(0)

k!
xk

= β0 + β1x+ β2x
2 + . . .+ βkx

k.

This is linear in the coefficients β0, β1, . . . but not in x. Also, recall Weirstrass
theorem on being able to uniformly approximate by polynomials any contiu-
ous function on a closed interval. Thus, on a reasonable range of x values,
such a ‘linear’ approximation may be quite acceptable. More importantly,
special tools and techniques from linear spaces and linear algebra are avail-
able for studying linear models.
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MULTIPLE LINEAR REGRESSION MODEL

The response y is often influenced by more than one predictor variable. For
example, the yield of a crop may depend on the amount of nitrogen, potash,
and phosphate fertilizers used. These variables are controlled by the exper-
imenter, but the yield may also depend on uncontrollable variables such as
those associated with weather. A linear model relating the response y to
several predictors has the form

y = β0 + β1x1 + β2x2 + . . .+ βp−1xp−1 + ǫ. (2)

The parameters β0, β1, . . . , βp−1 are called regression coefficients. The pres-
ence of ǫ provides for random variation in y not explained by the x variables.
This random variation may be due partly to other variables that affect y

but are not known or not observed. The model in (2) is linear in the β

parameters; it is not necessarily linear in the x variables. Thus models such
as

y = β0 + β1x1 + β2x
2
2 + β3x3 + β4 sin(x2) + ǫ

are included in the designation linear model. A model provides a theoretical
framework for better understanding of a phenomenon of interest. Thus a
model is a mathematical construct that we believe may represent the mech-
anism that generated the observations at hand. The postulated model may
be an idealized oversimplification of the complex real-world situation, but
in many such cases, empirical models provide useful approximations of the
relationships among variables. These relationships may be either associative
or causative.

Regression models such as (2) are used for various purposes, including the
following:

Prediction. Estimates of the individual parameters β0, β1, . . . are of less
importance for prediction than the overall influence of the x variables
on y. However, good estimates are needed to achieve good prediction
performance.

Data Description or Explanation. The scientist or engineer uses the es-
timated model to summarize or describe the observed data.

Parameter Estimation. The values of the estimated parameters may have
theoretical implications for a postulated model.
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Variable Selection or Screening. The emphasis is on determining the
importance of each predictor variable in modeling the variation in y.
The predictors that are associated with an important amount of vari-
ation in y are retained; hose that contribute little are deleted.

Control of Output. A cause-and-effect relationship between y and the x
variables is assumed. The estimated model might then be used to
control the output of a process by varying the inputs. By systematic
experimentation, it may be possible to achieve the optimal output.

There is a fundamental difference between purposes 1 and 5. For prediction,
we need only assume that the same correlations that prevailed when the data
were collected also continue in place when the predictions are to be made.
Showing that there is a significant relationship between y and the x variables
in (2) does not necessarily prove that the relationship is causal. To establish
causality in order to control output, the researcher must choose the values
of the x variables in the model and use randomization to avoid the effects
of other possible variables unaccounted for. In other words, to ascertain the
effect of the x variables on y when the x variables are changed, it is necessary
to change them.
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Vector-matrix form of linear model.

Data is of the form: (yi,xi), i = 1, 2, . . . , n, xi = (xi0 = 1, xi1, . . . , xi(p−1))
′.

The linear model is:

yi = β0 + β1xi1 + . . .+ βp−1xi(p−1) + ǫi,

=

p−1
∑

j=0

βjxij + ǫi, i = 1, 2, . . . , n; xi0 = 1.

Equivalently,











y1
y2
...
yn











=











1 x11 . . . x1(p−1)

1 x21 . . . x2(p−1)
...

... . . .
...

1 xn1 . . . xn(p−1)





















β0

β1
...

βp−1











+











ǫ1
ǫ2
...
ǫn











, or

y = Xβ + ǫ.

yn×1 is the response vector, Xn×p is the matrix of predictors or covariates,
βp×1 is the vector of regression coefficients, and ǫ is random noise. y is
random since ǫ is random. X is treated as a fixed matrix and β is a fixed
but unknown vector of parameters. Note that the model involves random
vectors and matrices, so some preliminaries on these are needed before we
can proceed further.
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Multivariate Distributions

A random vector T is a vector whose elements have a joint distribution. i.e.,
if (Ω,A, P ) is a probability space, Tp×1 : Ω → Rp is such that T−1(B) ∈ A,
and hence Pr(T ∈ B) = P (T−1(B)).

Thus, X = (X1, . . . , Xp)
′ is a random vector if Xi’s are random variables

with a joint distribution. If the joint density exists, we have f(x) ≥ 0 for all
x ∈ Rp such that

∫

Rp

f(x) dx = 1 and P (X ∈ A) =

∫

A

f(x) dx, A ⊂ Rp.

Example.

(

X1

X2

)

∼ N

((

µ1

µ2

)

,

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))

, −1 < ρ < 1, if

f(x1, x2) =
1

2π

1

σ1σ2

√

1− ρ2
e
−

1
2(1−ρ2)

{

(

x1−µ1
σ1

)2
+

(

x2−µ2
σ2

)2
−2ρ

(

x1−µ1
σ1

)(

x2−µ2
σ2

)

}

.

Check that E(Xi) = µi, V ar(Xi) = σ2
i , i = 1, 2 and Cov(X1, X2) = ρσ1σ2.

Example.





X1

X2

X3



 ∼ Uniform on unit ball if

f(x1, x2, x3) =

{

3

4π
if x2

1 + x2
2 + x2

3 ≤ 1;
0 otherwise.

Let X = (X1, . . . , Xp)
′ be a random vector and assume µi = E(Xi) ex-

ists for all i. Then define E(X) =











µ1

µ2

...
µp











as the mean vector of X. A

random matrix Zp×q = ((zij)) is a matrix whose elements are jointly dis-
tributed random variables. If G(Z) is a matrix valued function of Z, then
E(G(Z)) = ((E(Gij(Z)))).
IfG(Z) = AZB, where A and B are constant matrices, E(G(Z)) = AE(Z)B.
If (Z, T ) has a joint distribution, and A,B,C,D are constant matrices,
E(AZB + CTD) = AE(Z)B + CE(T )D.
If Z is symmetric and positive semi-definite (nnd) with probability 1, E(Z)
is also symmetric and positive semi-definite. i.e., show a′E(Z)a ≥ 0 for all
a. Note that a′E(Z)a = E(a′Za) ≥ 0, since for all a, a′Za ≥ 0 wp 1.
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Suppose Zp×p is p.s.d. with wp 1. Then its spectral decomposition gives
Z = ΓDλΓ

′, where Γ is orthogonal and Dλ is diagonal. Let λi(Z) = ith
diagonal element of Dλ, λ1(Z) ≥ λ2(Z) ≥ . . . ≥ λp(Z) ≥ 0 wp 1. What
about E(Z)? Is λi(E(Z)) = E(λi(Z))? No. However, E(Z) is p.s.d., so
λi(E(Z)) ≥ 0.

SupposeXp×1 has mean µ and also E[(Xi−µi)(Xj−µj)] = Cov(Xi, Xj) = σij

exists for all i, j. i.e., σii < ∞ for all i. Then the covariance matrix (or the
variance-covariance matrix or the dispersion matrix) of X is defined as

Cov(X) = Σ = E [(X − µ)(X − µ)′] = ((E[(Xi − µi)(Xj − µj)])) = ((σij)).

Σ is symmetric, σii = V ar(Xi) ≥ 0 and Σ is p.s.d.

Theorem. Σp×p is a covariance matrix (of some X) iff Σ is symmetric p.s.d.

Proof. (i) If Σ = Cov(X) for some X and E(X) = µ, then for any α ∈ Rp,

α′Σα = α′Cov(X)α = α′E [(X − µ)(X − µ)′]α

= E [α′(X − µ)(X − µ)′α] = E
[

{α′(X − µ)}
2
]

= E
[

(α′X − α′µ)2
]

= V ar(α′X) ≥ 0,

so Σ is p.s.d. It is actually p.d. unless there exists α 6= 0 such that
V ar(α′X) = 0 (i.e., α′X = c w.p.1)

(ii) Now suppose Σ is any symmetric p.s.d matrix of rank r ≤ p. Then
Σ = CC ′, Cp×r of rank r. Let Y1, . . . , Yr be i.i.d with E(Yi) = 0, V ar(Yi) = 1.
Let Y = (Y1, . . . , Yr)

′. Then E(Y ) = 0, Cov(Y ) = Ir. Let X = CY . Then
E(X) = 0 and
Cov(X) = E(XX ′) = E(CY Y ′C ′) = CE(Y Y ′)C ′ = CC ′ = Σ.

For a 6= 0, a′Cov(X)a = 0 iff Cov(X)a = 0, or Cov(X) has a zero eigen
value.

If Xp×1 and Yq×1 are jointly distributed with finite second moments for their
elements, and with E(X) = µ, E(Y ) = ν, then
Cov(Xp×1, Yq×1) = ((Cov(Xi, Yj)))p×q = ((E(Xi−µi)(Yj−νj))) = ((E(XiYj)−
µiνj)) = E(XY ′)− µν ′ = E[(X − E(X))(Y − E(Y ))′].
Cov(X) = Cov(X,X) = E[(X−E(X))(X−E(X))′] = E(XX ′)−E(X)(E(X))′.
Cov(AX,BY ) = ACov(X, Y )B′,
Cov(AX) = Cov(AX,AX) = ACov(X,X)A′ = ACov(X)A′.
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Consider Xp×1 =

(

X1

X2

)

and Yq×1 =

(

Y1

Y2

)

. Then

Cov(X, Y ) =

(

Cov(X1, Y1) Cov(X1, Y2)
Cov(X2, Y1) Cov(X2, Y2)

)

6= Cov(Y,X) =

(

Cov(Y1, X1) Cov(Y1, X2)
Cov(Y2, X1) Cov(Y2, X2)

)

in general. Further, note,

Cov(X + Y ) = Cov(X + Y,X + Y )

= Cov(X,X) + Cov(X, Y ) + Cov(Y,X) + Cov(Y, Y )

= Cov(X) + Cov(Y ) + Cov(X, Y ) + Cov(X, Y )′

6= Cov(X) + Cov(Y ) + 2Cov(X, Y ),

in general. If X and Y are independent, we do have, Cov(X, Y ) =
((Cov(Xi, Yj))) = 0 since Cov(Xi, Yj) = 0 for all i and j.

Quadratic Forms.

X ′AX is called a quadratic form of X. Note that
E(X ′AX) = E[tr(X ′AX)] = E[tr(AXX ′)] = tr[E(AXX ′)] = tr[AE(XX ′)] =
tr[A(Σ + µµ′)] = tr(AΣ) + tr(Aµµ′) = tr(AΣ) + µ′Aµ, since Cov(X) = Σ =
E((X − µ)(X − µ)′) = E(XX ′ −Xµ′ − µX ′ + µµ′) = E(XX ′)− µµ′.
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The moment generating function (mgf) of X at α is defined as φX(α) =
E(exp(α′X)). This uniquely determines the probability distribution of X.
Note that φX((t1, 0)

′)E(exp(t1X1)) = φX1
(t1). If X and Y are independent,

φX+Y (t) = E(exp(t′(X + Y ))) = E(exp(t′X) exp(t′Y ))
= E(exp(t′X))E(exp(t′Y )) = φX(t)φY (t).

Theorem (Cramer-Wold device). If X is a random vector, its proba-
bility distribution is completely determined by the distribution of all linear
functions, α′X, α ∈ Rp.

Proof. The mgf of α′X, for any α ∈ Rp is φα′X(t) = E(tα′X). Suppose
this is known for all α ∈ Rp. Now, for any α, note φX(α) = E(exp(α′X) =
φα′X(1), which is then known.

Remark. To define the joint multivariate distribution of a random vector,
it is enough to specify the distribution of all its linear functions.

Multivariate Normal Distribution

Definition. Xp×1 is p-variate normal if for every α ∈ Rp, the distribution
of α′X is univariate normal.

Result. If X has the p-variate normal distribution, then both µ = E(X)
and Σ = Cov(X) exist and the distribution of X is determined by µ and Σ.

Proof. Let X = (X1, . . . , Xp)
′. Then for each i, Xi = α′

iX where αi =
(0, . . . , 0, 1, 0, . . . , 0)′. Therefore, Xi = α′

iX ∼ N(., .). Hence, E(Xi) = µi

and V ar(Xi) = σii exist. Also, since |σij| = |Cov(Xi, Xj)| ≤ √
σiiσjj, σij

exists. Set µ = (µ1, . . . , µp)
′ and Σ = ((σij)). Further, E(α′X) = α′µ and

V ar(α′X) = α′Σα, so

α′X ∼ N(α′µ, α′Σα), for all α ∈ Rp.

Since {α′X,α ∈ Rp} determine the distribution of X, µ and Σ suffice.
Notation: X ∼ Np(µ,Σ).

Result. If X ∼ Np(µ,Σ), then for any Ak×p, bk×1,
Y = AX + b ∼ Nk(Aµ+ b, AΣA′).

Proof. Consider linear functions, α′Y = α′AX + α′b = β′X + c, which
are univariate normal. Therefore Y is k-variate normal. E(Y ) = Aµ + b,
Cov(Y ) = Cov(AX) = AΣA′.

Theorem. Xp×1 ∼ Np(µ,Σ) iffXp×1 = Cp×rZr×1+µ where Z = (Z1, . . . , Zr)
′,

Zi i.i.d N(0, 1), Σ = CC ′, r = rank(Σ) = rank(C).

Proof. if part: IfX = CZ+µ and Z ∼ Nr(0, Ir), thenX ∼ Np(µ,CC ′ = Σ).
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Z is multivariate normal since linear functions of Z are linear combinations
of Zi’s, which are univarite normal (as can be shown using the change of
variable (jacobian) formula for joint densities, or using the mgf of normal).

Only if: If X ∼∼ Np(µ,Σ), and rank(Σ) = r ≤ p, then consider the spectral

decomposition, Σ = H∆H ′, H orthogonal, ∆ =

(

∆1 0
0 0

)

,

∆1 = diagonal(δ1, . . . , δr), δi > 0. Now, X − µ ∼ N(0,Σ), and

H ′(X − µ) ∼ N(0,∆). Let H ′(X − µ) =

(

Yr×1

T(p−r)×1

)

. Then,

(

Yr×1

T(p−r)×1

)

∼ N

((

0
0

)

,

(

∆1 0
0 0

))

.

Therefore, T = 0 w.p. 1. Let Z = ∆
−1/2
1 Y . Then Z ∼ Nr(0, Ir). Therefore,

w.p. 1, H ′(X − µ) =

(

∆
1/2
1 Z
0

)

. Further, w.p. 1,

X − µ = H

(

∆
1/2
1 Z
0

)

= (H1|H2)

(

∆
1/2
1 Z
0

)

= H1∆
1/2
1 Z = CZ.

Also, CC ′ = H1∆
1/2
1 ∆

1/2
1 H ′

1 = H1∆1H
′

1 and

Σ = H∆H ′ = (H1|H2)

(

∆1 0
0 0

)(

H ′

1

H ′

2

)

= H1∆1H
′

1.

Recall that if Z1 ∼ N(0, 1), its mgf is φZ1
(t) = E(exp(tZ1)) = exp(t2/2).

Therefore, if Z ∼ Nr(0, Ir) then

φZ(u) = E(exp(u′Z)) = E(exp(
r

∑

j=1

ujZj)) = exp(
r

∑

j=1

u2
j/2) = exp(

1

2
u′u).

Then, if X ∼∼ Np(µ,Σ), its mgf is:

φX(t) = exp(t′µ+
1

2
t′Σt),

since E(exp(t′X)) = E(exp(t′(CZ + µ))) = exp(t′µ)E(exp(t′CZ)) =
exp(t′µ) exp(t′CC ′t/2) = exp(t′µ+ t′Σt/2).
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Marginal and Conditional Distributions

Theorem. If X ∼∼ Np(µ,Σ), then the marginal distribution of any subset
of k components of X is k-variate normal.

Proof. Partition as follows:

X =

(

X
(1)
k×1

X
(2)
(p−k)×1

)

, µ =

(

µ
(1)
k×1

µ
(2)
(p−k)×1

)

, Σ =

(

Σ11 Σ12

Σ′

12 Σ22

)

.

Note that X(1) = (Ik|0)

(

X(1)

X(2)

)

∼ N
(

µ(1),Σ11

)

. Since marginals (without

independence) do not determine the joint distribution, the converse is not
true.

Example. Z ∼ N(0, 1) independent of U which takes values 1 and -1 with
equal probability. Then Y = UZ ∼ N(0, 1) since

P (Y ≤ y) = P (UZ ≤ y)

=
1

2
P (Z ≤ y|U = 1) +

1

2
P (−Z ≤ y|U = −1)

=
1

2
Φ(y) +

1

2
Φ(y) = Φ(y).

Therefore, (Z, Y ) has a joint distribution under which the marginals are
normal. However, it is not bivariate normal. Consider Z + Y =

Z + UZ =

{

2Z 1/2
0 1/2

. Since P (Z + Y = 0) = 1/2 (i.e., a point mass at

0, and Z + Y = 2Z ∼ N(0, 1) with probability 1/2, it cannot be normally
distributed.

Result. Let Xp×1 =

(

X
(1)
k×1

X
(2)
(p−k)×1

)

∼ Np

((

µ
(1)
k×1

µ
(2)
(p−k)×1

)

,

(

Σ11 Σ12

Σ′

12 Σ22

)

)

.

Then X(1) and X(2) are independent iff Σ12 = 0.

Proof. Only if: Independence implies that Cov(X(1), X(2)) = Σ12 = 0.
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If part: Suppose that Σ12 = 0. Then, note that

M(X(1),X(2))(s1, s2)

= E(exp(s′1X
(1) + s′2X

(2)) = E(exp

((

s1
s2

)

′

X

)

)

= E(exp

((

s1
s2

)

′
(

µ(1)

µ(2)

)

+
1

2

(

s1
s2

)

′
(

Σ11 Σ12

Σ′

12 Σ22

)(

s1
s2

))

)

= exp

(

s′1µ
(1) + s′2µ

(2) +
1

2
s′1Σ11s1 +

1

2
s′2Σ22s2 + s′1Σ12s2

)

= exp

(

s′1µ
(1) +

1

2
s′1Σ11s1

)

exp

(

s′2µ
(2) +

1

2
s′2Σ22s2

)

= MX1(s1)MX2(s2),

for all s1 and s2 iff Σ12 = 0.

Result. Suppose X ∼ Np(µ,Σ) and let U = AX, V = BX. Then U and V
are independent iff Cov(U, V ) = AΣB′ = 0.

Proof. Same as above, since

(

U
V

)

=

(

A
B

)

X ∼ N(., .).

Theorem. If X ∼ Np(µ,Σ) and Σ is p.d. then

fX(x) = (2π)−p/2|Σ|−1/2 exp

(

−
1

2
(x− µ)′Σ−1(x− µ)

)

, x ∈ Rp.

Proof. Let Σ = CC ′ where C = Σ1/2 is nonsingular. Then X = CZ + µ,
Z ∼ N(0, Ip). Since Zi are i.i.d N(0, 1),

fZ(z) = (2π)−p/2 exp(−
1

2

p
∑

i=1

z2i ) = (2π)−p/2 exp(−
1

2
z′z).

Since X = CZ + µ, Z = C−1(X − µ). Jacobian of the transformation is
dz = |C|−1 dx = |Σ|−1 dx. Therefore,

fX(x) = (2π)−p/2|Σ|−1/2 exp

(

−
1

2
(x− µ)′(C ′)−1C−1(x− µ)

)

= (2π)−p/2|Σ|−1/2 exp

(

−
1

2
(x− µ)′Σ−1(x− µ)

)

.

Note. fX(x) is constant on the ellipsoid, {x : (x− µ)′Σ−1(x− µ) = r2}.
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Ex. Check for p = 2 to see if the above results agree with those of the
bivariate normal.

Theorem. Let X ∼ Np(µ,Σ), Σ > 0 (i.e., p.d.), and let

X =

(

X1

X2

)

, µ =

(

µ1

µ2

)

, Σ =

(

Σ11 Σ12

Σ21 Σ22

)

,

where X1 and µ1 are of length k. Also, let Σ11.2 = Σ11 − Σ12Σ
−1
22 Σ21. Then

Σ11.2 > 0 and,
(i) X1 − Σ12Σ

−1
22 X2 ∼ Nk(µ1 − Σ12Σ

−1
22 µ2,Σ11.2) and is independent of X2;

(ii) The conditional distribution of X1 given X2 is
Nk

(

µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11.2

)

.

Proof. (i) Let C =

(

Ik −Σ12Σ
−1
22

0 Ip−k

)

. Then

CX =

(

X1 − Σ12Σ
−1
22 X2

X2

)

∼ Np

((

µ1 − Σ12Σ
−1
22 µ2

µ2

)

, CΣC ′

)

.

CΣC ′ =

[

Ik −Σ12Σ
−1
22

0 Ip−k

](

Σ11 Σ12

Σ21 Σ22

)[

Ik 0
−Σ−1

22 Σ21 Ip−k

]

=

(

Σ11 − Σ12Σ
−1
22 Σ21 0

Σ21 Σ22

)[

Ik 0
−Σ−1

22 Σ21 Ip−k

]

=

(

Σ11.2 0
0 Σ22

)

.

Now, independence of X1 − Σ12Σ
−1
22 X2 and X2 follows from the fact that

Cov(X1 − Σ12Σ
−1
22 X2, X2) = 0.

(ii) Note that X1 = (X1−Σ12Σ
−1
22 X2)+Σ12Σ

−1
22 X2. Therefore, from the inde-

pendence of these two parts, X1|(X2 = x2) = Σ12Σ
−1
22 x2+(X1−Σ12Σ

−1
22 X2) ∼

N(Σ12Σ
−1
22 x2 + µ1 − Σ12Σ

−1
22 µ2,Σ11.2).

Remark. Under multivariate normality, the best regression is linear. If
we want to predict X1 based on X2, the best predictor is E(X1|X2), which
is equal to µ1 − Σ12Σ

−1
22 µ2 + Σ12Σ

−1
22 x2. The prediction error, however, is

independent of X2.
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Quadratic Forms.

Recall that, Y ′AY is called a quadratic form of Y when Y is a random vector.

Result. If X ∼ Np(µ,Σ), Σ > 0, then (X − µ)′Σ−1(X − µ) ∼ χ2
p.

Proof. Z = Σ−1/2(X − µ) ∼ Np(0, Ip). i.e., Z1, Z2, . . . , Zp are i.i.d. N(0, 1).
Therefore Z ′Z =

∑p
i=1

Z2
i ∼ χ2

p. Note that (X − µ)′Σ−1(X − µ) = Z ′Z.

Result. If X1, X2, . . . , Xn is a random sample from N(µ, σ2), then X̄ and
S2 =

∑n
i=1

(Xi − X̄)2 are independent, X̄ ∼ N(µ, σ2/n) and S2/σ2 ∼ χ2
n−1.

Proof. First note that X = (X1, X2, . . . , Xn)
′ ∼ Nn(µ1, σ

2In). Now con-
sider an orthogonal matrix An×n = ((aij)) with the first row being a′

1 =
( 1√

n
, 1√

n
, . . . , 1√

n
) = 1√

n
1′. (Simply consider a basis for Rn with a1 as the

first vector, orthogonalize the rest.) Now let Y = AX. i.e., Yi = a′iX, i =
1, 2, . . . , n. Since X ∼ Nn(µ1, σ

2In), we have that Y ∼ Nn(µA1, σ
2AA′) =

Nn(µA1, σ
2In). Therfeore, Yi are independent normal with variance σ2. Fur-

ther, E(Yi) = E(a′iX) = µa′i1. Thus, E(Y1) = µa′11 = µ 1√
n
1′1 =

√
nµ.

For i > 1, E(Yi) = µa′i1 = µ
√
na′ia1 = 0. i.e., Y2, . . . , Yn are i.i.d N(0, σ2).

Therefore,
∑n

i=2
Y 2
i ∼ χ2

n−1. Further, Y1 = a′1X = 1√
n

∑n
i=1

Xi =
√
nX̄ ∼

N(
√
nµ, σ2) and is independent of (Y2, . . . , Yn). Also, S

2 =
∑n

i=1
(Xi−X̄)2 =

∑n
i=1

X2
i − nX̄2 = X ′X − Y 2

1 = Y ′Y − Y 2
1 =

∑n
i=2

Y 2
i ∼ χ2

n−1 which is inde-
pendent of Y1, and therefore of X̄.

If X ∼ Np(0, I), then X ′X =
∑p

i=1
X2

i ∼ χ2
p. i.e., X ′IX ∼ χ2

p. Also, note
X ′( 1√

p
1 1√

p
1′)X = pX̄2 ∼ χ2

1 and X ′(I − 1

p
11′)X ∼ χ2

p−1.

What is the distribution of X ′AX for any arbitrary A which is p.s.d.? With-
out loss of generality we can assume that A is symmetric since

X ′AX = X ′(
1

2
(A+A′))X = X ′BX, where B =

1

2
(A+A′) is always symmetric.

Since A is symmetric p.s.d., A = ΓDλΓ
′, so X ′AX = X ′ΓDλΓ

′X = Y ′DλY ,
where Y = Γ′X ∼ Np(0,Γ

′Γ = I). Therefore X ′AX =
∑p

i=1
diY

2
i , where

di are eigen values of A and Yi are i.i.d N(0, 1). Therefore X ′AX has the
χ2 distribution if di = 1 or 0. Equivalently, X ′AX ∼ χ2 if A2 = A or
A is symmetric idempotent or A is an orthogonal projection matrix. The
equivalence may be seen as follows. If d1 ≥ d2 ≥ . . . ≥ dp ≥ 0 are such that

1



d1 = d2 = . . . = dr = 1 and dr+1 = . . . = dp = 0, then

A = Γ

(

Ir 0
0 0

)

Γ′,

A2 = Γ

(

Ir 0
0 0

)

Γ′Γ

(

Ir 0
0 0

)

Γ′ = A.

If A2 = A then ΓDλΓ
′ΓDλΓ

′ = ΓD2
λΓ

′ = ΓDλΓ
′ implies that D2

λ = Dλ, or
that d2i = di, or that di = 0 or 1.

We will show the converse now. Suppose X ′AX ∼ χ2
r and A is symmetric

p.s.d. Then the mgf of X ′AX is:

MX′AX(t) =

∫ ∞

0

exp(tu)
exp(−u/2)ur/2−1

2r/2Γ(r/2)
du

=

∫ ∞

0

exp(−u
2
(1− 2t))ur/2−1

2r/2Γ(r/2)
du

= (1− 2t)−r/2, for 1− 2t > 0.

But in distribution, X ′AX =
∑p

i=1
diY

2
i , Yi i.i.d. N(0, 1), so

MX′AX(t) = E

[

exp(t

p
∑

i=1

diY
2

i )

]

= E

[

p
∏

i=1

exp(tdiY
2

i )

]

=

p
∏

i=1

E
[

exp(tdiY
2

i )
]

=

p
∏

i=1

(1− 2tdi)
−1/2, for 1− 2tdi > 0.

Now note that X ′AX ∼ χ2
r implies X ′AX > 0 wp 1. i.e.,

∑p
i=1

diY
2
i > 0

wp 1, which in turn imples that di ≥ 0 for all i. (This is because, if dl < 0,
since Y 2

l ∼ χ2
1 independently of Yi, i 6= l, we would have

∑p
i=1

diY
2
i < 0 with

positive probability.) Therefore, for t < mini
1

2di
, equating the two mgf’s, we

have (1 − 2t)−r/2 =
∏p

i=1
(1 − 2tdi)

−1/2, or (1 − 2t)r/2 =
∏p

i=1
(1 − 2tdi)

1/2,
or (1− 2t)r =

∏p
i=1

(1− 2tdi). Equality of two polynomials mean that their
roots must be the same. Check that r of the di’s must be 1 and rest 0. Thus
the following result follows.

Result. X ′AX ∼ χ2
r iffA is a symmetric idempotent matrix or an orthogonal

projection matrix of rank r.
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Result. Suppose Y ∼ Np(0, Ip) and let Y ′Y = Y ′AY+Y ′BY . If Y ′AY ∼ χ2
r,

then Y ′BY ∼ χ2
p−r independent of Y

′AY .

Proof. Note that Y ′Y ∼ χ2
p. Since Y ′AY ∼ χ2

r, A is symmetric idempotent
of rank r. Therefore, B = I − A is symmetric and B2 = (I − A)2 =
I − 2A+ A2 = I − A = B, so that B is idempotent also. Further, Rank(B)
= trace(B) = trace(I −A) = p− r. Therefore, Y ′BY ∼ χ2

p−r. Independence
is shown later.

Result. Let Y ∼ Np(0, Ip) and let Q1 = Y ′P1Y , Q2 = Y ′P2Y , Q1 ∼ χ2
r, and

Q2 ∼ χ2
s. Then Q1 and Q2 are independent iff P1P2 = 0.

Corollary. In the result before the above one, A(I − A) = 0, so Y ′AY and
Y ′(I − A)Y are independent.

Proof. P1 and P2 are symmetric idempotent. If P1P2 = 0 then
Cov(P1Y, P2Y ) = 0 so that Q1 = (P1Y )′(P1Y ) = Y ′P 2

1 Y = Y ′P1Y is in-
dependent of Q2 = (P2Y )′(P2Y ) = Y ′P2Y . Conversely, if Q1 and Q2 are
independent χ2

r and χ2
s, then Q1+Q2 ∼ χ2

r+s. Since Q1+Q2 = Y ′(P1+P2)Y ,
P1 +P2 is symmetric idempotent. Hence, P1 +P2 = (P1 +P2)

2 = P 2
1 +P 2

2 +
P1P2 + P2P1, implying P1P2 + P2P1 = 0. Multiplying by P1 on the left, we
get, P 2

1P2+P1P2P1 = P1P2+P1P2P1 = 0 (∗). Similarly, multiplying by P1 on
the right yields, P1P2P1 + P2P1 = 0. Subtracting, we get, P1P2 − P2P1 = 0.
Combining this with (∗) above, we get P1P2 = 0.

Result. Let Q1 = Y ′P1Y , Q2 = Y ′P2Y , Y ∼ Np(0, Ip). If Q1 ∼ χ2
r,

Q2 ∼ χ2
s and Q1 −Q2 ≥ 0, then Q1 −Q2 and Q2 are independent, r ≥ s and

Q1 −Q2 ∼ χ2
r−s.

Proof. P 2
1 = P1 and P 2

2 = P2 are symmetric idempotent. Q1 − Q2 ≥ 0
means that Y ′(P1−P2)Y ≥ 0, hence P1−P2 is p.s.d. Therefore, from Lemma
shown below, P1 − P2 is a projection matrix and also P1P2 = P2P1 = P2.
Thus (P1 − P2)P2 = 0. Also, Rank(P1 − P2) = tr(P1 − P2) = tr(P1) - tr(P2)
= Rank(P1) - Rank(P2) = r − s. Hence, Q1 − Q2 = Y ′(P1 − P2)Y ∼ χ2

r−s,
and is independent of Q2 = Y ′P2Y ∼ χ2

s.

Lemma. If P1 and P2 are projection matrices such that P1 − P2 is p.s.d.,
then (a) P1P2 = P2P1 = P2 and (b) P1 − P2 is also a projection matrix.

Proof. (a) If P1x = 0, then 0 ≤ x′(P1 − P2)x = −x′P2x ≤ 0, implying
0 = x′P2x = x′P 2

2 x = (P2x)
′P2x, so P2x = 0. Therefore, for any y,

P2(I − P1)y = 0 since P1(I − P1)y = 0 (Take x = (I − P1)y.) Thus, for any
y, P2P1y = P2y or P2P1 = P2, and so P2 = P ′

2 = (P2P1)
′ = P1P2.

(b) (P1 − P2)
2 = P 2

1 + P 2
2 − P1P2 − P2P1 = P1 + P2 − P2 − P2 = P1 − P2.

1



Result. Any orthogonal projection matrix (i.e., symmetric idempotent) is
p.s.d.

Proof. If P is a projection matrix, x′Px = x′P 2x = (Px)′Px ≥ 0.

Result. Let C be a symmetric p.s.d. matrix. If X ∼ Np(0, Ip), then AX

and X ′CX are independent iff AC = 0.

Proof. (i) If part: Since C is symmetric p.s.d., C = TT ′. If AC = 0, then
ATT ′ = 0, so ATT ′A′ = (AT )(AT )′ = 0 and hence AT = 0. Thus AX and
T ′X are independent, so AX and (T ′X)(T ′X)′ = X ′CX are independent.

(ii) Only if: If AX and X ′CX are independent, then X ′A′AX and X ′CX

are independent. But the mgf of X ′BX for any B is E(exp(tX ′BX)) =
|I − 2tB|−1/2 for an interval of values of t. Therefore, the joint mgf of X ′CX

and X ′A′AX is |I − 2(t1C + t2A
′A)|−1/2, but because of independence this

is given to be equal to

|I − 2t1C|−1/2|I − 2t2A
′A|−1/2 = |I − 2t1C − 2t2A

′A+ 4t1t2CA′A|−1/2.

Show that, for this to hold on an open set, we must have CA′A = 0, implying
CA′AC ′ = 0, and thus AC ′ = 0. But C ′ = C.

Lemma. If X ∼ Np(µ,Σ), then Cov(AX,X ′CX) = 2AΣCµ.

Proof. Note that (X − µ)′C(X − µ) = X ′CX + µ′Cµ− 2X ′Cµ = X ′CX −
2((X − µ)′Cµ− µ′Cµ and E(X ′CX) = tr(CΣ) + µ′Cµ. Therefore X ′CX −
E(X ′CX) = X ′CX −µ′Cµ− tr(CΣ) = (X −µ)′C(X −µ) + 2(X −µ)′Cµ−
tr(CΣ). Hence,

Cov(AX,X ′CX)

= E [(AX − Aµ)(X ′CX − E(X ′CX))]

= AE {(X − µ) [(X − µ)′C(X − µ) + 2(X − µ)′Cµ− tr(CΣ)]}

= 2AE {(X − µ)(X − µ)′Cµ} − tr(CΣ)AE(X − µ)

+AE {(X − µ)(X − µ)′C(X − µ)}

= 2AΣCµ,

since E(X − µ) = 0 and E {(X − µ)(X − µ)′C(X − µ)} =

E
{

(X − µ)
[

∑

i

∑

j Cij(Xi − µi)(Xj − µj)
]}

= 0. To prove this last equal-

ity, it is enough to show that E {(Xl − µl)(Xi − µi)(Xj − µj)} = 0 for all
i, j, l. For this note:
(i) if i = j = l, E(Xi − µi)

3 = 0.
(ii) if i = j 6= l, E {(Xi − µi)

2(Xl − µl)} = 0 since Xl −µl =
σil

σll

(Xi −µi)+ ǫ,

2



where ǫ ∼ N(0, .) is independent of Xi, so this case reduces to (i).
(iii) if i, j and l are all different, the case reduces to (i) and (ii). Alterna-
tively, consider Y = (Y1, Y2, Y3)

′ ∼ N3(0,Σ). Then Y = Σ1/2(Z1, Z2, Z3),
where Zi are i.i.d. N(0, 1). Then to show that E(Y1Y2Y3) = 0, simply note
that Y1Y2Y3 is a linear combination of Z3

i , Z
2
i Zj and Z1Z2Z3, all of which

have expectation 0.

Loynes’ Lemma. If B is symmetric idempotent, Q is symmetric p.s.d. and
I −B −Q is p.s.d., then BQ = QB = 0.

Proof. Let x be any vector and y = Bx. Then y′By = y′B2x = y′Bx = y′y,
so y′(I−B−Q)y = −y′Qy ≤ 0. But I−B−Q is p.s.d., so y′(I−B−Q)y ≥ 0,
implying −y′Qy ≥ 0. Since Q is also p.s.d., we must have y′Qy = 0. (Note,
y is not arbitrary, but Bx for some x.) In addition, since Q is symmetric
p.s.d., Q = L′L for some L, and hence y′Qy = y′L′Ly = 0, implying Ly = 0.
Thus L′Ly = Qy = QBx = 0 for all x. Therefore, QB = 0 and hence
(QB)′ = B′Q′ = BQ = 0.
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Theorem. Suppose Xi are n × n symmetric matrices with rank ki, i =
1, 2, . . . , p. Let X =

∑p

i=1
Xi have rank k. (It is symmetric.) Then, of the

conditions
(a) Xi idempotent for all i
(b) XiXj = 0, i 6= j

(c) X idempotent
(d)

∑p

i=1
ki = k,

it is true that
I. any two of (a), (b), and (c) imply all of (a), (b), (c) and (d)
II. (c) and (d) imply (a) and (b)
III. (c) and {X1, . . . , Xp−1 idempotent, Xp p.s.d.} imply that Xp idempotent
and hence (a), and therefore (b) and (d).

Proof. I (i): Show (a) and (c) imply (b) and (d). For this, note, given (c),
I−X is idempotent and hence p.s.d. Now, given (a), X−Xi−Xj =

∑

r 6=i,j Xr

is p.s.d, being the sum of p.s.d matrices. Therefore, (I−X)+(X−Xi−Xj) =
I −Xi −Xj is p.s.d., hence XiXj = 0 from Loynes’ Lemma. i.e., (b). Also,
given (c), Rank(X) = tr(X) = tr(

∑

Xi) =
∑

tr(Xi) =
∑

ki, if (a) is also
given. i.e., (d).

(ii): Show (b) and (c) imply (a) and (d). Let λ be an eigen value of X1 and
u be the corresponding eigen vector. Then X1u = λu. Either λ = 0, or,
if λ 6= 0, u = X1

1

λ
u. Therefore, for i 6= 1, Xiu = XiX1

1

λ
u = 0 given (b).

Therefore, given (b), Xu = X1u = λu, and so λ is an eigen value of X. But
given (c), X is idempotent, and hence λ = 0 or 1. Therefore eigen values of
X1 are 0 or 1, or X1 is idempotent. Similarly for the other Xi’s. i.e., (a).

(iii): (a) and (b) together imply (c). (Note that then they imply (d) also,
since (a) and (c) give (d).) Given (b) and (a), X2 = (

∑

Xi)
2 =

∑

X2

i =
∑

Xi = X, which is (c).

II. Show (c) and (d) imply (a) and (b). Given (c), I −X is idempotent and
hence has rank n− k. Therefore rank of X − I is also n− k. i.e., X − I has
n− k linearly independent rows. i.e.,

(X − I)x = 0 has n− k linearly independent equations. Further,
X2x = 0 has k2 linearly independent equations,

...
Xpx = 0 has kp linearly independent equations.

1



Therefore the maximum number of linearly independent equations in











X − I

X2

...
Xp











x = 0 is n− k + k2 + . . .+ kp = n− k1.

i.e., the dimension of the solution space is at least n−(n−k1) = k1. However,
this space is exactly X1x = x because the above equations reduce to that.
Thus X1x = 1x has at least k1 linearly independent solutions, or 1 is an
eigen value of X1 with multiplicity at least k1. But since the rank of X1 is
k1, multiplicity must be exactly k1. Also, the other eigen values must be 0.
Therefore X1 is idempotent. Similar argument for the other Xi’s. So, (a).
Now combine it with (c) to get (b).

III. Given (c), X is idempotent, so p.s.d. Therefore, I − X is idempotent
and hence p.s.d. If X1, . . . , Xp−1 are idempotent, hence p.s.d., and Xp is also
p.s.d., then

∑

r 6=i,j Xr = X−Xi−Xj is p.s.d., so (I−X)+ (X−Xi−Xj) =
I −Xi −Xj is p.s.d. Then XiXj = 0 from Loynes’, giving (b). Now (b) and
(c) give (a) and (d).

The above theorem in linear algebra translates into a powerful result called
Fisher-Cochran theorem on the question of: when are quadratic forms inde-
pendent χ2?

Theorem. Suppose Y ∼ Nn(0, In), Ai, i = 1, . . . , p are symmetric n × n

matrices of rank ki, and A =
∑p

i=1
Ai is symmteric with rank k. Then

(i) Y ′AiY ∼ χ2

ki
, (ii) Y ′AiY are pairwise independent, and (iii) Y ′AY ∼ χ2

k

iff
I. any two of (a) Ai are idempotent for all i, (b) AiAj = 0, i 6= j, (c) A is
idempotent, are true, or
II. (c) is true and (d) k =

∑

i ki, or
III. (c) is true and
(e) A1, . . . , Ap−1 are idempotent and Ap is p.s.d. is true.

Proof. Follows from the previous theorem.
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Linear Models – Estimation

Consider yi uncorrelated, E(yi) = µ, V ar(yi) = σ2, i = 1, 2, . . . , n. Estimate
µ. In the absence of distributional assumptions, an appealing approach is
least squares. What is the estimate and what are its properties? Write the
model as:
yi = µ+ ǫi, E(ǫi) = 0, V ar(ǫi) = σ2, Cov(ǫi, ǫj) = 0, i 6= j. Find

min
µ

n
∑

i=1

(yi − µ)2.

Note that,

n
∑

i=1

(yi − µ)2 =
n

∑

i=1

(yi − ȳ)2 + n(ȳ − µ)2 ≥
n

∑

i=1

(yi − ȳ)2

with equality iff µ̂ = ȳ. Therefore, LSE of µ is µ̂LS = ȳ. In vector-matrix
formulation,

Y =







y1
...
yn






=







µ
...
µ






+







ǫ1
...
ǫn






= µ1+ ǫ.

||Y − µ1||2 = (Y − µ1) (Y − µ1)′ =
n

∑

i=1

(yi − µ)2 = ||ǫ||2.

Therefore, least squares is equivalent to finding the multiple of 1 which mini-
mizes ||ǫ||. This is achieved when we take the perpendicular or the orthogonal
projection of Y onto the space spanned by 1. i.e.,

Y′1

1′1
1+ (Y −

Y′1

1′1
1) = Y

i.e.,

µ̂LS =
1′Y

1′1
= ȳ.

Since Cov(Y) = σ2In and E(Y) = µ1,

E(µ̂LS) =
1

1′1
1′E(Y) =

1′µ1

1′1
= µ.

V ar(µ̂LS) = Cov(
1′Y

1′1
) =

1

1′1
1′Cov(Y)

1

1′1
1 = σ2 1

′In1

(1′1)2
=

σ2

n
.

1



Note, that µ̂LS is a linear unbiased estimate of µ. Suppose a′Y is any linear
unbiased estimate of µ. Then E(a′Y ) = µa′1 = µ for all µ implies that
a′1 = 1. What is the best linear unbiased estimator of µ (i.e., least MSE)?
Note,

V ar(a′Y ) = Cov(a′Y ) = a′Cov(Y )a = σ2a′a.

To minimize this we just need to find a such that a′1 = 1 and a′a is minimum.
Simply note that a′a =

∑n

i=1 a
2
i and

1

n

n
∑

i=1

a2i −

(∑n

i=1 ai

n

)2

≥ 0, for all a since
n

∑

i=1

(ai − ā)2 ≥ 0.

i.e.,
1

n

n
∑

i=1

a2i −

(

1

n

)2

≥ 0, or
n

∑

i=1

a2i ≥
1

n

with equality iff ai = 1
n
for all i. Therefore, µ̂LS is BLUE (Best Linear

Unbiased Estimate) irrespective of the distribution of ǫ.

Linear models: Estimation

Data: (xi, yi), i = 1, 2, . . . , n with multiple predictors or covariates of y.

yi = β0 + β1xi1 + β2xi2 + . . .+ βp−1xi(p−1) + ǫi, i = 1, . . . , n

= x′

iβ + ǫ, i = 1, . . . , n

is a model for y|x. Let Yn×1 = (y1, . . . , yn)
′, βp×1 = (β0, β1, . . . , βp−1)

′,

Xn×p =







x10 x11 . . . x1(p−1)
...

... . . .
...

xn0 xn1 . . . xn(p−1)






, xi0 ≡ 1 here but can be general also.

β is called the vector of regression coefficients and X is called the regression
matrix or the design matrix (especially if xij = 0 or 1). Quite often y is
called the dependent variable and x the set of independent variables. It is
more standard to call y the response and x, the regressor or predictor. Recall
from previous discussion that
yi = β0 + β1xi + β2x

2
i + ǫi is a linear model, but

yi = β0 + β1xi + x
β2

i + ǫi is nonlinear. i.e., linear model means linear in βj’s.
A general Xn×p is fine, X0 = 1 is not essential. Thus we have the linear
model:
Yn×1 = Xn×pβp×1 + ǫ.
Since we have only n observations, it does not make sense to consider p ≥ n,
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so we take p < n. Skip bold face for vectors and matrices unless there is
ambiguity.

First task is to estimate β. Most common approach is to use least squares
(again, in the absence of distributional assumptions on ǫ). We want

min
β∈Rp

n
∑

i=1

(yi − x′

iβ)
2 = min ||ǫ||2 = min

β∈Rp
||Y −Xβ||2

= min
θ∈MC(X)

||Y − θ||2,

where MC(X) = {a : a = Xb for some b ∈ Rp}. Note that Xb = b1X1 +
b2X2 + . . .+ bpXp where Xi are the column vectors of X. Now, to minimize

||Y −θ||2 when θ ∈ MC(X), we should take θ̂ to be the orthogonal projection
of Y onto MC(X). i.e., Y − θ̂ should be orthogonal to MC(X). i.e.,

X ′(Y − θ̂) = 0, or X ′θ̂ = X ′Y.

θ̂ is uniquely determined, being the unique orthogonal projection of Y onto
MC(X). We consider the two cases, Rank(X) = p and Rank(X) < p,
separately.

y1

y2

y
ŷ = θ̂

θ = Xb

3



Full rank case. Rank(X) = p. Since the columns of X are linearly inde-
pendent, there exists a unique vector β̂ such that θ̂ = Xβ̂. (If the columns
of X are not linearly independent β̂ is not unique.) Therefore,

X ′Xβ̂ = X ′Y.

Since X has full column rank, X ′X is nonsingular. Therefore,

β̂LS = (X ′X)−1X ′Y

is unique. One could also use calculus for this derivation:

||Y −Xβ||2 = (Y −Xβ)′(Y −Xβ) = Y ′Y − 2β′X ′Y + β′X ′Xβ,

so differentiating it w.r.t. β:

−2X ′Y + 2X ′Xβ = 0, or X ′Xβ̂ = X ′Y.

Note that
θ̂ = Xβ̂ = X(X ′X)−1X ′Y = PY = Ŷ ,

where P is the projection matrix onto MC(X).
ǫ̂ = Y − Ŷ = Y −Xβ̂ = (I − P )Y = residuals.

ǫ̂′ǫ̂ = (Y −Xβ̂)′(Y −Xβ̂) = Y ′Y − β̂′X ′Y + β̂′(X ′Xβ̂ −X ′Y )

= Y ′Y − β̂′X ′Y = Y ′Y − β̂′(X ′Xβ̂ = Y ′(I − P )Y

= sum of squares of residuals (RSS) =
n

∑

i=1

(yi − x′

i
β̂)2

Example. Find least squares estimate of θ1 and θ2 in the following:
y1 = θ1 + θ2 + ǫ1
y2 = θ1 − θ2 + ǫ2
y3 = θ1 + 2θ2 + ǫ3

Obtain X and β by writing it in the vector-matrix formulation:




y1
y2
y3



 =





1 1
1 −1
1 2





(

θ1
θ2

)

+





ǫ1
ǫ2
ǫ3



 , i.e.,

Y = Xβ + ǫ.

Then, noting that

X ′X =

(

1 1 1
1 −1 2

)





1 1
1 −1
1 2



 =

(

3 2
2 6

)

,

(X ′X)−1 =
1

14

(

6 −2
−2 3

)

1



we obtain

β̂ =

(

θ̂1

θ̂2

)

= (X ′X)−1X ′Y

=
1

14

(

6 −2
−2 3

)(

y1 + y2 + y3
y1 − y2 + 2y3

)

=
1

14

(

6(y1 + y2 + y3)− 2(y1 − y2 + 2y3)
−2(y1 + y2 + y3) + 3(y1 − y2 + 2y3)

)

=
1

14

(

4y1 + 8y2 + 2y3
y1 − 5y2 + 4y3

)

=

(

2

7
y1 +

4

7
y2 −

1

7
y3

1

14
y1 −

5

14
y2 +

2

7
y3

)

,

ǫ̂′ǫ̂ = Y ′Y − β̂′X ′Y = (y2
1
+ y2

2
+ y2

3
)−

1

14
(4y1 + 8y2 + 2y3)(y1 + y2 + y3)

−
1

14
(y1 − 5y2 + 4y3)(y1 − y2 + 2y3).

Theorem. P = X(X ′X)−1X ′ is symmetric idempotent, being the projection
matrix onto MC(X). Rank(P ) = Rank(X) = p. I − P is the orthogonal
projection matrix. Rank(I − P ) = n− p and (I − P )X = 0.

The case of Rank(X) = r < p will be discussed later.

An alternative derivation of β̂:

(Y −Xβ)′(Y −Xβ) = (Y −Xβ̂ +Xβ̂ −Xβ)′(Y −Xβ̂ +Xβ̂ −Xβ)

= (Y −Xβ̂)′(Y −Xβ̂) + (Xβ̂ −Xβ)′(Xβ̂ −Xβ)

+2(Xβ̂ −Xβ)′(Y −Xβ̂)

= (Y −Xβ̂)′(Y −Xβ̂) + (β̂ − β)′X ′X(β̂ − β),

since
(Xβ̂ −Xβ)′(Y −Xβ̂) = (β̂ − β)′(X ′Y −X ′Xβ̂) = 0.

Therefore,
(Y −Xβ)′(Y −Xβ) ≥ (Y −Xβ̂)′(Y −Xβ̂)

with equality iff β̂ − β = 0 since X ′X is p.d.
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Properties of least squares estimates

If Y = Xβ + ǫ, with E(ǫ) = 0 and Cov(ǫ) = σ2In. then E(β̂) = β since

E(β̂) = E((X ′X)−1X ′Y ) = (X ′X)−1X ′E(Y )

= (X ′X)−1X ′Xβ = β, and

Cov(β̂) = Cov((X ′X)−1X ′Y ) = (X ′X)−1X ′Cov(Y )X(X ′X)−1

= σ2(X ′X)−1X ′X(X ′X)−1 = σ2(X ′X)−1.

Theorem (Gauss-Markov). Consider the Gauss-Markov model, Y =
Xβ + ǫ, with E(ǫ) = 0 and Cov(ǫ) = σ2In. Let θ̂ be the least squares
estimate of θ = Xβ. Fix c ∈ Rp and consider estimating c′θ. Then, in the
class of all linear unbiased estimates of c′θ, c′θ̂ is the unique estimate with
minimum variance. (Thus c′θ̂ is BLUE of c′θ.)

Proof. θ̂ = Xβ̂ = PY , where P is the projection matrix onto MC(X). In
particular, PX = X. Therefore,

E(c′θ̂) = c′E(PY ) = c′PE(Y ) = c′PXβ = c′Xβ = c′θ,

so that c′θ̂ = PY is a linear unbiased estimate of c′θ. Let d′Y be any other
linear unbiased estimate of c′θ. Then c′θ = E(d′Y ) = d′θ, or (c−d)′θ = 0 for
all θ ∈ MC(X). i.e., (c−d) is orthogonal toMC(X). Therefore P (c−d) = 0,
and so Pc = Pd. Now,

V ar(d′Y )− V ar(c′θ̂) = V ar(d′Y )− V ar(c′PY )

= V ar(d′Y )− V ar(d′PY )

= σ2(d′d− d′P 2d) = σ2(d′d− d′Pd)

= σ2d′(I − P )d = σ2d′(I − P )(I − P )d

≥ 0

with equality iff (I − P )d = 0 or d = Pd = Pc. i.e., d′Y = c′PY = c′θ̂.

Remark. Since we have assumed that X has full column rank,
P = X(X ′X)−1X ′ and so, if θ = Xβ, thenX ′θ = X ′Xβ or β = (X ′X)−1X ′θ.
Therefore, for every a ∈ Rp, a′β = a′(X ′X)−1X ′θ = c′θ, where
c = X(X ′X)−1a. i.e., every linear function of β is a linear function of θ.
Therefore, for every a ∈ Rp, we have that a′β̂ = a′(X ′X)−1X ′θ̂ = c′θ̂ is
BLUE of a′β. Thus, when X has full column rank, all linear functions of β
have BLUE, all components of β are estimable (BLUE exists). This will not
be the case when X has less than full column rank.
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Result. In the model, Y = Xβ+ ǫ, E(ǫ) = 0, Cov(ǫ) = σ2In and X has full
column rank (p), we have that

E(RSS) = E((Y −Xβ̂)′(Y −Xβ̂)) = (n− p)σ2,

so that RSS/(n− p) is an unbiased estimate of σ2.

Proof. Note that Y −Xβ̂ = Y − PY = (I − P )Y . Therefore,

RSS = (Y −Xβ̂)′(Y −Xβ̂) = Y ′(I − P )2Y = Y ′(I − P )Y,

where I − P is symmetric idempotent with rank n− p.

E(RSS) = E(Y ′(I − P )Y ) = tr(σ2(I − P )) + (Xβ)′(I − P )(Xβ)

= σ2(n− p) + β′X ′(I − P )Xβ

= (n− p)σ2.

For confidence statements and testing we need distribution theory.

Distribution Theory

Suppose ǫi are i.i.d. N(0, σ2). Then ǫn×1 ∼ Nn(0, σ
2In) and so,

Y ∼ Nn(Xβ, σ2In).

Theorem. If Y ∼ Nn(Xβ, σ2In) and X has rank p, then
(i) β̂ ∼ Np(β, σ

2(X ′X)−1),

(ii) (β̂ − β)′X ′X(β̂ − β)/σ2 ∼ χ2

p,

(iii) β̂ is independent of RSS = (Y −Xβ̂)′(Y −Xβ̂),
(iv) RSS/σ2 ∼ χ2

n−p.

Proof. Y ∼ Nn(Xβ, σ2In), so (i)

β̂ = (X ′X)−1X ′Y ∼ Np((X
′X)−1X ′Xβ, σ2(X ′X)−1X ′X(X ′X)−1)

= N(β, σ2(X ′X)−1).

(ii) Since β̂ ∼ Np(β, σ
2(X ′X)−1), note (X ′X)1/2(β̂ − β) ∼ Np(0, σ

2Ip), and
hence
(β̂ − β)′X ′X(β̂ − β)/σ2 ∼ χ2

p.

(iii) β̂ = (X ′X)−1X ′Y = AY and RSS = Y ′(I−P )Y . Since Y ∼ Nn(Xβ, σ2In),
independence of β̂ and Y ′(I −P )Y holds iff A(I −P ) = 0. But (I −P )A′ =
(I−P )X(X ′X)−1 = 0. Alternatively, β̂ = (X ′X)−1X ′Y = (X ′X)−1X ′P ′Y =
(X ′X)−1X ′(PY ), so that it is independent of (I − P )Y .
(iv) (a) RSS = Y ′(I−P )Y = (Y −Xβ)′(I−P )(Y −Xβ) since (I−P )X = 0.
Note that since Y −Xβ ∼ Nn(0, σ

2In), and I−P is idempotent of rank n−p,
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(Y −Xβ)′(I − P )(Y −Xβ) ∼ χ2

n−p.
(b) Alternatively, note that Q = (Y −Xβ)′(Y −Xβ) ∼ σ2χ2

n. Now

Q = (Y −Xβ)′(Y −Xβ)

= (Y −Xβ̂ +Xβ̂ −Xβ)′(Y −Xβ̂ +Xβ̂ −Xβ)

= (Y −Xβ̂)′(Y −Xβ̂) + (β̂ − β)′X ′X(β̂ − β)

= Q1 +Q2,

where Q2 ∼ σ2χ2

p and Q1 ≥ 0. Therefore, from a previous result, Q1 ∼

σ2χ2

n−p independent of Q2.

3



Design matrix X with less than full column rank

Consider the model,

yij = µ+ αi + τj + ǫij, i = 1, 2, . . . , I; j = 1, 2, . . . , J,

for the response from the ith treatment in the jth block, say. This can be
put in the usual linear model form: Y = Xβ + ǫ as follows:


















































y11
y12
...

y1J
y21
y22
...

y2J
...
yI1
yI2
...

yIJ



















































=



















































1 1 0 . . . 0 1 0 0 . . . 0
1 1 0 . . . 0 0 1 0 . . . 0
...

...
... . . .

...
...

...
... . . .

...
1 1 0 . . . 0 0 0 0 . . . 1
1 0 1 . . . 0 1 0 0 . . . 0
1 0 1 . . . 0 0 1 0 . . . 0
...

...
... . . .

...
...

...
... . . .

...
1 0 1 . . . 0 0 0 0 . . . 1
...

...
... . . .

...
...

...
... . . .

...
1 0 0 . . . 1 1 0 0 . . . 0
1 0 0 . . . 1 0 1 0 . . . 0
...

...
... . . .

...
...

...
... . . .

...
1 0 0 . . . 1 0 0 0 . . . 1

















































































µ

α1

α2
...
αI

τ1
τ2
...
τJ































+



















































ǫ11
ǫ12
...
ǫ1J
ǫ21
ǫ22
...
ǫ2J
...
ǫI1
ǫI2
...
ǫIJ



















































.

Here, X does not have full column rank. For instance, the first column is
proportional to the sum of the rest. Thus X ′X is singular, so the previous
discussion does not apply. β itself is not estimable, but what parametric
functions of β are estimable?

Result. For any matrix A, the row space of A satisfiesMC(A
′) = MC(A

′A).

Proof. Ax = 0 implies A′Ax = 0. Also, A′Ax = 0 implies x′A′Ax = 0,
so Ax = 0. Therefore the null space of A and A′A are the same. Consider
the orthogonal space and note Rank(A′A) = Rank(A) = Rank(A′). Further,
since A′Aa = A′b where b = Aa, MC(A

′A) ⊂ MC(A
′). Since the ranks (or

dimensions) are the same, the spaces must be the same.

Theorem. Let Y = θ + ǫ where θ = Xβ and Xn×p has rank r < p. Then
(i) minθ∈MC(X) ||Y − θ||2 is achieved (i.e., least squares is attained) when

θ̂ = Xβ̂ where β̂ is any solution of X ′Xβ = X ′Y ;
(ii) Y ′Y − β̂′X ′Y is unique for all nonzero Y .

Proof. (i) X ′Xβ = X ′Y always has some solution (for β) sinceMC(X
′X) =

MC(X
′). However, the solution is not unique since Rank(X ′X) = r < p.

1



Let β̂ be any solution, and let θ̂ = Xβ̂. Then X ′(Y − θ̂) = 0. However, given
Y ∈ Rn, the decomposition, Y = θ̂ ⊕ (Y − θ̂) where Y − θ̂ is orthogonal
to MC(X) is unique, and for such a θ̂, ||Y − θ||2 is minimized. We know
from previous discussion that minθ∈MC(X) ||Y − θ||2 is achieved with θ̂ = PY

which is unique.
(ii) Note that

Y ′Y − β̂′X ′Y = Y ′Y − θ̂′Y = (Y − θ̂)′(Y − θ̂),

since θ̂′(Y − θ̂) = 0. Also, (Y − θ̂)′(Y − θ̂) = ||Y − θ̂||2 is the unique minimum.

Question. Earlier we could find β̂ directly. How do we find θ̂ now?

Projection matrices

From the theory of orthogonal projections, given Xn×p (i.e., p many n-
vectors), there exists Pn×n satisfying
(i) Px = x for all x ∈ MC(X), and
(ii) if ξ ∈ M⊥

C(X), then Pξ = 0.
What are the properties of such a P?

1. P is unique: Suppose P1 and P2 satisfy (i) and (ii). Let w ∈ Rn. Then
w = Xa+ b, b ∈ M⊥

C(X). Then,

(P1 − P2)w = (P1 − P2)Xa+ (P1 − P2)b = (Xa−Xa) + (P1b− P2b) = 0.

Since this is true for all w ∈ Rn, we must have P1 − P2 = 0.

2. P is idempotent and symmetric:

P 2x = P (Px) = Px = x for all x ∈ MC(X);

P 2ξ = P (Pξ) = P0 = 0 for all ξ ∈ M⊥
C(X).

Therefore P 2 satisfies (i) and (ii), and since P is unique, P 2 = P . Further,
Py⊥(I − P )x for all x, y, so that y′P ′(I − P )x = 0. i.e., P ′ = P ′P , so
P = (P ′)′ = (P ′P )′ = P ′P = P ′.

Result. Let Ω be a subspace of the vector space Rn, and let PΩ be its
projection matrix. Then MC(PΩ) = Ω.

Proof. Note that MC(PΩ) ⊂ Ω. For this, take y ∈ MC(PΩ). Then y is a
linear combination of columns of PΩ, or y = PΩu for some u. Since u = w⊕v,
w ∈ Ω, v ∈ Ω⊥, we have, y = PΩu = PΩ(w⊕v) = PΩw = w ∈ Ω. Conversely,
if x ∈ Ω, then x = PΩx ∈ MC(PΩ).

2



In − PΩ represents the orthogonal projection. i.e., Rn = Ω ⊕ Ω⊥. Thus for
any y ∈ Rn, we have y = PΩy ⊕ (I − PΩ)y.

If Pn×n is any symmetric idempotent matrix, it represents a projection onto
MC(P ): if y ∈ Rn, then y = Py + (I − P )y = u+ v. Note

u′v = (Py)′(I − P )y = y′P (I − P )y = y′(P − P 2)y = 0,

so that we get y = u⊕ v, u ∈ MC(P ), v ∈ M⊥
C(P ).
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Question. Given X, how to find P such that MC(X) = MC(P )?

Result. If Ω = MC(X), then PΩ = X(X ′X)−X ′, where X ′X)− is any
generalized inverse of X ′X.

Definition. If Bm×n is any matrix, a generalized inverse of B is any n×m
matrix B− satisfying BB−B = B.

Existence. From singular value decomposition of B, there exist orthogonal
matrices Pm×m and Qn×n such that

Pm×mBm×nQn×n = ∆m×n =

(

Dr×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)

,

where r = Rank(B). Define ∆−

n×m =

[

D−1
r 0
0 0

]

and let B− = Q∆−P .

First,

∆∆−∆ =

(

Dr 0
0 0

)[

D−1
r 0
0 0

](

Dr 0
0 0

)

=

(

Dr 0
0 0

)

= ∆.

Further, B = P ′∆Q′, so that

BB−B = P ′∆Q′Q∆−PP ′∆Q′ = P ′∆∆−∆Q′ = P ′∆Q′ = B.

Proof of Result. Let B = X ′X. Find B− such that BB−B = B. For any
Y ∈ Rn, let c = X ′Y , and let β̃ be any solution of X ′Xβ = X ′Y , or that of
Bβ = c. Then

B(B−c) = BB−Bβ̃ = Bβ̃ = c,

so that β̂ = B−c is a particular solution of Bβ = c. Let θ̂ = Xβ̂ = XB−c.
Then, Y = θ̂ + (Y − θ̂), where

θ̂′(Y − θ̂) = β̂′X ′(Y −Xβ̂) = β̂′(X ′Y −X ′Xβ̂) = 0.

Therefore we have an orthogonal decomposition of Y such that θ̂ ∈ MC(X)
and (Y − θ̂)⊥MC(X). Now note that θ̂ = Xβ̂ = X(X ′X)−X ′Y . i.e.,
for Y , its projection onto MC(X) is given by X(X ′X)−X ′Y . Therefore,
PΩ = X(X ′X)−X ′ since PΩ is unique.

Techniques for finding B− are needed: if B = X ′X, then PΩ = X(X ′X)−X ′;
if we want to solve X ′Xβ = X ′Y , or Bβ = c, then β̂ = B−c.
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For Bp×m with rank r < p and B =

(

B11 B12

B21 B22

)

, where B11 (which is r×r

of rank r) is nonsingular, if we take B− =

(

B−1
11 0
0 0

)

, then note that

BB−B =

(

B11 B12

B21 B22

)(

B−1
11 0
0 0

)(

B11 B12

B21 B22

)

=

(

Ir 0
B21B

−1
11 0

)(

B11 B12

B21 B22

)

=

(

B11 B12

B21 B21B
−1
11 B12

)

.

Now note that (B21|B22) is a linear function of (B11|B12), or (B21|B22) =
K(B11|B12) = (KB11|KB12) for some matrix K. Therefore, KB11 = B21, or
K = B21B

−1
11 , so B22 = KB12 = B21B

−1
11 B12.

Example. Let B =





1 2 5 2
3 7 12 4
0 1 −3 −2



. Then rank of B is 2 since 2nd

row - 3× 1st row = 3rd row. Partition B as: B =





1 2 5 2
3 7 12 4
0 1 −3 −2



 =

(

B11 B12

B21 B22

)

. Take

B− =

(

B−1
11 0
0 0

)

=









7 −2 0
−3 1 0
0 0 0
0 0 0









.

Example. Consider the model:
y1 = β1 + β2 + ǫ1
y2 = β1 + β2 + ǫ2
y3 = β1 + β2 + ǫ3

This is equivalent to





y1
y2
y3



 =





1 1
1 1
1 1





(

β1

β2

)

+





ǫ1
ǫ2
ǫ3



 .

X has rank 1; X ′X =

(

3 3
3 3

)

=

(

3 3
3 3

)

, so choose (X ′X)− =

(

1/3 0
0 0

)

.
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Then check that (X ′X)(X ′X)−(X ′X) = X ′X. We have then

Xβ̂ = θ̂ = X(X ′X)−X ′Y

=





1 1
1 1
1 1





(

1/3 0
0 0

)(

1 1 1
1 1 1

)





y1
y2
y3





=





1/3 0
1/3 0
1/3 0





(

y1 + y2 + y3
y1 + y2 + y3

)

=





(y1 + y2 + y3)/3
ȳ
ȳ





=







β̂1 + β2

β̂1 + β2

β̂1 + β2






.

Only β1 + β2 can be estimated? Note β1 + β2 = (1 1)

(

β1

β2

)

and

MC

(

1
1

)

= MC(X
′). More on this later.
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Theorem. If Y ∼ Nn(Xβ, σ2In), whereXn×p has rank r and β̂ = (X ′X)−X ′Y
is a least squares solution of β,
(i) Xβ̂ ∼ Nn(Xβ, σ2P ),
(ii) (β̂ − β)′X ′X(β̂ − β) ∼ σ2χ2

r

(iii) Xβ̂ is independent of RSS = (Y −Xβ̂)′(Y −Xβ̂). and
(iv) RSS/σ2 ∼ χ2

n−r (independent of Xβ̂)

Proof. (i) Since Xβ̂ = X(X ′X)−X ′Y = PY , we have

Xβ̂ ∼ Nn(PXβ, σ2P 2) = Nn(Xβ, σ2P ).

(ii) Since Xβ̂ = PY and Xβ = PXβ,

(β̂ − β)′X ′X(β̂ − β) = (Xβ̂ −Xβ)′(Xβ̂ −Xβ)

= (Y −Xβ)′P (Y −Xβ) ∼ σ2χ2
r,

P being symmetric idempotent of rank r.
(iii) We have Xβ̂ = PY , RSS = (Y − Xβ̂)′(Y − Xβ̂) = Y ′(I − P )Y and
P (I − P ) = 0. Therefore independence of Xβ̂ and RSS follows.
(iv) Note again that

RSS = Y ′(I − P )Y = (Y −Xβ)′(I − P )(Y −Xβ) ∼ σ2χ2
n−r,

I − P being a projection matrix of rank n− r.

Estimability

Consider the Gauss-Markov model again: Y = Xβ + ǫ, with E(ǫ) = 0 and
Cov(ǫ) = σ2In. Now suppose rank of X is r < p.

Definition. A linear parametric function a′β is said to be estimable if it has
a linear unbiased estimate b′Y .

Theorem. a′β is estimable iff a ∈ MC(X
′) = MC(X

′X).

Proof. a′β is estimable iff there exists b such that E(b′Y ) = a′β for all
β ∈ Rp. i.e., b′Xβ = a′β for all β ∈ Rp. i.e., b′X = a′ or a = X ′b for some
b ∈ Rn.

Theorem (Gauss-Markov). If a′β is estimable, and β̂ is any least squares
solution (i.e., solution of X ′Xβ = X ′Y ),
(i) a′β̂ is unique,
(ii) a′β̂ is the BLUE of a′β.

Proof. (i) If a′β is estimable, a′β = b′Xβ = b′θ for some b ∈ Rn. Since
θ̂ is the unique projection of Y onto MC(X), we note b′θ̂ = b′Xβ̂ = a′β̂ is

1



unique. i.e., if β̃ is any other LS solution, then also b′Xβ̃ = b′Xβ̂ = a′β̂.
(ii) If d′Y is any other linear unbiased estimate of a′β, then
E(d′Y ) = d′Xβ = d′θ = a′β = b′Xβ = b′θ for all β ∈ Rp.
i.e., d′θ = b′θ for all θ ∈ MC(X).
i.e., (d − b)′θ = 0 for all θ ∈ MC(X), or (d − b)⊥MC(X). Consider P =
PMC(X) = X(X ′X)−X ′. Then P (d− b) = 0 or Pd = Pb. Therefore,

V ar(d′Y )− V ar(a′β̂) = V ar(d′Y )− V ar(b′θ̂)

= V ar(d′Y )− V ar(b′PY ) = V ar(d′Y )− V ar(d′PY )

= σ2(d′d− d′Pd) = σ2d′(I − P )d ≥ 0,

with equality iff (I −P )d = 0 or d = Pd = Pb. i.e., d′Y = b′PY = b′θ̂ = a′β̂.

Remark. Parametric functions a′β are estimable when a ∈ MC(X
′) = Row

space of X.

Example. Consider again the model:
yij = µ+ αi + τj + ǫij, i = 1, 2, 3, 4; j = 1, 2.
Suppose comparing τ1 and τ2 is of interest. Since

Y =























y11
y12
y21
y22
...
y41
y42























=























1 1 0 0 0 1 0
1 1 0 0 0 0 1
1 0 1 0 0 1 0
1 0 1 0 0 0 1
...

...
...

...
...

...
...

1 0 0 0 1 1 0
1 0 0 0 1 0 1











































µ
α1

α2

α3

α4

τ1
τ2





















+ ǫ,

µ+αi+τj is estimable for all i and j. Therefore, (µ+αi+τ1)−(µ+αi+τ2) =
τ1 − τ2 is estimable.
(µ+ αi + τ1)− (µ+ αj + τ1) = αi − αj is estimable.
What else is estimable, apart from linear combinations of these?

Result. If a′β is estimable, and Y ∼ Nn(Xβ, σ2In), a 100(1−α)% confidence
interval for a′β is given by

a′β̂ ± tn−r(1− α/2)
√

a′(X ′X)−a
√

RSS/(n− r).

Proof. Note that a′β = c′Xβ = c′θ for some c. Therefore, a′β̂ = c′θ̂ =
c′PY ∼ N(a′β, σ2c′Pc). Now c′Pc = c′X(X ′X)−X ′c = a′(X ′X)−a. There-
fore,

a′β̂ − a′β
√

σ2a′(X ′X)−a
∼ N(0, 1).

2



Further, since RSS/σ2 ∼ χ2
n−r independent of Xβ̂, and hence of c′Xβ̂ =

c′θ̂ = a′β̂,
a′β̂ − a′β

√

σ2a′(X ′X)−a
√

RSS/(σ2(n− r))
∼ tn−r.

Hence,

P

(

|a′β̂ − a′β| ≤ tn−r(1− α/2)
√

a′(X ′X)−a

√

RSS

n− r

)

= 1− α.
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Maximum likelihood estimation

Does LS estimate have other optimality properties?

Since we have assumed that Y ∼ Nn(Xβ, σ2In) to derive distributional prop-
erties of β̂, let us derive the maximum likelihood estimates of β and σ2 under
this assumption. β̂mle and σ̂2 are values of β and σ2 which maximize the
likelihood,

(2π)−n/2(σ2)−n/2 exp

(

−
1

2σ2
(Y −Xβ)′(Y −Xβ)

)

.

Equivalently, we may maximize the loglikelihood,

−
n

2
log(σ2)−

1

2σ2
(Y −Xβ)′(Y −Xβ).

Fix σ2 and maximize over β, then maximize over σ2. Now note that maximiz-
ing over β (for any fixed σ2) is equivalent to minimizing (Y −Xβ)′(Y −Xβ) =
||Y − Xβ||2, which yields the same estimate as the least squares. i.e.,

β̂mle = β̂ls. However, σ̂2 = RSS/n, which is not unbiased.

Estimation under linear restrictions or constraints

Consider the following examples.
(i) yij = µ + αi + τj + ǫij. Test H0 : τ1 = τ2. i.e., test whether there is any
difference between treatments 1 and 2. Under H0, τ1 − τ2 = 0, or Aβ = c
where A = a′ = (0, 0, . . . , 0, 1,−1, 0, . . . , 0), β = (µ, α1, . . . , αI , τ1, τ2, . . .)

′.
(ii) yi = β0 + β1xi1 + . . . + βp−1xi(p−1) + ǫi. Test H0 : X1, . . . , Xp−1 are not
useful.

Recall that, to derive the GLRT, we need to estimate the parameters of the
model, both with and without restrictions. While testing linear hypotheses
in a linear model, we need to estimate β under the linear constraint Aβ = c.

Consider Y = Xβ + ǫ, Xn×p of rank p, first. We will consider the deficient
rank case later. Let us see how we can find the least squares estimate of β
subject to H : Aβ = c, where Aq×p of rank q and c is given. We can use the
Lagrange multiplier method of calculus for this as follows.

min
β

||Y −Xβ||2 + λ′(Aβ − c)

= min
β

{Y ′Y − 2β′X ′Y + β′X ′Xβ + λ′Aβ − λ′c} , (1)

differentiating which (w.r.t. β) and setting equal to 0, we get,

−2X ′Y + 2X ′Xβ + A′λ = 0 or X ′Xβ = X ′Y −
1

2
A′λH .

1



Therefore,

β̂H = (X ′X)−1

{

X ′Y −
1

2
A′λH

}

= β̂ −
1

2
(X ′X)−1A′λH (∗).

Differentiating (1) w.r.t. λ, we get Aβ − c = 0. Since

c = Aβ̂H = Aβ̂ −
1

2
A(X ′X)−1A′λH ,

c− Aβ̂ = −
1

2
A(X ′X)−1A′λH , and hence

−
1

2
λH =

[

A(X ′X)−1A′
]

−1
(c− Aβ̂), and therefore

β̂H = β̂ + (X ′X)−1A′
[

A(X ′X)−1A′
]

−1
(c− Aβ̂).

To establish minimization subject to Aβ = c, note that

||X(β̂ − β)||2 = (β̂ − β)′X ′X(β̂ − β)

= (β̂ − β̂H + β̂H − β)′X ′X(β̂ − β̂H + β̂H − β)

= (β̂ − β̂H)
′X ′X(β̂ − β̂H) + (β̂H − β)′X ′X(β̂H − β)

+2(β̂ − β̂H)
′X ′X(β̂H − β)

= ||X(β̂ − β̂H)||
2 + ||X(β̂H − β)||2,

since, from (*) above, and subject to Aβ = c,

(β̂ − β̂H)
′X ′X(β̂H − β) =

1

2
λ′

HA(X
′X)−1X ′X(β̂H − β)

=
1

2
λ′

HA(β̂H − β) =
1

2
λ′

H(Aβ̂H − Aβ) = 0.

Therefore,

||Y −Xβ||2 = ||Y −Xβ̂||2 + ||X(β̂ − β)||2

= ||Y −Xβ̂||2 + ||X(β̂ − β̂H)||
2 + ||X(β̂H − β)||2

≥ ||Y −Xβ̂||2 + ||X(β̂ − β̂H)||
2,

and is a minimum when β = β̂H . (Note, X(β̂H − β) = 0 implies X ′X(β̂H −
β) = 0, so β̂H − β = 0 since columns of X are linearly independent.) Also,
from above, we get,

||Y −Xβ̂H ||
2 = ||Y −Xβ̂||2 + ||X(β̂ − β̂H)||

2.

If we let Ŷ = Xβ̂ and ŶH = Xβ̂H , then

||Y − ŶH ||
2 = ||Y − Ŷ ||2 + ||Ŷ − ŶH ||

2.

Note that this can also be established using projection matrices, and not
just for the full column rank case. Let us first establish it for the case
Rank(Xn×p) = p again, and next extend it.
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Let β0 be a solution of Aβ = c. Then Y −Xβ0 = X(β−β0)+ǫ or Ỹ = Xγ+ǫ

with Aγ = A(β − β0) = 0. i.e.,

Ỹ = θ + ǫ, θ ∈ MC(X) = Ω, and

A(X ′X)−1X ′θ = A(X ′X)−1X ′X(β − β0) = A(β − β0) = Aγ = 0.

Set A1 = A(X ′X)−1X ′ and ω = N (A1) ∩ Ω. Then A1θ = Aγ = 0 and we
want the projection of Ỹ onto ω since we want:

min
θ∈MC(X)

||Ỹ − θ||2 subject to A1θ = 0.

We need the following series of results to solve this.

Result A. If N (C) is the null space of C, then N (C) = M⊥(C ′).

Proof. If x ∈ N (C), then Cx = 0 so that x is orthogonal to each row of C.
i.e., x⊥M(C ′). Conversely, if x⊥M(C ′), then x′C ′ = (Cx)′ = 0, or Cx = 0,
hence x ∈ N (C).

Result B. (Ω1 ∩ Ω2)
⊥ = Ω⊥

1 + Ω⊥
2 .

Proof. Let Ωi = N (Ci), i = 1, 2. Then,

(Ω1 ∩ Ω2)
⊥ =

(

N

(

C1

C2

))⊥

= M (C ′

1|C
′

2) = M(C ′

1) +M(C ′

2) = Ω⊥

1 +Ω⊥

2 .

Result C. If ω ⊂ Ω, then PΩPω = PωPΩ = Pω.

Proof. Show that PΩPω and PωPΩ both satisfy the defining properties of
Pω: If x ∈ ω ⊂ Ω, then PΩPωx = PΩx = x; if ξ ∈ ω⊥, PΩPωξ = PΩ0 = 0.
Similar is the other case.

Result D. If ω ⊂ Ω, then PΩ − Pω = Pω⊥∩Ω.

Proof. Ω = MC(PΩ), so each x ∈ Ω can be written x = PΩy. Consider
the decomposition, PΩy = Pωy + (PΩ − PΩ)y. Now Pωy ∈ ω ⊂ Ω, and
already PΩy ∈ Ω, so (PΩ − PΩ)y = PΩy − Pωy ∈ Ω. Further, Pω(PΩ − Pω) =
PωPΩ − Pω = Pω − Pω = 0, so that (Pωy)

′(PΩ − Pω)y = y′Pω(PΩ − Pω)y = 0.
Therefore, PΩy = Pωy ⊕ (PΩ − Pω)y is the orthogonal decomposition of Ω
into ω ⊕ (ω⊥ ∩ Ω).

Result E. If A1 is any matrix such that ω = N (A1) ∩ Ω, then ω⊥ ∩ Ω =
MC(PΩA

′
1).

Proof. Note that

ω⊥ ∩Ω = (Ω ∩ N (A1))
⊥ ∩Ω =

(

Ω⊥ ⊕N⊥(A1)
)

∩Ω =
(

Ω⊥ ⊕MC(A
′

1)
)

∩Ω.

1



Now, let x ∈ ω⊥ ∩ Ω
(

=
(

Ω⊥ ⊕MC(A
′
1)
)

∩ Ω.
)

. Then x ∈ Ω, so x = PΩx.
Also, x ∈ Ω⊥ ⊕MC(A

′
1), so x = (I − PΩ)α + A′

1β. Therefore,

x = PΩx = PΩ {(I − PΩ)α + A′

1β} = PΩA
′

1β ∈ MC(A
′

1).

Conversely, if x ∈ MC(PΩA
′
1), then x = PΩA

′
1β = PΩ(A

′
1β) ∈ MC(PΩ) = Ω.

For any ξ ∈ ω(⊂ Ω), we have x′ξ = β′A1PΩξ = β′A1ξ = 0 since ω =
N (A1) ∩ Ω. Therefore, x ∈ ω⊥.

Result F. If A1 is a q × n matrix of rank q, then Rank(PΩA
′
1) = q iff

MC(A
′
1) ∩ Ω⊥ = {0}.

Proof. Rank(PΩA
′
1) ≤ Rank(A′

1) = Rank(A1) = q. Suppose Rank(PΩA
′
1) <

q. Let the rows of A1 (i.e., columns of A′
1) be a′1, . . . , a

′
q. Columns of PΩA

′
1

are linearly dependent, so
∑q

i=1 ciPΩai = PΩ(
∑q

i=1 ciai) = 0 for some c 6= 0.
Then there exists a vector

∑q

i=1 ciai ∈ MC(A
′
1) ( 6= 0 since rank of A1 is q)

such that
∑q

i=1 ciai⊥Ω. i.e., MC(A
′
1) ∩ Ω⊥ 6= {0}. If Rank(PΩA

′
1) = q =

Rank(A′
1) then MC(A

′
1) = MC(PΩA

′
1) = ω⊥ ∩ Ω ⊂ Ω.

Now let us return to the problem of finding the projection of Ỹ onto ω =
N (A1) ∩ Ω which achieves:

min
θ∈MC(X)

||Ỹ − θ||2 subject to A1θ = 0.

From Results A and B, ω⊥ ∩ Ω = (N (A1) ∩ Ω)⊥ ∩ Ω = (MC(A
′
1) + Ω⊥) ∩ Ω

and from Result E, ω⊥ ∩ Ω = MC(PΩA
′
1). Now note that

PΩA
′

1 = (X(X ′X)−1X ′)X(X ′X)−1A′ = X(X ′X)−1A′ = A′

1.

Therefore, Rank(PΩA
′
1) = Rank(A′

1) ≤ q. However, since Rank(PΩA
′
1) =

Rank(X(X ′X)−1A′) ≥ Rank(X ′X(X ′X)−1A′) = Rank(A′) = q, we must
have Rank(PΩA

′
1) = q. Therefore, from Result D,

PΩ − Pω = Pω⊥∩Ω = PMC(PΩA
′

1
)

= PΩA
′

1(A1P
2
ΩA

′

1)
−1(PΩA

′

1)
′

= X(X ′X)−1A′
[

A(X ′X)−1X ′X(X ′X)−1A′
]−1

A(X ′X)−1X ′

= X(X ′X)−1A′
(

A(X ′X)−1A′
)−1

A(X ′X)−1X ′.

Therefore,

Xβ̂H −Xβ0 = Xγ̂H = PωỸ = PΩỸ − Pω⊥∩ΩỸ

= PΩY −Xβ0 −X(X ′X)−1A′
(

A(X ′X)−1A′
)−1

A(X ′X)−1X ′(Y −Xβ0)

= PΩY −Xβ0 −X(X ′X)−1A′
(

A(X ′X)−1A′
)−1

A
(

(X ′X)−1X ′Y − β0

)

= PΩY −Xβ0 −X(X ′X)−1A′
(

A(X ′X)−1A′
)−1

(

Aβ̂ − c
)

.
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Therefore,

Xβ̂H = Xβ̂ −X(X ′X)−1A′
(

A(X ′X)−1A′
)−1

(

Aβ̂ − c
)

.

Multiplying by (X ′X)−1X ′ on the left, we get,

β̂H = β̂ − (X ′X)−1A′
(

A(X ′X)−1A′
)−1

(

Aβ̂ − c
)

.

This yields the minimum since ||Y −Xβ̂H ||
2 = ||Ỹ −Xγ̂H ||

2.
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Case of X having less than full column rank

Rank(Xn×p) = r < p. Since only estimable linear functions a′β can be

estimated, assume a′iβ, i = 1, 2, . . . , q are estimable and Aq×p =







a′1
...
a′q






.

However, since a′i = m′
iX for some m′

i, we have A = Mq×nXn×p. Since A has
rank q, M also has rank q (≤ r). Proceeding as before, let β0 be any solution
of Aβ = c. Then consider: Ỹ = Y −Xβ0 = X(β − β0) + ǫ or Ỹ = Xγ + ǫ or

Ỹ = θ + ǫ, θ ∈ MC(X) = Ω, and

Mθ = MXγ = Aγ = 0. We want to find β̂H , the least squares solution
subject to H : Aβ = c. If ω = Ω ∩ N (M), then ω⊥ ∩ Ω = MC(PΩM

′), and
PΩM

′ = X(X ′X)−X ′M ′ = X(X ′X)−A′. Further,
MPΩM

′ = MX(X ′X)−X ′M ′ = A(X ′X)−A′ is nonsingular. This is because,
(since X ′PΩ = X ′)

q = Rank(M ′) ≥ Rank(PΩM
′) ≥ Rank(X ′PΩM

′)

= Rank(X ′M ′) = Rank(A′) = q.

Therefore

PΩ − Pω = Pω⊥∩Ω = PMC(PΩM
′)

= PΩM
′(MPΩM

′)−1MPΩ

= X(X ′X)−A′
(

A(X ′X)−A′
)−1

A(X ′X)−X ′.

Hence,

Xβ̂H −Xβ0 = Xγ̂H = PωỸ = PΩỸ − Pω⊥∩ΩỸ

= PΩY −Xβ0 − PΩM
′(MPΩM

′)−1MPΩ(Y −Xβ0), so that

X ′Xβ̂H −X ′Xβ0 = X ′PΩY −X ′Xβ0 −X ′PΩM
′(MPΩM

′)−1MPΩ(Y −Xβ0).

Thus,

X ′Xβ̂H = X ′Y −X ′M ′(MPΩM
′)−1 {MPΩY −MPΩXβ0}

= X ′Y −X ′M ′(MPΩM
′)−1

{

MX(X ′X)−X ′Y −MXβ0

}

= X ′Y −X ′M ′(MPΩM
′)−1

{

A(X ′X)−X ′Y − Aβ0

}

= X ′Y − A′
(

A(X ′X)−A′
)−1

{

Aβ̂ − c
}

= X ′Xβ̂ − A′
(

A(X ′X)−A′
)−1

{

Aβ̂ − c
}

.

1



Now recall, a solution of Bu = d is û = B−d. Therefore, from above, since

X ′X(β̂H − β̂) = −A′
(

A(X ′X)−A′
)−1

{

Aβ̂ − c
}

,

we have that

β̂H = β̂ − (X ′X)−A′
(

A(X ′X)−A′
)−1

{

Aβ̂ − c
}

.

Also, these two together yield,

(β̂H − β̂)′X ′X(β̂H − β̂)

= (Aβ̂ − c)′
(

A(X ′X)−A′
)−1

A(X ′X)−A′
(

A(X ′X)−A′
)−1

(Aβ̂ − c)

= (Aβ̂ − c)′
(

A(X ′X)−A′
)−1

(Aβ̂ − c).

2



Linear Regression

Consider the model:
Y = Xβ + ǫ, with E(ǫ) = 0 and Cov(ǫ) = σ2In. Then β̂ = (X ′X)−X ′Y is a
least squares solution. If Xn×p has rank p, it is the least squares estimate of

β. It is an optimal estimate in the sense that for all a ∈ Rp, a′β̂ is the BLUE
of a′β. Also, E(β̂) = β and Cov(β̂) = σ2(X ′X)−1. If X has rank r < p, β̂
is still optimal in the sense that for all estimable a′β (i.e., a = X ′b), we still
have that a′β̂ is the BLUE of a′β.

If Y ∼ Nn(Xβ, σ2In), then a′β̂ ∼ N(a′β, σ2a′(X ′X)−a) and hence

a′β̂ ± tn−r(1− α/2)
√

RSS
n−r

a′(X ′X)−a

is a 100(1− α)% confidence interval for a′β for any estimable a′β.

Now we want to explore the question: how good is the model Y = Xβ + ǫ
for the given data?

Analysis of Variance (ANOVA) for Regression

Given Yn×1, we look at Y ′Y =
∑n

i=1
y2i as its variation around 0, in the

absence of any other assumptions. It has n degrees of freedom. If a centre
(or intercept) is considered useful, (i.e., yi = β0 + ǫi) then we can decompose
it as

∑n

i=1
y2i = nȳ2 +

∑n

i=1
(yi − ȳ)2 and check how much is the reduction in

variation. If we think that the predictor set X is relevant (i.e., Y = Xβ+ ǫ),
the sum of squares SST = Y ′Y can be decomposed as follows:

SST = Y ′Y = (Y − Ŷ )′(Y − Ŷ ) + Ŷ ′Ŷ

= Y ′(I − P )Y + Y ′PY

= Y ′(I − P )Y + β̂′X ′Xβ̂

= Y ′Y − β̂′X ′Y + β̂′X ′Y

= RSS + SSR,

where RSS is the residual sum of squares and SSR is the sum of squares due to
regression. If Xn×p has rank r ≤ p, then n = (n− r)+ r is the corresponding
decomposition of the degrees of freedom. Thus, analysis of variance is simply
the decomposition of total sum of squares into components which can be
attributed to different factors. Then this simple minded ANOVA for Y =
Xβ + ǫ will look as follows.

1



source of sum of d.f. mean F -ratio
variation squares squares
model: SSR = r = MSR = F =

Y = Xβ + ǫ β̂′X ′Y Rank(X) SSR/r MSR/MSE
residual SSE = n− r MSE =

error Y ′Y − β̂′X ′Y SSE/n− r
Total SST = Y ′Y n

If Y ∼ Nn(Xβ, σ2In),
(i) Xβ̂ is independent of SSE = RSS = (Y −Xβ̂)′(Y −Xβ̂) = Y ′Y − β̂′X ′Y ,
and
(ii) SSE = RSS ∼ σ2χ2

n−r;

(iii) if indeed the linear model is not useful, then β = 0 so that β̂′X ′Xβ̂ =
(β̂ − β)′X ′X(β̂ − β) ∼ σ2χ2

r.
Therefore, to check usefulness of the linear model, use
F = MSR/MSE ∼ Fr,n−r (if β = 0).

If β 6= 0, then β̂′X ′Xβ̂ ∼ non-central χ2 and E(β̂′X ′Xβ̂) = rσ2+β′X ′Xβ >
rσ2, so large values of F-ratio indicate evidence for β 6= 0.

However, this ANOVA is not particularly useful since (usually) the first
column of X is 1 indicating that the model includes an intercept or cen-
tre. This constant term is generally useful, and we only want to check
H0 : β1 = β2 = · · · = βp−1 = 0 to check the usefulness the actual regressors,
X1, . . . , Xp−1 (not X0 = 1). Before discussing this, let us recall a result in
probability on decomposing the variance:
If X and Y are jointly distributed (with finite second moments), then

V ar(Y ) = E [V ar(Y |X)] + V ar [E(Y |X)] .

The first term on RHS is the ‘within variation’: if Y is partitioned according
to values of X, how much is left to be explained in Y for given X. The second
term is the variation between Ŷ (X) values, and is the ‘between variation’. In
a study, V ar(Y ) may be large, but if V ar(Y |X) is small, it makes sense to
use X to predict Y using X. This result is known as the Analysis of Variance
formula, and the ANOVA for regression is based on it. Some more results
are needed to derive it.
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The F-test (to check the goodness of linear models)

We have the model, Y = Xβ+ǫ,Xn×p of rank r ≤ p and with ǫ ∼ Nn(0, σ
2In).

Suppose we want to test H0 : Aβ = c, Aq×p of rank q ≤ r, and c is given.
Then

RSS = SSE = (Y −Xβ̂)′(Y −Xβ̂) = Y ′(I − P )Y

RSSH0
= (Y −Xβ̂H0

)′(Y −Xβ̂H0
), where

β̂H0
= β̂ + (X ′X)−A′

(

A(X ′X)−A′
)

−1
{

c− Aβ̂
}

.

Theorem. Under the above mentioned assumptions, we have,
(i) RSS ∼ σ2χ2

n−r;

(ii) RSSH0
− RSS = (Aβ̂ − c)′ (A(X ′X)−A′)

−1
(Aβ̂ − c);

(iii) E (RSSH0
− RSS) = qσ2 + (Aβ − c)′ (A(X ′X)−A′)

−1
(Aβ − c);

(iv) under H0 : Aβ = c,

F =
( RSSH0

- RSS )/q

RSS /(n− r)
∼ Fq,n−r;

(v) when c = 0,

F =

(

n− r

q

)

Y ′(P − PH0
)Y

Y ′(In − P )Y
,

where PH0
is symmetric idempotent and PH0

P = PPH0
= PH0

.

Proof. (i) Already known.
(ii) Note that

RSSH0
= (Y −Xβ̂H0

)′(Y −Xβ̂H0
)

= (Y −Xβ̂ +Xβ̂ −Xβ̂H0
)′(Y −Xβ̂ +Xβ̂ −Xβ̂H0

)

= (Y −Xβ̂)′(Y −Xβ̂) + (Xβ̂ −Xβ̂H0
)′(Xβ̂ −Xβ̂H0

)

+2(Xβ̂ −Xβ̂H0
)′(Y −Xβ̂)

= RSS + (β̂ − β̂H0
)′X ′X(β̂ − β̂H0

),

since (Xβ̂−Xβ̂H0
)′(Y −Xβ̂) = (β̂− β̂H0

)′(X ′Y −X ′Xβ̂) = 0. Now from an
earlier result, (β̂− β̂H0

)′X ′X(β̂− β̂H0
) = (Aβ̂− c)′ (A(X ′X)−A′)

−1
(Aβ̂− c).

(iii) Aβ̂ = MXβ̂ = MPY ∼ Nq(Aβ, σ
2(A(X ′X)−A′)), so that E(Aβ̂ − c) =

Aβ − c and Cov(Aβ̂) = σ2A(X ′X)−A′. Therefore,

E(RSSH0
− RSS)

= E
{

(Aβ̂ − c)′
(

A(X ′X)−A′
)

−1

(Aβ̂ − c)
}

= (Aβ − c)′
(

A(X ′X)−A′
)

−1

(Aβ − c) + tr
{

σ2A(X ′X)−A′
(

A(X ′X)−A′
)

−1
}

= qσ2 + (Aβ − c)′
(

A(X ′X)−A′
)

−1

(Aβ − c),

1



which is large if Aβ is far from c.
(iv) Note that

RSSH0
− RSS = (Aβ̂ − c)′

(

A(X ′X)−A′
)

−1

(Aβ̂ − c) ∼ σ2χ2

q,

underH0 sinceAβ̂−c ∼ Nq(Aβ−c, σ2(A(X ′X)−A′)) = Nq(0, σ
2A(X ′X)−A′).

Also, RSS ∼ σ2χ2

n−r from (i). Further, RSS is independent of Xβ̂ = PY .

Since Aβ is estimable, A = MX, so that Aβ̂ = MXβ̂ = MPY , which is
independent of RSS.
(v) If c = 0, we have,

Xβ̂H0
= X

{

β̂ − (X ′X)−A′
(

A(X ′X)−A′
)

−1

Aβ̂
}

= X
{

(X ′X)−X ′Y − (X ′X)−A′
(

A(X ′X)−A′
)

−1

A(X ′X)−X ′Y
}

=
{

X(X ′X)−X ′ −X(X ′X)−A′
(

A(X ′X)−A′
)

−1

A(X ′X)−X ′

}

Y

= (P − P1)Y = PH0
Y.

Clearly, PH0
is symmetric. Further, P1 is symmetric, P 2

1
=

X(X ′X)−A′ (A(X ′X)−A′)
−1

A(X ′X)−X ′X(X ′X)−A′ (A(X ′X)−A′)
−1

A(X ′X)−X ′ =
X(X ′X)−A′ (A(X ′X)−A′)

−1
{A(X ′X)−X ′X(X ′X)−A′} (A(X ′X)−A′)

−1
A(X ′X)−X ′

= X(X ′X)−A′ (A(X ′X)−A′)
−1

{A(X ′X)−A′} (A(X ′X)−A′)
−1

A(X ′X)−X ′

= X(X ′X)−A′ (A(X ′X)−A′)
−1

A(X ′X)−X ′ = P1, since the term in the mid-
dle of the expression,
A(X ′X)−X ′X(X ′X)−A′ = MX(X ′X)−X ′X(X ′X)−X ′M ′ = MP 2M ′

= MPM ′ = A(X ′X)−A′. Also,
P1P = X(X ′X)−A′ (A(X ′X)−A′)

−1
A(X ′X)−X ′X(X ′X)−X ′

= X(X ′X)−A′ (A(X ′X)−A′)
−1

A(X ′X)−X ′ = P1,
since X ′X(X ′X)−X ′ = X ′P = X ′P ′ = (PX)′ = X ′. Note, P1 = (P1)

′ =
(P1P )′ = PP1. Therefore,
P 2

H0
= (P − P1)

2 = P 2 − PP1 − P1P + P 2

1
= P − 2P1 + P1 = P − P1 = PH0

and PH0
P = (P − P1)P = P − P1 = PH0

= PPH0
. Therefore,

RSSH0
= ||Y −Xβ̂H0

||2 = (Y −Xβ̂H0
)′(Y −Xβ̂H0

)

= (Y − PH0
Y )′(Y − PH0

Y ) = Y ′(I − PH0
)Y

and

RSSH0
− RSS = Y ′(I − PH0

)Y − Y ′(I − P )Y = Y ′(P − PH0
)Y.
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Now we use the above result for checking the goodness of the linear fit.
ANOVA for checking the goodness of Y = Xβ + ǫ, or yi = β0 + β1xi1 +
· · · + βi(p−1) + ǫi, or equivalently for testing H0 : β1 = · · · = βp−1 = 0 is
what is needed. Intuitively, if X1, . . . , Xp−1 provide no useful information,
then the appropriate model is yi = β0 + ǫi, so ȳ is the only quantity that
can help in predicting y. Then RSSH0

=
∑n

i=1(yi − ȳ)2 is the sum of squares
unexplained, and it has n−1 d.f. If X1, . . . , Xp−1 are also used in the model,

then (Y − Xβ̂)′(Y − Xβ̂) = RSS is the unexplained part with n − r d.f.
How much better is RSS compared to RSSH0

? Let SSreg denote the sum of
squares due to X1, . . . , Xp−1 and without an intercept. Then,

RSSH0
= RSS + SSreg

n
∑

i=1

(yi − ȳ)2 =
n

∑

i=1

(yi − ŷi)
2 + SSreg

In other words,

Y ′Y −
1

n
Y ′1′1Y = Y ′(I − P )Y + SSreg, or

Y ′Y = Y ′(I − P )Y +

(

SSreg +
1

n
Y ′1′1Y

)

, or

SSR = β̂′X ′Xβ̂ = β̂′X ′Y =

(

SSreg +
1

n
Y ′1′1Y

)

,

since Y ′Y = Y ′(I−P )Y +Y ′PY = Y ′(I−P )Y +β̂′X ′Xβ̂. Now, 1(1′
1)−1

1
′ =

1
n
11

′ = PM(1) = PM(X0), so that SSR = nȳ2+ SSreg is the orthogonal decom-
position of SSR into components attributed to M(1) and M(X1, . . . , Xp−1).
Therefore SSreg with r − 1 d.f. is the quantity to measure the merit of the
regressors, X1, . . . , Xp−1.

ANOVA with mean

source of d.f. sum of mean F -ratio
variation squares squares
mean 1 SSM = MSM = Fmean =

nȳ2 SSM/1 MSM/MSE
regression r − 1 SSreg = MSreg = Freg =

on X1, . . . , Xp−1 β̂′X ′Y − nȳ2 SSreg/(r − 1) MSreg/MSE
residual n− r SSE = RSS = MSE =

error Y ′Y − β̂′X ′Y SSE/(n− r)
Total n SST = Y ′Y

1



ANOVA for regression (corrected for mean)

source of d.f. sum of mean F -ratio
variation squares squares
regression r − 1 SSreg = MSreg = Freg =

(corrected) β̂′X ′Y − nȳ2 SSreg/(r − 1) MSreg/MSE
residual n− r SSE = RSS = MSE =

error Y ′Y − β̂′X ′Y SSE/(n− r)
Total n− 1 SST(Corrected) =

(corrected)
∑

(yi − ȳ)2

How good is the linear fit? There are two things to consider here.
(i) The ANOVA F-test: Under H0 : β1 = · · · = βp−1 = 0, the F-ratio,
Freg ∼ Fr−1,n−r and large values of the statistic provide evidence against H0,
or equivalently indicate that the regressors are useful.
(ii) The proportion of variability in y not explained by the actual regressors
is: RSS/SST (corrected), so the proportion of variability in y around its
mean, explained by the actual regressors is

1−
RSS

SST (corrected)
≡ R2 = Coefficient of determination.

In other words,

R2 = 1−
RSS

SST (corrected)
= 1−

Y ′(I − P )Y

Y ′(I − 1
n
11′)Y

=

∑n

i=1(yi − ȳ)2 − Y ′(I − P )Y
∑n

i=1(yi − ȳ)2
=

∑n

i=1 y
2
i − nȳ2 − Y ′(I − P )Y
∑n

i=1(yi − ȳ)2

=
Y ′Y − nȳ2 − Y ′Y + Y ′PY

∑n

i=1(yi − ȳ)2
=

Y ′PY − nȳ2
∑n

i=1(yi − ȳ)2

=
SSR − nȳ2

∑n

i=1(yi − ȳ)2
=

SSreg

SST (corrected)

= proportion of variability explained by regressors.

Also,

R2 =
SSreg

SST (corrected)
=

SSreg

RSS + SSreg

=
SSreg/RSS

1 + SSreg/RSS
=

( r−1
n−r

)Freg

1 + ( r−1
n−r

)Freg

2



is an increasing function of the F-ratio.

Note that to interpret the F-ratio, normality of ǫi is needed. R
2, however, is

a percentage with a straightforward interpretation.
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Example 1 (socio-economic study). The demand for a consumer prod-
uct is affected by many factors. In one study, measurements on the relative
urbanization (X1), educational level (X2), and relative income (X3) of 9 ran-
domly chosen geographic regions were obtained in an attempt to determine
their effect on the product usage (Y ). The data were:

X1 X2 X3 Y
42.2 11.2 31.9 167.1
48.6 10.6 13.2 174.4
42.6 10.6 28.7 160.8
39.0 10.4 26.1 162.0
34.7 9.3 30.1 140.8
44.5 10.8 8.5 174.6
39.1 10.7 24.3 163.7
40.1 10.0 18.6 174.5
45.9 12.0 20.4 185.7

We fit the model: Y = Xβ+ǫ, with E(ǫ) = 0 and Cov(ǫ) = σ2In. In this case,
n = 9, p = 4. ȳ = 167.07 and the model is yi = β0+β1xi1+β2xi2+β3xi3+ ǫi.

We get β̂ = (X ′X)−1X ′Y =









60.0
0.24
10.72
−0.75









. The detailed ANOVA (with mean)

is

source d.f. SS MS F -ratio
mean 1 SSM = nȳ2 = MSM =

251201.44 251201.44
regression 3 SSreg = MSreg = Freg =

(X1, X2, X3) 1081.35 360.45 360.45
39.57

= 9.11
residual 5 SSE = RSS = MSE =
error 197.85 39.57

Total (corrected) 8 1279.20
Total 9 252480.64

From this note that s2 = RSS/(n− r) = MSE = 39.57, so s = 6.29 = σ̂, and
R2 = 1081.35/1279.20 = 84.5%. Abridged ANOVA is

1



source d.f. SS MS F -ratio
regression 3 SSreg = MSreg = Freg =

(X1, X2, X3) 1081.35 360.45 360.45
39.57

= 9.11
residual 5 SSE = RSS = MSE =
error 197.85 39.57

Total (corrected) 8 1279.20

R2 = 84.5% is substantial. What about F = 9.11? F3,5(.95) = 5.41 and
F3,5(.99) = 12.06, so there is some evidence against the null and justifying
the linear fit.

Example 2. X = height (cm) and Y = weight (kg) for a sample of n = 10
eighteen-year-old American girls:

X Y
169.6 71.2
166.8 58.2
157.1 56.0
181.1 64.5
158.4 53.0
165.6 52.4
166.7 56.8
156.5 49.2
168.1 55.6
165.3 77.8

Upon fitting the simple linear regression model, yi = β0 + β1xi + ǫi, we

get

(

β̂0

β̂1

)

=

(

−36.9
0.582

)

, s2 = MSE = 71.50, s = 8.456, R2 = 21.9%,

ȳ = 59.47. ANOVA is

source d.f. SS MS F R2

X 1 159.95 159.95 2.24 21.9%
error 8 512.01 71.50

Total (C) 9 731.96

Note the following. (i) X is expected to be a useful predictor of Y , but the
relationship may not be simple. (ii) F1,8(.90) = 3.46 = (1.86)2 = t2

8
(.95), so

is there a connection between the ANOVA F-test and a t-test?

Consider simple linear regression again: yi = β0 + β1xi + ǫi, i = 1, . . . , n, ǫi
i.i.d. N(0, σ2). Then the F-ratio is the F statistic for testing the goodness of
fit of the linear model, or for testing H0 : β1 = 0. Writing the linear model

2



in the standard form, we have

Xn×2 =











1 x1

1 x2

...
1 xn











, X ′X =

(

n
∑n

i=1
xi

∑n

i=1
xi

∑n

i=1
x2

i

)

, and

(X ′X)−1 =
1

n
∑n

i=1
(xi − x̄)2

( ∑n

i=1
x2

i −nx̄
−nx̄ n

)

.

Therefore
(

β̂0

β̂1

)

= (X ′X)−1X ′Y =
1

n
∑n

i=1
(xi − x̄)2

( ∑n

i=1
x2

i −nx̄
−nx̄ n

)( ∑n

i=1
yi

∑n

i=1
xiyi

)

.

Letting SXX =
∑n

i=1
(xi − x̄)2, SXY =

∑n

i=1
(xi − x̄)(yi − ȳ), and extracting

the least squares equations, we get,

β̂1 =
1

SXX

{

−nx̄ȳ +
n
∑

i=1

xiyi

}

=
SXY

SXX

,

β̂0 =
1

SXX

{

ȳ

n
∑

i=1

x2

i − x̄

n
∑

i=1

xiyi

}

=
1

SXX

{

ȳSXX + nȳx̄2
− x̄

n
∑

i=1

xiyi

}

=
1

SXX

{

ȳSXX − x̄

(

n
∑

i=1

xiyi − nx̄ȳ

)}

= ȳ − x̄β̂1.

Now, β̂1 ∼ N(β1, σ
2/SXX), so that, to test H0 : β1 = 0, use the test statistic,

√
SXX β̂1

√

RSS/(n− 2)
∼ tn−2, or

β̂2

1
SXX

MSE
∼ F1,n−2,

if H0 is true. The ANOVA table shows that

n
∑

i=1

y2i = nȳ2 +
n
∑

i=1

(yi − ȳ)2 = nȳ2 + RSS + SSreg, so

SSreg =
n
∑

i=1

(yi − ȳ)2 − RSS.
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However,

RSS =
n
∑

i=1

(yi − β̂0 − β̂1xi)
2 =

n
∑

i=1

(

yi − ȳ − β̂1(xi − x̄)
)2

=
n
∑

i=1

(yi − ȳ)2 + β̂2

1

n
∑

i=1

(xi − x̄)2 − 2β̂1

n
∑

i=1

(xi − x̄)(yi − ȳ)

=
n
∑

i=1

(yi − ȳ)2 + β̂2

1

n
∑

i=1

(xi − x̄)2 − 2β̂1β̂1

n
∑

i=1

(xi − x̄)2

=
n
∑

i=1

(yi − ȳ)2 − β̂2

1

n
∑

i=1

(xi − x̄)2.

Therefore, SSreg = β̂2

1

∑n

i=1
(xi − x̄)2, so that

t2 =
β̂2

1
SXX

RSS/(n− 2)
= F-ratio of ANOVA.

In Example 1, F-ratio tests H0 : β1 = β2 = β3 = 0. What if we want to test

only β1 = β3 = 0? Then we haveH0 : Aβ = 0, where A =

(

0 1 0 0
0 0 1 0

)

2×4

if of rank 2. Then apply the theorem: RSSH0
= (Y − Xβ̂H0

)′(Y − Xβ̂H0
)

where β̂H0
= β̂ + (X ′X)−A′(A(X ′X)−A′)−1(c−Aβ̂) and the test statistic is

F =
(RSSH0

− RSS) /q

RSS/(n− r)
∼ Fq,n−r under H0.
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Multiple Correlation

As seen earlier, the proportion of variation explained by the linear regression
of Y on the regressors X1, . . . , Xp−1 is given by

R2 =
SSreg

SST (corrected)
= 1− RSS

SST (corrected)
= 1− Y ′(I − P )Y

Y ′(I − 1

n
11′)Y

.

Consider simple linear regression: Then p = 2 and yi = β0 + β1xi + ǫi.

β̂1 =
SXY

SXX

=

∑n
i=1

(xi − x̄)(yi − ȳ)
∑n

i=1
(xi − x̄)2

,

RSS =
n

∑

i=1

(yi − ȳ)2 − β̂2

1

n
∑

i=1

(xi − x̄)2,

so that

SSreg = β̂2

1

n
∑

i=1

(xi − x̄)2 =
{∑n

i=1
(xi − x̄)(yi − ȳ)}2

∑n
i=1

(xi − x̄)2
.

Therefore,

R2 =
SSreg

∑n
i=1

(yi − ȳ)2
=

{
∑n

i=1
(xi − x̄)(yi − ȳ)}2

{∑n
i=1

(xi − x̄)2} {∑n
i=1

(yi − ȳ)2}

=

{

∑n
i=1

(xi − x̄)(yi − ȳ)
√

{∑n
i=1

(xi − x̄)2} {∑n
i=1

(yi − ȳ)2}

}2

= r2XY ,

where

rXY =

∑n
i=1

(xi − x̄)(yi − ȳ)
√
∑n

i=1
(xi − x̄)2

√
∑n

i=1
(yi − ȳ)2

= sample correlation coefficient between X and Y .

This connection between R2 and r2 is intuitively meaningful since a good
linear fit is related to a good linear association between X and Y . What
happens when there are multiple regressors, X1, X2, . . . , Xp−1?

We define the multiple correlation coefficient between Y and X1, . . . , Xp−1

as the maximum correlation coefficient between Y and any linear function of
X1, . . . , Xp−1 = maxa Corr(Y, a0 + a1X1 + · · ·+ ap−1Xp−1) = R∗ (say).

1



If Cov

((

Y
X

))

=

(

σY Y σ′

XY

σXY ΣX

)

, then

Corr2(Y, a′X) =
Cov2(Y, a′X)

V ar(Y )V ar(a′X)
=

{a′Cov(Y,X)}2
V ar(Y )V ar(a′X)

=
{a′σXY }2
σY Y a′ΣXa

.

Further, taking u′ = a′Σ
1/2
X and v = Σ

−1/2
X σXY ,

a′σXY

(σY Y a′ΣXa)
1/2

=
a′Σ

1/2
X Σ

−1/2
X σXY

(σY Y a′ΣXa)
1/2

=
u′v

(σY Y a′ΣXa)
1/2

≤ (u′u)1/2(v′v)1/2

(σY Y a′ΣXa)
1/2

=
(a′ΣXa)

1/2 (σ′

XYΣ
−1

X σXY

)1/2

(σY Y a′ΣXa)
1/2

=

(

σ′

XYΣ
−1

X σXY

σY Y

)1/2

,

with equality if we take u ∝ v or a = Σ−1

X σXY . SinceR
∗ =

√

σ′

XYΣ
−1

X σXY /σY Y ,

0 ≤ R∗ ≤ 1 unlike the ordinary correlation coefficient. Now let us see why
(R∗)2 (square of multiple correlation coefficient) is the same as the coefficient
of determination, R2 (proportion of variability explained by the regressors).
Suppose

(

Y
X

)

∼ N

((

µY

µX

)

,

(

σY Y σ′

XY

σXY ΣX

))

.

Then,

Y |X ∼ N
(

µY + σ′

XYΣ
−1

X (X− µX), σY Y − σ′

XYΣ
−1

X σXY

)

.

Thus, E(Y |X) = µY − σ′

XYΣ
−1

X µX + σ′

XYΣ
−1

X X and
V ar(Y |X) = σY Y − σ′

XYΣ
−1

X σXY ). Therefore,

Corr(Y,E(Y |X)) =
Cov(Y, σ′

XYΣ
−1

X X)
√

σY Y σ′

XYΣ
−1

X ΣXΣ
−1

X σXY

=
σ′

XYΣ
−1

X σXY

√
σY Y

√

σ′

XYΣ
−1

X σXY

= R∗.

i.e., R∗ = correlation coefficient between Y and the conditional expectation
of Y |X (or the regression of Y on X, when the conditional expectation is
linear). Further, V ar(Y )− E (V ar(Y |X)) = σY Y −

(

σY Y − σ′

XYΣ
−1

X σXY

)

=
σ′

XYΣ
−1

X σXY , so that the proportion of variation in Y explained by the re-
gression on X is equal to

R2 =
V ar(Y )− E (V ar(Y |X))

V ar(Y )
=

σ′

XYΣ
−1

X σXY

σY Y

= (R∗)2.
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Partial Correlation Coefficients

Example. In a study, X1 = weekly amount of coffee/tea sold by a refresh-
ment stand at a summer resort, and X2 = weekly number of visitors to the
resort. If X2 is large, so should X1 be, right? Actually no! With a certain
resort, r12 = −0.3. Why? Consider X3 = average weekly temperature at the
resort. Both X1 and X2 are related to X3. If temperature is high, there will
be more visitors, but they will prefer cold drinks to coffee/tea. If tempera-
ture is low, there will be fewer visitors, but they will prefer coffee/tea. Say,
r13 = −0.7, r23 = .8. It is then more meaningful to investigate the relation-
ship between X1 and X2 conditional on X3 (i.e., when X3 is kept fixed) to
eliminate the effect of X3.

Partial correlation coefficient between X1 and X2 when X3 is fixed is

r12.3 = Corr(X1|X3, X2|X3) =
r12 − r13r23

√

(1− r213)(1− r223)
.

Suppose X ∼ Nm(µ,Σ) and partition X, µ and Σ as:

X =

(

X1

X2

)

, µ =

(

µ1

µ2

)

,Σ =

(

Σ11 Σ12

Σ′
12 Σ22

)

,

where X1 is k-dimensional. Then X1|X2 ∼ Nk(µ1+Σ12Σ
−1

22 (X2−µ2),Σ11.2),
where Σ11.2 = Σ11 − Σ12Σ

−1

22 Σ
′
12 = ((σij.k+1,...,m)). Note that σij.k+1,...,m =

partial covariance between Xi and Xj conditional on X2 = (Xk+1, . . . , Xm)
′.

Therefore the partial correlation coefficient between Xi and Xj given X2 is

ρij.k+1,...,m =
σij.k+1,...,m√

σii.k+1,...,m
√
σjj.k+1,...,m

.

Recall the notation, ρ for the population and r for a sample. From the
expression for Σ11.2 note that σij.l = σij − σilσjl/σll. Thus,

ρij.l =
σij.l√

σii.l
√
σjj.l

=
σij − σilσjl

σll
√

(

σii − σ2

il

σll

)(

σjj −
σ2

jl

σll

)

=

σij√
σiiσjj

− σilσjl

σll
√
σiiσjj

√

(

1− σ2

il

σiiσll

)(

1− σ2

jl

σjjσll

)

=
ρij − ρilρjl

√

(1− ρ2il)
(

1− ρ2jl
)

.
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Simultaneous confidence sets

When we have a scalar parameter, such as the mean µ of X, we can construct
a confidence interval for it using a sample of observations:
X̄± s√

n
tn−1(1−α/2). What about the vector β of regression coefficients? We

know that if Y = Xβ+ ǫ, where ǫ ∼ Nn(0, σ
2In), then (β̂−β)′X ′X(β̂−β) ∼

σ2χ2
r independent of RSS = Y ′(I − P )Y ∼ σ2χ2

n−r, so that

(β̂ − β)′X ′X(β̂ − β)/r

Y ′(I − P )Y/(n− r)
∼ Fr,n−r,

and hence

P

(

(β̂ − β)′X ′X(β̂ − β) ≤ r

n− r
Y ′(I − P )Y Fr,n−r(1− α)

)

= 1− α.

Therefore,

C =

{

β : (β − β̂)′X ′X(β − β̂) ≤ r

n− r
RSS Fr,n−r(1− α)

}

is a 100(1 − α)% confidence set for β. This is an ellipsoid, and if p is not
small (1 or 2), a set which is difficult to appreciate.

Suppose we are only interested in a′β for some fixed a. Then
a′β̂± tn−r(1−α/2)

√

RSS /(n− r)
√

a′(X ′X)−a is a 100(1−α)% confidence
interval for a′β. Let us see if we can extend this when we are interested in
deriving a simutaneous confidence set of coefficient 1−α for a′1β, a

′
2β, . . . , a

′
kβ.
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Scheffe’s method.

Let A′
p×d = (a1, a2, . . . , ad) where a1, a2, . . . , ad are linearly independent and

ad+1, . . . , ak are linearly dependent on them. Then d ≤ min{k, r}. Let
φ = Aβ and φ̂ = Aβ̂. Then

F (β) =
(φ̂− φ)′ (A(X ′X)−A′)

−1
(φ̂− φ)/d

RSS/(n− r)
∼ Fd,n−r.

Therefore,

1− α = P [F (β) ≤ Fd,n−r(1− α)]

= P

{

(φ̂− φ)′
(

A(X ′X)−A′
)−1

(φ̂− φ) ≤ d
RSS

n− r
Fd,n−r(1− α)

}

.

This gives an ellipsoid as before, but consider the following result.

Result. If L is positive definite,

b′L−1b = sup
h 6=0

(h′b)2

h′Lh
.

Proof. Note that

(h′b)2

h′Lh
=

(h′L1/2L−1/2b)2

h′Lh
≤

h′Lhb′L−1b

h′Lh
= b′L−1b.

Therefore,

1− α = P











sup
h 6=0

{

h′(φ− φ̂)
}2

h′ (A(X ′X)−A′)h
≤

d

n− r
RSSFd,n−r(1− α)











= P











{

h′(φ− φ̂)
}2

h′ (A(X ′X)−A′)h
≤

d

n− r
RSSFd,n−r(1− α) for all h 6= 0.











= P







|h′(φ− φ̂)|
√

RSS

n−r

√

h′ (A(X ′X)−A′)h
≤ {dFd,n−r(1− α)}1/2 for all h 6= 0.







= P
{

|h′(φ− φ̂)| ≤ {dFd,n−r(1− α)}1/2 s.e.(h′φ̂) for all h 6= 0.
}

,

where s.e.(h′φ̂) =
√

RSS

n−r

√

h′ (A(X ′X)−A′)h. Therefore,

a′iβ̂ ± {dFd,n−r(1− α)}1/2
√

RSS

n− r

√

a′i(X
′X)−ai, i = 1, 2, . . . , k

1



is a simultaneous 100(1−α)% confidence set for a′1β, a
′
2β, . . . , a

′
kβ, by noting

that

P
(

a′iβ ∈ a′iβ̂ ± {dFd,n−r(1− α)}1/2 s.e.(a′iβ̂, i = 1, 2, . . . , k
)

≥

P
{

|h′(φ− φ̂)| ≤ {dFd,n−r(1− α)}1/2 s.e.(h′φ̂) for all h 6= 0.
}

= 1− α.

Many other methods are also available.

Regression diagnostics

Lack of fit. Suppose the true model is Y = f(X) + ǫ, ǫ ∼ Nn(0, σ
2In),

whereas we fit Y = Xβ+ǫ. We do get β̂ = (X ′X)−1X ′Y and σ̂2 = RSS/(n−
r). σ2 is supposed to account for only the statistical errors (ǫi), and not model
misspecification. Therefore, if f(X) 6= Xβ, we have statistical errors, ǫi, as
well as the bias, f(X)−Xβ. Then, σ̂2 = RSS/(n−r) will estimate a quantity
which includes σ2 as well as (bias)2. If σ2 is known, then comparing σ̂2 with
σ2 can act as a check for lack of fit. In other words,
RSS/σ2 ∼ χ2

n−r if the model, Y = Xβ+ ǫ, ǫ ∼ Nn(0, σ
2In) is true. Therefore

to test
H0 : Y = Xβ + ǫ, ǫ ∼ Nn(0, σ

2In) versus H1 : Y has some other model, use
RSS/σ2 as the test statistic. If the observed value is too large compared to
χ2
n−r, there is evidence against H0.

Consider a simulation study where data are generated from yi = β0 + β1xi +
β2x

2
i + ǫi, ǫi ∼ N(0, σ2), with β0 = 5, β1 = β2 = 2 and σ2 = 22:

x .5 1 1.5 2 2.5 3 3.5 4 4.5 5
y 8.68 12.85 10.71 18.54 21.67 27.3 37.56 44.64 54.09 63.83

Regress Y on X. i.e., fit yi = β0 + β1xi + ǫi. Then we get β̂0 = −3.925,
β̂1 = 12.33 and the ANOVA table:

source d.f SS MS F R2

Regression 1 3134.2 3134.2 130.76 94.2%
Error 8 191.7 24.0
Total 9 3325.9

These are very good results, but RSS/σ2 = 191.7/4 = 47.925 >> χ2
8(.99) =

20.08. R2 = 94.2% is high, and F-ratio of 130.76 at (1, 8) d.f. is very high,
indicating that X is a very useful predictor of Y . However this does not
mean that the fitted model is the correct one. Check the residual plot:
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x

y − ŷ

Now regress Y on X and X2.

source d.f SS MS F R2

Regression 2 3305.7 1652.8 572.28 99.4%
Error 7 20.2 2.9
Total 9 3325.9

RSS/σ2 = 20.2/4 = 5.5 << χ2
7(.90) = 12.02.

σ2 is usually unknown, so this test is difficult, but what this indicates is that
residual plots are useful for checking lack of fit (see plot above). Another
possibility is to check for any pattern between fitted values and residuals.
Yet another reason to explore this is the following.
ǫ̂ = Y − Ŷ = Y − Xβ̂ = (I − P )Y and Ŷ = Xβ̂ = PY are uncorrelated
(since (I − P )P = 0) if Cov(Y ) = σ2In. If one sees significant correlation
and some trend, then the model is suspect. What if V ar(yi) = σ2

i , not a
constant? This is called heteroscedasticity (as against homoscedastcity), a
problem discussed in Sanford Weisberg: Applied Linear Regression in the
context of regression diagnostics.
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With the model: Y = Xβ + ǫ, with E(ǫ) = 0 and Cov(ǫ) = σ2In, normality
of ǫ is essential for hypothesis testing and confidence statements. How does
one check this?

Normal probability plot or Q-Q plot.

This is a graphical technique to check for normality. Suppose we have a
random sample T1, T2, . . . , Tn from some population, and we want to check
whether the population has the normal distribution with some mean µ and
some variance σ2. The method described here depends on examining the
order statistics, T(1), . . . , T(n). Let us recall a few facts about order statistics
from a continuous distribution. Since

fT1,...,Tn
(t1, . . . , tn) =

n
∏

i=1

f(ti), (t1, . . . , tn) ∈ R
n,

fT(1),...,T(n)
(t(1), . . . , t(n)) = n!

n
∏

i=1

f(t(i)), t(1) < t(2) < · · · t(n),

fT(i)
=

n!

(i− 1)!(n− i)!

(

1− F (t(i))
)n−i

F i−1(t(i))f(t(i)).

If U(1) < U(2) < · · · < U(n) are o.s. from U(0, 1), then

E(U(k)) =

∫ 1

0

ufU(k)
(u) du =

n!

(k − 1)!(n− k)!

∫ 1

0

uk+1−1(1− u)n−k+1−1 du

=
n!

(k − 1)!(n− k)!

Γ(k + 1)Γ(n− k + 1)

Γ(n+ 2)
=

k

n+ 1
.

An additional result needed is the following. If X is a random variable which
is continuous on an interval I with c.d.f. F strictly increasing on I, then
V = F (X) ∼ U(0, 1). For this, note that 0 ≤ V ≤ 1 and for 0 ≤ v ≤ 1,
P (V ≤ v) = P (F (X) ≤ v) = P (X ≤ F−1(v)) = F (F−1(v)) = v.

Now argue as follows. If T1, T2, . . . , Tn are i.i.d. from N(µ, σ2), then

E

(

Φ

(

T(i) − µ

σ

))

≈
i− 0.5

n
, i = 1, 2, . . . , n.

Therefore, plot of Φ
(

T(i)−µ

σ

)

versus i−0.5
n

is on the line y = x. Equivalently,

the plot of
T(i)−µ

σ
versus Φ−1( i−0.5

n
) is on the line y = x. In other words, the

plot of T(i) versus Φ
−1( i−0.5

n
) is linear. To check this, µ and σ2 are not needed.

Since T(i) is the quantile of order i/n and Φ−1( i−0.5
n

) is the standard normal

1



quantile of order i−0.5
n

, this plot is called the Quantile - Quantile plot. One
looks for nonlinearity in the plot to check for non-normality.

How is this plot to be used in regression? We want to check the normality of
ǫi, but they are not observable. Instead yi are observable, but they have differ-
ent means. We consider the residuals. ǫ̂ = Y−Ŷ = (I−P ) ∼ Nn(0, σ

2(I−P ))
if normality holds. i.e., ǫ̂i ∼ N(0, σ2(1 − Pii)) if Y ∼ N(Xβ, σ2In). For a
fixed number of regressors (p− 1), as n increases, Pii → 0 (Weisberg), so the
residuals can be used in the Q-Q plot.

Stepwise regression (forward selection)

Consider a situation where there are a large number of predictors. A model
including all of them is not desirable since it will be unweildy and there
may be difficulties involving multicollinearity and computational complex-
ities. There are many such situations in weather forecasting, economics,
finance, agriculture and medicine.

Consider the approach where one variable is added at a time until a good
model is available, or equivalently, a stopping rule is met. Possible rules are
(i) r many predictors are chosen (r is pre-dertmined)
(ii) R2 is large enough.

Procedure. (i) Calculate the correlation coefficient between Y and Xi for
all i, say riy. Select as the first variable to enter the regression model the one
most highly correlated with Y .
(ii) Regress Y on the chosen predictor, say Xl, and compute R2 = r2ly. This
is the maximum possible R2 with one predictor.
(iii) Calculate the partial correlation coefficients given Xl of all the predictors
not yet in the regression model, with the response Y . Choose as the next
predictor to enter the model, the one with the highest (in magnitude) partial
correlation coefficient riy.l: the idea is to add a factor which is most useful
given that Xl is already in.
(iv) Regress Y on Xl as well as the one chosen next, say Xm, and find if Xm

should be added or not. Compute R2.
(v) Calculate riy.lm and proceed similarly.

Example. Data on breeding success of the common Puffin in different habi-
tats at Great Island, Newfoundland:
y = nesting frequency (burrows/9m2)
x1 = grass cover (%), x2 = mean soil depth (cm)
x3 = angle of slope (degrees), x4 = distance from cliff edge (m)
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X1 X2 X3 X4 Y
45 39.2 38 3 16
65 47.0 36 12 15
40 24.3 14 18 10
...

...
...

...
...

Correlation matrix:

Y X1 X2 X3

X1 0.158
X2 0.022 0.069
X3 0.836 -0.017 0.066
X4 -0.908∗ -0.205 0.212 -0.815

Choose X4 first, since r4y = -0.908 is the highest in magnitude. Then R2 =
(−0.908)2 = 82.4%. F = 168.79 >> F1,36(.99). Now compute

riy.4 =







−0.07 i = 1;
0.518 i = 2;
0.398 i = 3.

Choose X2 next and note R2 = 87.2%. Also, X2 is a useful predictor. Com-
pute

riy.42 =

{

−0.152 i = 1;
0.233 i = 3.

The formula for this is

riy.42 =
riy.4 − ri2.4ry2.4

√

(1− r2i2.4)(1− r2y2.4)
.

If we pick X3 now, R2 = 87.9%, not very different from the previous regres-
sion. Also, X3 is not particularly useful in regression.
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Basics of Design of Experiments and ANOVA

So far we concentrated on analysis of a given experiment or data. Structure
of the experiment is now explored. Design of experiments is a study of
construction and analysis of experiments where purposeful changes are made
to input variables of a process or system so as to observe and identify the
reasons for changes in the output response. A cause-effect mechanism is of
interest here.

Example. Different or different amounts of fertilizers versus yield of a crop

Experimental designs are used mostly for comparative experiments:
Comparing treatments in a clinical trial
Comparing factors (fertilizers, crop patterns etc.) in agricultural experiments

Randomization, replication, blocking and confounding of effects are some im-
portant concepts in this context. Randomization means that each subject
has the same chance of being placed in any given experimental group. Then
factors which cannot be controlled need not be considered since their effects
are averaged out.
Replication means having multiple subjects in all experimental groups, en-
suring that ‘within group’ variation can be estimated.
Blocking and confounding of effects will be considered later.

Consider the following example of a completely randomized design.

Example. Monosodium glutamate (MSG), a common ingredient of pre-
served food is known to cause brain damage in various mammals. In a study
of the other effects, weight of ovaries (mg), both for a sample of rats treated
with MSG and for an independent control sample of similar but untreated
rats were obtained:

sample size (ni) sample mean sample s.d.
MSG 10 29.35 4.55

Control 12 21.86 10.09

Consider the linear model,

yi =

{

µm + ǫi i = 1, 2, . . . , n1;
µc + ǫi i = n1 + 1, n1 + 2, . . . , n1 + n2,

1



ǫi i.i.d N(0, σ2). Write it in the vector/matrix form, Y = Xβ + ǫ:



















y1
...

yn1

yn1+1

...
yn1+n2



















=



















1 0
...

...
1 0
0 1
...

...
0 1



















(

µm

µc

)

+ ǫ,

ǫ ∼ Nn1+n2
(0, σ2I). Then

X ′X =

{

n1 0
0 n2

)

, so (X ′X)−1 =

(

1

n1

0

0 1

n2

)

.

Therefore,

(

µ̂m

µ̂c

)

=

(

ȳ1
ȳ2

)

∼ N2

((

µm

µc

)

, σ2

(

1

n1

0

0 1

n2

))

,

independent of

RSS =

n1
∑

i=1

(yi − ȳ1)
2 +

n1+n2
∑

i=n1+1

(yi − ȳ2)
2
∼ σ2χ2

n1+n2−2.

We want to compare µm with µc. H0 : µm = µc = 0 is meaningless;

H0 : µm = µc is of interest. i.e., H0 : (1− 1)

(

µm

µc

)

= 0. Note,

(ȳ1 − ȳ2 − (µm − µc)) /
√

1

n1

+ 1

n2

√

RSS/(n1 + n2 − 2)
∼ tn1+n2−2.

If H0 is true, then

(ȳ1 − ȳ2) /
√

1

n1

+ 1

n2

√

RSS/(n1 + n2 − 2)
∼ tn1+n2−2,

or equivalently,

(ȳ1 − ȳ2)
2 /

(

1

n1

+ 1

n2

)

RSS/(n1 + n2 − 2)
∼ F1,n1+n2−2.

The design in this experiment has complete randomization. The observations
inside the groups are independent, and also the two samples are independent.

2



For this reason, the design is called a completely randomized design. We can
generalize this procedure if we want to compare k means, as will be done
later.

Paired differences - example of a block design

Sometimes independent samples, such as the ones in a completely random-
ized design, from two (or k > 2) populations is not an efficient way for
comparisons. Consider the following example.

Example. It is of interest to compare an enriched formula with a stan-
dard formula for baby food. Weights of infants vary significantly and this
influences weight gain more than the difference in food quality. Therefore,
independent samples (with infants having very different weights) for the two
formulas will not be very efficient in detecting the difference. Instead, pair
babies of similar weight and feed one of them the standard formula, and the
other the enriched formula. Then observe the gain in weight:

pair 1 2 3 . . . n
enriched e1 e2 e3 . . . en
standard s1 s2 s3 . . . sn

However, the samples may not be treated as independent but correlated. The
n pairs of observations, (e1, s1), . . . , (en, sn) may still be treated to be uncor-
related (or even independent). These n pairs are like n independent blocks,
inside each of which we can compare enriched with standard. This is the
idea of blocking and block designs. Blocks are supposed to be homogeneous
inside, so comparison of treatments within blocks becomes efficient.

3



Paired differences - example of a block design

Sometimes independent samples, such as the ones in a completely random-
ized design, from two (or k > 2) populations is not an efficient way for
comparisons. Consider the following example.

Example. It is of interest to compare an enriched formula with a stan-
dard formula for baby food. Weights of infants vary significantly and this
influences weight gain more than the difference in food quality. Therefore,
independent samples (with infants having very different weights) for the two
formulas will not be very efficient in detecting the difference. Instead, pair
babies of similar weight and feed one of them the standard formula, and the
other the enriched formula. Then observe the gain in weight:

pair 1 2 3 . . . n
enriched e1 e2 e3 . . . en
standard s1 s2 s3 . . . sn

However, the samples may not be treated as independent but correlated.
The n pairs of observations, (e1, s1), . . . , (en, sn) may still be treated to be
uncorrelated (or even independent). These n pairs are like n independent
blocks, inside each of which we can compare enriched with standard. This
is the idea of blocking and block designs. Blocks are supposed to be homo-
geneous inside, so comparison of treatments within blocks becomes efficient.
We assume that
(

ei
si

)

∼ N2

((

µ1

µ2

)

,

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))

. In the above example, we

want to test H0 : µD ≡ µ1 − µ2 = 0, so consider yi = ei − si. Then,
yi = µD + ǫi, E(ǫi) = 0, V ar(ǫi) = σ2

D = σ2
1 + σ2

2 − 2ρσ1σ2 = V ar(yi). If
normality is assumed, then we have, y1, . . . , yn i.i.d. N(µD, σ

2
D) and we want

to test H0 : µD = 0. Consider the test statistic,

√
nȳ

√
∑n

i=1(yi − ȳ)2/(n− 1)
∼ tn−1,

if H0 is true, or equivalently,

nȳ2
∑n

i=1(yi − ȳ)2/(n− 1)
∼ F1,n−1.

1



Note that,

nȳ2
∑n

i=1(yi − ȳ)2/(n− 1)

=
n(ē− s̄)2

1
n−1

∑n

i=1 [(ei − ē)− (si − s̄)]2

=
n(ē− s̄)2

1
n−1

[
∑n

i=1(ei − ē)2 +
∑n

i=1(si − s̄)2 − 2
∑n

i=1(ei − ē)(si − s̄)]

=
(ē− s̄)2/( 1

n
+ 1

n
)

1
2(n−1)

[
∑n

i=1(ei − ē)2 +
∑n

i=1(si − s̄)2 − 2
∑n

i=1(ei − ē)(si − s̄)]
.

Compare this test statistic with the one used for independent samples.
Cov(e, s) is expected to be positive (due to blocking), so the variance in the
denominator above is typically less than 1

2(n−1)
[
∑n

i=1(ei − ē)2 +
∑n

i=1(si − s̄)2],
which appears there. This is the positive effect due to blocking.

Confounding of effects.

Example. Consider two groups of similar students and two teachers. It is
of interest to compare two different training methods. Consider the design
where teacher A teaches one group using method I, whereas teacher B teaches
the other group using method II. Later the results are analyzed. The problem
with this design is that, if one group performs better it may be due to teacher
effect or due to method effect, but it is not possible to separate the effects.
We say then that the two effects are confounded. Sometimes we may not be
interested in certain effects, in which case we may actually look for designs
that will confound their effects. This will reduce the number of parameters
to be estimated.

Experiments with a single factor – One-way ANOVA

We want to compare k > 2 treatments. Treatment i produces a population of
y values with mean µi, i = 1, 2, . . . , k. Or, if treatment i is applied, then the
response Y ∼ N(µi, σ

2), i = 1, 2, . . . , k. Are these k populations different?

Design. ni observations are made independently from population i, so the k
samples are independent. Equivalently, we may look at this experiment as a
design where N subjects are available to study the k treatments. n1 of these
are randomly selected and assigned to a group which will get treatment 1,
n2 of the remaining for treatment 2, and so on. Such a design is called a
completely randomized design (as mentioned previously). Model for such a

2



design is as follows.
Let yij = response of the jth individual in the ith group (ith treatment),
j = 1, 2, . . . , ni; i = 1, 2, . . . , k. Then,
yij = µi + ǫij, j = 1, 2, . . . , ni; i = 1, 2, . . . , k. E(ǫij) = 0, V ar(ǫij) = σ2, un-
correlated errors; ǫij ∼ N(0, σ2) i.i.d. for testing and confidence statements.
In the usual linear model formulation:







































y11
...

y1n1

y21
...

y2n2

...
yk1
...

yknk







































=







































1 0 . . . 0
...

... . . .
...

1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 1 . . . 0
...

... . . .
...

0 0 . . . 1
...

... . . .
...

0 0 . . . 1

















































µ1

µ2
...
µk











+ ǫ.

Since (X ′X)−1 =











1
n1

0 · · · 0

0 1
n2

· · · 0
...

... · · · 0
0 0 · · · 1

nk











and X ′Y =







∑n1

j=1 y1j
...

∑n1

j=1 ykj






, we get







µ̂1
...
µ̂k






=







ȳ1
...
ȳk






and

RSS =
∑k

i=1

∑ni

j=1(yij − ȳi)
2 =

∑ ∑

ǫ̂2ij =
∑ ∑

(yij − µ̂i)
2.

Questions.

(i) Are the group means µi equal? i.e., test H0 : µ1 = µ2 = · · · = µk.
(ii) If not, how are they different?
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yij = µi + ǫij, j = 1, 2, . . . , ni; i = 1, 2, . . . , k E(ǫij) = 0, V ar(ǫij) = σ2.


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
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
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
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








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




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
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






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
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
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
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












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







1 0 . . . 0
...

... . . .
...

1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 1 . . . 0
...

... . . .
...

0 0 . . . 1
...

... . . .
...

0 0 . . . 1

















































µ1

µ2
...
µk











+ ǫ.







µ̂1
...
µ̂k






=







ȳ1
...
ȳk







RSS =
∑k

i=1

∑ni

j=1(yij − ȳi)
2 =

∑ ∑

ǫ̂2ij =
∑ ∑

(yij − µ̂i)
2.

Questions.

(i) Are the group means µi equal? i.e., test H0 : µ1 = µ2 = · · · = µk.
(ii) If not, how are they different?

Example. It is believed that the tensile (breaking) strength of synthetic
fibre is affected by the %age of cotton in fibre:

% cotton tensile strength (lb/inch2) sample mean
15 7, 7, 15, 11, 9 ȳ1 = 9.8
20 12, 17, 12, 18, 18 ȳ2 = 15.4
25 14, 18, 18, 19, 19 ȳ3 = 17.6
30 19, 25, 22, 19, 23 ȳ4 = 21.6
35 7, 10, 11, 15, 11 ȳ5 = 10.8

Are there substantial differences in the mean breaking strength?
(i) Plot the sample means:

1
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But sample means do not tell the whole story, especially for small samples.
One must look at variation within samples and between samples. In the
plot above, the conclusions would be different according to whether the error
bands are green or red.
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It is easier to do this investigation of variations using box-plots, as shown
above. Variation within samples is not too large or different, but between

2



sample variation is large. Note that, if within sample variation is large com-
pared to between sample variation (like the red error bands in the plot),
then the different samples can be considered to be from a single population.
However, if within sample variation is small compared to between sample
variation (like the green error bands in the plot, i.e., |ȳi − ȳj| are large com-
pared to the error) then there is reason to believe that the groups differ.

To formalize this, we return to linear models:
yij = µi + ǫij, j = 1, 2, . . . , ni; i = 1, 2, . . . , k, ǫij ∼ N(0, σ2) i.i.d. Are the
group means different?






µ̂1
...
µ̂k






=







ȳ1
...
ȳk






so that RSS =

∑k

i=1

∑ni

j=1(yij − ȳi)
2.

To test H0 : µ1 = µ2 = · · · = µk, consider

A(k−1)×k =











1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
...

...
... · · ·

...
...

0 0 0 · · · 1 −1











. Then we test H0 : Aµ = 0 where A

has rank k − 1. To test H0, we obtain µ̂H0
, RSSH0

and consider

F =
(RSSH0

− RSS)/(k − 1)

RSS/(
∑k

i=1 ni − k)
, which ∼ Fk−1,

∑
k

i=1
ni−k under H0.

To find µ̂H0
, RSSH0

, note that, under H0 : µ1 = µ2 = · · · = µk, these means
are equal, and so it is enough to find

min
µ1=µ2=···=µk

k
∑

i=1

ni
∑

j=1

(yij − µi)
2 = min

µ

k
∑

i=1

ni
∑

j=1

(yij − µ)2.

Therefore,

µ̂H0
=

1
∑k

i=1 ni

k
∑

i=1

ni
∑

j=1

yij ≡ ȳ.., and hence RSSH0
=

k
∑

i=1

ni
∑

j=1

(yij − ȳ..)
2.
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yij = µi + ǫij, j = 1, 2, . . . , ni; i = 1, 2, . . . , k, ǫij ∼ N(0, σ2) i.i.d. Are the
group means different?






µ̂1
...
µ̂k






=







ȳ1
...
ȳk






so that RSS =

∑k

i=1

∑ni

j=1(yij − ȳi)
2.

To test H0 : µ1 = µ2 = · · · = µk, consider

A(k−1)×k =











1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
...

...
... · · ·

...
...

0 0 0 · · · 0 −1











. Then we test H0 : Aµ = 0 where A

has rank k − 1. To test H0, we obtain µ̂H0
, RSSH0

and consider

F =
(RSSH0

− RSS)/(k − 1)

RSS/(
∑k

i=1 ni − k)
, which ∼ Fk−1,

∑
k

i=1
ni−k under H0.

To find µ̂H0
, RSSH0

, note that, under H0 : µ1 = µ2 = · · · = µk, these means
are equal, and so it is enough to find

min
µ1=µ2=···=µk

k
∑

i=1

ni
∑

j=1

(yij − µi)
2 = min

µ

k
∑

i=1

ni
∑

j=1

(yij − µ)2.

Therefore,

µ̂H0
=

1
∑k

i=1 ni

k
∑

i=1

ni
∑

j=1

yij ≡ ȳ.., and hence RSSH0
=

k
∑

i=1

ni
∑

j=1

(yij − ȳ..)
2.

Introduce further notation: ȳi. = ȳi = 1
ni

∑ni

j=1 yij, i = 1, 2, . . . , k. Note,
further, that

RSSH0

=
k
∑

i=1

ni
∑

j=1

(yij − ȳ..)
2 =

k
∑

i=1

ni
∑

j=1

(yij − ȳi. + ȳi. − ȳ..)
2

=
k
∑

i=1

ni
∑

j=1

(yij − ȳi.)
2 +

k
∑

i=1

ni(ȳi. − ȳ..)
2 + 2

k
∑

i=1

{

(ȳi. − ȳ..)

ni
∑

j=1

(yij − ȳi.)

}

= RSS +
k
∑

i=1

ni(ȳi. − ȳ..)
2,
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since
∑ni

j=1(yij − ȳi.) = 0 for all i. Therefore,

RSSH0
− RSS =

k
∑

i=1

ni(ȳi. − ȳ..)
2

and therefore,

F =

∑k

i=1 ni(ȳi. − ȳ..)
2/(k − 1)

∑k

i=1

∑ni

j=1(yij − ȳi.)2/(
∑k

i=1 ni − k)
∼ Fk−1,

∑
k

i=1
ni−k under H0.

It is instructive to consider these sum of squares.
RSS =

∑k

i=1

∑ni

j=1(yij − ȳi.)
2

= the sum total of all the sum of squares of deviations from the sample means
= within groups or within treatments sum of squares, SSW .

RSSH0
=
∑k

i=1

∑ni

j=1(yij − ȳ..)
2

= total sum of squares of deviations assuming no treatment effect
= total variability (corrected) in the k samples, SST .

Therefore,
∑k

i=1 ni(ȳi. − ȳ..)
2 = SST - SSW = between groups or between

treatments sum of squares = SSB. Thus,
SST = SSW + SSB is the decomposition of sum of squares along with
∑k

i=1 ni − 1 = (
∑k

i=1 ni − k) + (k − 1), decomposition of d.f.

ANOVA for One-way classification

source d.f. SS MS F

Treatments k − 1 SSB = MSB = MSB
MSE

∼ (under H0)

(groups)
∑k

i=1 ni(ȳi. − ȳ..)
2 SSB

k−1
Fk−1,

∑
k

i=1
ni−k

Error
∑

ni − k SSW = MSE =
∑ ∑

(yij − ȳi.)
2 SSW∑

k

i=1
ni−k

Total
∑

ni − 1 SST =
(corrected)

∑ ∑

(yij − ȳ..)
2

Mean 1 (
∑k

i=1 ni)ȳ
2
..

Total
∑

ni

∑k

i=1

∑ni

j=1 y
2
ij

2



Example. Tensile strength data. k = 5, ni = 5. ANOVA is as follows.

source d.f. SS MS F
Factor levels (% cotton) 4 475.76 118.94 14.76 >> 4.43 = F4,20(.99)

Error 20 161.20 8.06
Total(corrected) 24 636.96

R2 = 475.76
636.96

≈ 75%

Now that the ANOVA H0 has been rejected, we should look at the group
means (estimates) closely. Suppose we want to compare µr and µs either
with H0 : µr = µs or using a confidence interval for µr − µs.

µ̂r − µ̂s = ȳr. − ȳs. ∼ N

(

µr − µs, σ
2

(

1

nr

+
1

ns

))

independently of

k
∑

i=1

ni
∑

j=1

(yij − ȳi.)
2 ∼ σ2χ2∑

k

i=1
ni−k

.

Therefore,

{(ȳr. − ȳs.)− (µr − µs)} /
√

1
nr

+ 1
ns

√

∑k

i=1

∑ni

j=1(yij − ȳi.)2/
(

∑k

i=1 ni − k
)

∼ t∑k

i=1
ni−k.

100(1− α)% confidence interval for µr − µs is

ȳr. − ȳs. ± t∑k

i=1
ni−k(1− α/2)

√

√

√

√

k
∑

i=1

ni
∑

j=1

(yij − ȳi.)2/

(

k
∑

i=1

ni − k

)

√

1

nr

+
1

ns

.

Further, test statistic for testing H0 : µr = µs is

T =
(ȳr. − ȳs.) /

√

1
nr

+ 1
ns

√

∑k

i=1

∑ni

j=1(yij − ȳi.)2/
(

∑k

i=1 ni − k
)

∼ t∑k

i=1
ni−k,

if H0 is true.
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Multiple comparison of group means

yij = µi + ǫij, j = 1, 2, . . . , ni; i = 1, 2, . . . , k, ǫij ∼ N(0, σ2) i.i.d.

The classic ANOVA test is the test of H0 : µ1 = µ2 = · · · = µk, which is
uninteresting and the hypothesis is usually not true. What an experimentor
usually wants to find out is which treatments are better, so rejection of H0

is usually not the end of the analysis. Once it is rejected, further work is
needed to find out why it was rejected.

Definition. A linear parametric function
∑k

i=1 aiµi = a′µ with known con-

stants a1, . . . , ak satisfying
∑k

i=1 ai = a′1 = 0 is called a contrast (linear
contrast).

Example. If a = (1,−1, 0, . . . , 0)′, then a′µ = µ1 − µ2.

Result. µ1 = µ2 = · · · = µk if and only if a′µ = 0 for all

a ∈ A =
{

a = (a1, . . . , ak)
′ :
∑k

i=1 ai = 0
}

.

Remark. H0 : µ1 = µ2 = · · · = µk is true iff Ha : a′µ = 0 for all a ∈ A, or
all linear contrasts are zero.

Proof. µ1 = µ2 = · · · = µk iff µ = α1 for some α, or µ ∈ MC(1). Note,
A = M⊥

C(1).

Thus, if H0 fails, atleast one of the Ha must fail for a ∈ A. i.e., a′µ 6= 0. The
experimenter may be interested in this contrast, and its inference. Consider
inference of any linear parametric function, a′µ =

∑k

i=1 aiµi. We have the
model,
yij ∼ N(µi, σ

2), j = 1, 2, . . . , ni; i = 1, 2, . . . , k independent. Then, ȳi. ∼

N(µi, σ
2/ni), i = 1, 2, . . . , k independent, and

E(
k
∑

i=1

aiȳi.) =
k
∑

i=1

aiµi = a′µ, V ar(
k
∑

i=1

aiȳi.) = σ2

k
∑

i=1

a2i
ni

,

so that
∑k

i=1 aiȳi. −
∑k

i=1 aiµi
√

σ2
∑k

i=1
a2
i

ni

∼ N(0, 1).

Let S2
i =

∑ni

j=1(yij − ȳi.)
2, i = 1, 2, . . . , k. Then S2

i ∼ σ2χ2
ni−1 independent

of ȳi., i = 1, 2, . . . , k. Also, (S2
1 , . . . , S

2
k) is independent of ȳ = (ȳ1., . . . , ȳk.).

Let S2
p =

∑k

i=1 S
2
i . Then S2

p ∼ σ2χ2∑
k

i=1
ni−k

independent of ȳ. Note that this

is just a repeat of our old result that RSS =
∑k

i=1

∑ni

j=1(yij − ȳi.)
2 = S2

p is

1



independent of β̂ = µ̂. Thus, as discussed previously,

a′ȳ − a′µ
√

S2
p

(

∑k

i=1
a2
i

ni

)

/(
∑k

i=1 ni − k)

∼ t∑k

i=1
ni−k,

so that

a′ȳ ± t∑k

i=1
ni−k(1− α/2)

√

√

√

√S2
p

(

k
∑

i=1

a2i
ni

)

/(
k
∑

i=1

ni − k)

is a 100(1 − α)% confidence interval for a′µ. Also, reject Ha,0 : a′µ = 0 in
favour of Ha,1 : a

′µ 6= 0 if

∣

∣

∣

∣

∣

∣

∣

∣

a′ȳ
√

S2
p

(

∑k

i=1
a2
i

ni

)

/(
∑k

i=1 ni − k)

∣

∣

∣

∣

∣

∣

∣

∣

> t∑k

i=1
ni−k(1− α/2).

What if we want investigate a set of contrasts simultaneously? From Boole’s
Inequality,
P (∪∞

i=1Ai) ≤
∑

∞

i=1 P (Ai), so P (∪∞

i=1A
c
i) ≤

∑

∞

i=1 P (Ac
i).

Since ∪∞

i=1A
c
i = (∩∞

i=1Ai)
c,

1− P (∩n
i=1Ai) ≤

n
∑

i=1

(1− P (Ai)) = n−

n
∑

i=1

P (Ai), or

P (∩n
i=1Ai) ≥

n
∑

i=1

P (Ai)− (n− 1).

This is known as the Bonferroni Inequality. Apply this to the above problem.
If we want a simultaneous confidence set for a(1)

′

µ, . . . , a(d)
′

µ, consider

C =
{

a(j)
′

ȳ±t∑k

i=1
ni−k(1−

α

2d
)

√

√

√

√S2
p

(

k
∑

i=1

(a
(j)
i )2

ni

)

/(
k
∑

i=1

ni − k), j = 1, 2, . . . , d
}

.

Then

P (C) = P (∩d
l=1Al) ≥

d
∑

l=1

P (Al)−(d−1) =
d
∑

l=1

(1−
α

d
)−(d−1) = d−α−d+1 = 1−α.

This procedure is useful when d is not too large.
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Reparametrization of the one-way model.

Suppose ni are all equal, and equal to J . Also, let the number of groups be
k = I. Then

∑k
i=1 ni = IJ , and ȳi. =

∑J
j=1 yij/J , for i = 1, . . . , I.

ȳ.. =
∑I

i=1

∑J
j=1 yij/(IJ). Further,

SSW =
∑I

i=1

∑J
j=1(yij − ȳi.)

2 has d.f. (IJ − I);

SSB =
∑I

i=1 ni(yi. − ȳ..)
2 = J

∑I
i=1(yi. − ȳ..)

2 has d.f. I − 1.

We can rewrite the model, yij = µi + ǫij, ǫij ∼ N(0, σ2) i.i.d. as follows.

µi = µ̄. + (µi − µ̄.) = µ+ αi, where µ̄. =
∑I

i=1 µi/I and αi = µi − µ̄.. Then,∑I
i=1 αi = α. =

∑I
i=1(µi − µ̄.) = 0. Further, H0 : µ1 = µ2 = · · · = µI

is the same as H0 : α1 = α2 = · · · = αI−1 = 0 (α. = 0 implies that
αI = −

∑I−1
i=1 αi = 0 also.)

Similarly write
ǭi. = ǭ.. + ǭi. − ǭ.., so that
ǫij = ǭ.. + (ǭi. − ǭ..) + (ǫij − ǭi.). Therefore

I∑

i=1

J∑

j=1

ǫ2ij =
I∑

i=1

J∑

j=1

ǫ2.. +
I∑

i=1

J∑

j=1

(ǭi. − ǭ..)
2 +

I∑

i=1

J∑

j=1

(ǫij − ǭi.)
2,

since ǭ..
∑I

i=1(ǭi. − ǭ..) = 0, ǭ..
∑I

i=1

∑J
j=1(ǫij − ǭi.) = 0 and∑I

i=1

∑J
j=1(ǭi. − ǭ..)(ǫij − ǭi.) =

∑I
i=1(ǭi. − ǭ..)

∑J
j=1(ǫij − ǭi.) = 0.

Now, since ǫij = yij − µ − αi, we get ǭi. = ȳi. − µ − αi, ǭ.. = ȳ.. − µ, and
further, from above,

I∑

i=1

J∑

j=1

(yij − µ− αi)
2

=
I∑

i=1

J∑

j=1

(ȳ.. − µ)2 +
I∑

i=1

J∑

j=1

(ȳi. − ȳ.. − αi)
2 +

I∑

i=1

J∑

j=1

(yij − ȳi.)
2.

Least squares estimates subject to
∑I

i=1 αi = 0 may be obtained simply by
examination of the above, and they are:

µ̂ = ȳ.., α̂i = ȳi. − ȳ..,

and hence RSS =
∑I

i=1

∑J
j=1(yij − ȳi.)

2.

1



Under H0 : α1 = α2 = · · · = αI−1 = 0, we have

I∑

i=1

J∑

j=1

(yij − µ− αi)
2
≡

I∑

i=1

J∑

j=1

(yij − µ)2

=
I∑

i=1

J∑

j=1

(ȳ.. − µ)2 +
I∑

i=1

J∑

j=1

(ȳi. − ȳ..)
2 +

I∑

i=1

J∑

j=1

(yij − ȳi.)
2,

so that, then,
∑I

i=1

∑J
j=1(yij − µ)2 is minimized when µ̂ = ȳ.. (with αi = 0).

We then get

RSSH0
=

I∑

i=1

J∑

j=1

(ȳi. − ȳ..)
2 +

I∑

i=1

J∑

j=1

(yij − ȳi.)
2

= J

I∑

i=1

(ȳi. − ȳ..)
2 +

I∑

i=1

J∑

j=1

(yij − ȳi.)
2.

Therefore,

RSSH0
− RSS = J

I∑

i=1

(ȳi. − ȳ..)
2.

Note that all these can be done by just inspection, even though we have de-
rived these previously using other methods. The simplicity of this approach,
however, is very useful for higher-way classification models.

One-way ANOVA with equal number of observations per group.

source d.f SS MS F

Treatments I − 1 J
∑

(ȳi. − ȳ..)
2 SSB/(I − 1) J

∑
(ȳi.−ȳ..)2/(I−1)∑∑
(yij−ȳi.)2/(IJ−I)

Error IJ − I
∑∑

(yij − ȳi.)
2 SSW/(IJ − I)

Total (C) IJ − 1
∑∑

(yij − ȳ..)
2

This approach of reparametrization and decomposition generalizes to higher-
way classification where there are substantial simplifications.

2-factor Analysis or 2-way ANOVA

Example. An engineer is designing a battery for use in a device that will be
subjected to some extreme temperature variations. The only design param-
eter that he can select at this time is the plate material for the battery, and
he has three possible choices. When the device is manufactured and shipped

2



to the field, the engineer has no control over the temperature extremes that
the device will encounter, and he knows from past experience that temper-
ature may impact the effective battery life. However, temperature can be
controlled in the product development laboratory for the purposes of testing.

The engineer decides to test all three plate materials at three different tem-
perature levels, 15◦F, 70◦F and 125◦F (-10, 21 and 51 degree C), as these tem-
perature levels are consistent with the product end-use environment. Four
batteries are tested at each combination of plate material and temperature,
and the 36 tests are run in random order.

Question 1. What effects do material type and temperature have on the life
of the battery?
Question 2. Is there a choice of material that would give uniformly long life
regardless of temperature? (Robust product design?)

3



Question 1. What effects do material type and temperature have on the life
of the battery?
Question 2. Is there a choice of material that would give uniformly long life
regardless of temperature? (Robust product design?)

Life (in hrs) data for the battery design experiment:
material temperature (◦F)
type 15 70 125
1 130 155 34 40 20 70

74 180 80 75 82 58
2 150 188 126 122 25 70

159 126 106 115 58 45
3 138 110 174 120 96 104

168 160 150 139 82 60

Both factors, material type and temperature are important and there may
be interaction between the two also. Let us denote the row factor as factor
A and column factor as factor B (in general). Then the model for the data
may be developed as follows.

Let yijk be the observed response when factor A is at the ith level (i =
1, 2, . . . , I) and factor B is at the jth level (j = 1, 2, . . . , J) for the kth
replicate (k = 1, 2, . . . , K). In the example, I = 3, J = 3, K = 4. This design
is like having IJ different cells each of which has K observations, and one
wants to see if the IJ cell means are different or not (in various ways).

yijk = µij + ǫijk, i = 1, 2, . . . , I; j = 1, 2, . . . , J ; k = 1, 2, . . . , K.

Therefore it is also called a completely randomized 2-factor design. We as-
sume, ǫijk are i.i.d. N(0, σ2). As before, this is a linear model, and hence
various linear hypotheses can be tested. Let
ȳij. =

1

K

∑K

k=1
yijk, i = 1, 2, . . . , I; j = 1, 2, . . . , J

ȳi.. =
1

JK

∑J

j=1

∑K

k=1
yijk =

1

J

∑J

j=1
ȳij., i = 1, 2, . . . , I

ȳ.j. =
1

IK

∑I

i=1

∑K

k=1
yijk =

1

I

∑I

i=1
ȳij., j = 1, 2, . . . , J

ȳ... =
1

IJK

∑I

i=1

∑J

j=1

∑K

k=1
yijk =

1

IJ

∑I

i=1

∑J

j=1
ȳij. =

1

I

∑I

i=1
ȳi.. =

1

J

∑J

j=1
ȳ.j.

Now, µ̂ij = ȳij. under no constraints, and hence

RSS =
∑I

i=1

∑J

j=1

∑K

k=1
(yijk − ȳij.)

2 has IJ(K − 1) d.f. To consider inter-
esting questions, it is best to adopt the reparametrization,
µij = µ+ αi + βj + (αβ)ij, where

µ = µ̄.. =
1

IJ

∑I

i=1

∑J

j=1
µij, αi = µ̄i. − µ̄.., βj = µ̄.j − µ̄.. and

(αβ)ij = µij − µ̄i. − µ̄.j + µ̄...

1



Then note that
∑I

i=1
αi = 0,

∑J

j=1
βj = 0,

∑I

i=1
(αβ)ij = 0 for all j and∑J

j=1
(αβ)ij = 0 for all i.

(Note,
∑I

i=1
(αβ)ij =

∑I

i=1
µij−

∑I

i=1
µ̄i.−Iµ̄.j+Iµ̄.. =

∑I

i=1
(µij− µ̄.j) = 0.)

These are the conditions required for identifiability of the parameters under
reparametrization.

Now consider the interpretation of these parameters. µ = µ̄.. is the overall
effect. αi = µ̄i. − µ̄.. = main effect of factor A at level i since eliminating
the effect of level j by averaging over it leaves the departure of effect i (of
factor A) from overall, and similarly, βj = µ̄.j − µ̄.. = main effect of factor B
at level j. What does (αβ)ij = µij − µ̄i. − µ̄.j + µ̄.. measure?

Suppose we want to see if the effect of factor A at level i depends on the level
of factor B. If there were no such interaction, we would expect the difference
in means µi1j − µi2j depend on i1 and i2 and not on j. i.e.,

µi1j − µi2j = φ(i1, i2) =
1

J

J∑

j=1

φ(i1, i2)

=
1

J

J∑

j′=1

(µi1j′ − µi2j′) = µ̄i1. − µ̄i2.,

for all i1, i2. Or, equivalently, µi1j − µ̄i1. = µi2j − µ̄i2. for all i1, i2. i.e.,

µij − µ̄i. = Φ(j) (independent of i)

=
1

I

I∑

i′=1

Φ(j) =
1

I

I∑

i′=1

(µi′j − µ̄i′.)

= µ̄.j − µ̄.., for all i, j.

i.e., µij − µ̄i. − µ̄.j + µ̄.. = 0 for all i, j. Because of symmetry, we could have
begun with µij1 − µij2 depending on j1, j2, but not on i. Thus, we see that
(αβ)ij = µij − µ̄i. − µ̄.j + µ̄.. measures the interaction of i and j. Therefore,
to investigate the existence of interaction, we should test,
HAB : (αβ)ij = 0 (i = 1, 2, . . . , I; j = 1, 2, . . . , J) as the restricted model
without interaction. Estimation of (αβ)ij can also be considered. Now,
consider the main effects of factors A and B.
To test for lack of difference in levels of factor A, use, HA : αi = 0 for all i.
To test for lack of difference in levels of factor B, use, HB : βj = 0 for all
j. If HAB : (αβ)ij = 0 has been rejected, there is evidence for significant
interaction, so main effects cannot be non-existent.
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Life (in hrs) data for the battery design experiment:
material temperature (◦F)
type 15 70 125
1 130 155 34 40 20 70

74 180 80 75 82 58
2 150 188 126 122 25 70

159 126 106 115 58 45
3 138 110 174 120 96 104

168 160 150 139 82 60

Let yijk be the observed response when factor A is at the ith level (i =
1, 2, . . . , I) and factor B is at the jth level (j = 1, 2, . . . , J) for the kth
replicate (k = 1, 2, . . . , K).

yijk = µij + ǫijk, i = 1, 2, . . . , I; j = 1, 2, . . . , J ; k = 1, 2, . . . , K.

Now, µ̂ij = ȳij. under no constraints, and hence

RSS =
∑I

i=1

∑J

j=1

∑K

k=1(yijk − ȳij.)
2 has IJ(K − 1) d.f.

Reparametrization: µij = µ+ αi + βj + (αβ)ij, where∑I

i=1 αi = 0,
∑J

j=1 βj = 0,
∑I

i=1(αβ)ij = 0 for all j and
∑J

j=1(αβ)ij = 0 for
all i are the identifiability conditions.

To investigate the existence of interaction, we should test,
HAB : (αβ)ij = 0(i = 1, 2, . . . , I; j = 1, 2, . . . , J) as the restricted model
without interaction. Estimation of (αβ)ij can also be considered. Now,
consider the main effects of factors A and B.
To test for lack of difference in levels of factor A, use, HA : αi = 0 for all i.
To test for lack of difference in levels of factor B, use, HB : βj = 0 for all
j. If HAB : (αβ)ij = 0 has been rejected, there is evidence for significant
interaction, so main effects cannot be non-existent.

To find estimates, confidence intervals and to conduct tests, we proceed as
follows. Since
µij = µ̄..+(µ̄i.− µ̄..)+(µ̄.j − µ̄..)+(µij − µ̄i.− µ̄.j + µ̄..) = µ+αi+βj +(αβ)ij,
we use a similar representation for ǫijk:

ǫijk = ǭ... + (ǭi.. − ǭ...) + (ǭ.j. − ǭ...) + (ǭij. − ǭi.. − ǭ.j. + ǭ...) + (ǫijk − ǭij.).

1



Therefore, as in one-way classification,

I∑

i=1

J∑

j=1

K∑

k=1

ǫ2ijk = IJKǭ2... + JK

I∑

i=1

(ǭi. − ǭ..)
2 + IK

J∑

j=1

(ǭ.j − ǭ..)
2

+K
I∑

i=1

J∑

j=1

(ǭij. − ǭi.. − ǭ.j. + ǭ...)
2 +

I∑

i=1

J∑

j=1

K∑

k=1

(ǫijk − ǭij.)
2,

since cross products vanish. Noting that ǫijk = yijk−µ−αi−βj−(αβ)ij , with∑I

i=1 αi = 0,
∑J

j=1 βj = 0,
∑I

i=1(αβ)ij = 0 for all j and
∑J

j=1(αβ)ij = 0
for all i, we get ǭ... = ȳ... − µ, ǭi.. = ȳi.. − µ − αi, ǭ.j. = ȳ.j. − µ − βj,
ǭij. = ȳij. − µ− αi − βj − (αβ)ij . Hence,

I∑

i=1

J∑

j=1

K∑

k=1

(yijk − µ− αi − βj − (αβ)ij)
2

= IJK(ȳ... − µ)2 + JK
I∑

i=1

(ȳi.. − ȳ... − αi)
2 + IK

J∑

j=1

(ȳ.j. − ȳ... − βj)
2

+K

I∑

i=1

J∑

j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ... − (αβ)ij)
2 +

I∑

i=1

J∑

j=1

K∑

k=1

(yijk − ȳij.)
2.

Subject to the identifiability conditions, we obtain the least squares esti-
mates:
µ̂ = ȳ..., α̂i = ȳi.. − ȳ..., β̂j = ȳ.j. − ȳ... and ˆ(αβ)ij = ȳij. − ȳi.. − ȳ.j. + ȳ....

Therefore, RSS =
∑I

i=1

∑J

j=1

∑K

k=1(yijk − ȳij.)
2, as seen earlier.

Consider HAB : (αβ)ij = 0 for all i, j. Due to the identiability constraints on

these parameters, namely, 0 =
∑I

i=1(αβ)ij =
∑J

j=1(αβ)ij =
∑I

i=1

∑J

j=1(αβ)ij,
there are IJ − I − J + 1 = (I − 1)(J − 1) linearly independent equa-
tions, so the A matrix used to express this as a linear hypothesis has rank
IJ − I − J + 1 = (I − 1)(J − 1). Further, by inspection,

RSSHAB
=

I∑

i=1

J∑

j=1

K∑

k=1

(yijk − ȳij.)
2 +K

I∑

i=1

J∑

j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)
2,

since µ̂, α̂i and β̂j remain as before. Hence

RSSHAB
− RSS = K

I∑

i=1

J∑

j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)
2 = K

I∑

i=1

J∑

j=1

ˆ(αβ)
2

ij ,

2



which has d.f. (I − 1)(J − 1). To test HAB, use

FAB =
(RSSHAB

− RSS) /{(I − 1)(J − 1)}

RSS/{IJ(K − 1)}
∼ F(I−1)(J−1),IJ(K−1)

under HAB. Now consider HA : αi = 0 for all i. There are I − 1 linearly
independent equations here, so the rank of A matrix is I − 1. Again, by
inspection, note that estimates of the remaining parameters, µ, βj and (αβ)ij
remain unchanged, so

RSSHA
=

I∑

i=1

J∑

j=1

K∑

k=1

(yijk − ȳij.)
2 + JK

I∑

i=1

(ȳi.. − ȳ...)
2, so

RSSHA
− RSS = JK

I∑

i=1

(ȳi.. − ȳ...)
2 = JK

I∑

i=1

α̂2
i

with d.f. I − 1. Similarly,

RSSHB
=

I∑

i=1

J∑

j=1

K∑

k=1

(yijk − ȳij.)
2 + IK

J∑

j=1

(ȳ.j. − ȳ...)
2, so

RSSHB
− RSS = IK

J∑

j=1

(ȳ.j. − ȳ...)
2 = IK

J∑

j=1

β̂2
j

with d.f. J − 1. Therefore, for the respective tests use,

FA =
(RSSHA

− RSS) /(I − 1)

RSS/{IJ(K − 1)}
∼ FI−1,IJ(K−1)

under HA and

FB =
(RSSHB

− RSS) /(J − 1)

RSS/{IJ(K − 1)}
∼ FJ−1,IJ(K−1)

under HB. The decomposition of the total sum of squares along with its d.f.
is as follows.

I∑

i=1

J∑

j=1

K∑

k=1

y2ijk = IJKȳ2... + JK

I∑

i=1

(ȳi.. − ȳ...)
2 + IK

J∑

j=1

(ȳ.j. − ȳ...)
2

+K
I∑

i=1

J∑

j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)
2 +

I∑

i=1

J∑

j=1

K∑

k=1

(yijk − ȳij.)
2.

IJK = 1 + (I − 1) + (J − 1) + (IJ − I − J + 1) + (IJK − IJ).
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ANOVA table for 2-factor analysis:
source d.f SS MS F
A main I − 1 SSA = MSA = FA =

effects JK
∑I

i=1 α̂
2
i MSA/MSE

B main J − 1 SSB = MSB = FB =

effects IK
∑J

j=1 β̂
2
j MSB/MSE

AB (I − 1)(J − 1) SSAB = MSAB = FAB =

interactions K
∑∑ ˆ(αβ)

2

ij MSAB/MSE

Error IJ(K − 1) RSS = MSE =∑∑∑
(yijk − ȳij.)

2 RSS
IJ(K−1)

Total (c) IJK − 1
∑∑∑

(yijk − ȳ...)
2

Mean 1 IJKȳ2...
Total IJK

∑ ∑ ∑
y2ijk

ANOVA for the battery example:

source d.f SS MS F
plate 2 10684 5342 7.91 (2, 27)

temperature 2 39119 19559 28.97 (2, 27)
interactions 4 9614 2413 3.56 (4, 27)

error 27 18231 675
total (c) 35 77647
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