

Homework practice problems

1. Let p be a prime and n be a nonzero integer. Write $n = p^{\nu_p(n)}m$ where m is coprime with p . Extend the function ν_p to the set of nonzero rationals by the formula $\nu_p(\pm \frac{r}{s}) = \nu_p(r) - \nu_p(s)$. Finally, define $\rho(x, y) = p^{-\nu_p(x-y)}$ when $x \neq y$ and $\rho(x, x) = 0$ for arbitrary $x, y \in \mathbb{Q}$. Prove that ρ is well defined and is a metric on \mathbb{Q} . This is the p -adic metric on \mathbb{Q} .
2. Let $S^n = \{(a_0, \dots, a_n) \in \mathbb{R}^{n+1} | a_0^2 + \dots + a_n^2 = 1\}$ be the n -sphere in \mathbb{R}^{n+1} . Let $S_+^{n+1} := \{(a_0, \dots, a_n) \in S^n, a_n > 0\}$. Prove that S_+^n is homeomorphic to the open unit ball in \mathbb{R}^n , where we identify \mathbb{R}^n with the subspace $\{(a_0, \dots, a_{n-1}, 0), a_i \in \mathbb{R}\}$ of \mathbb{R}^{n+1} . ()
3. (i) Let X, Y be topological spaces. Treat X as the indexing set for copies of Y , so $Y_x = Y$ for every $x \in X$. Consider $\prod_{x \in X} Y_x$ with product topology. Let $C(X, Y)$ be the set of all continuous maps $X \rightarrow Y$. Identify $C(X, Y)$ with a subset of $\prod_{x \in X} Y_x$. Prove that the subspace topology on $C(X, Y)$ from $\prod_{x \in X} Y_x$ coincides with the topology of pointwise convergence, for which a subbasis is given by the sets of the form $\{x_i, U_i\}_{i=1}^k := \{f \in C(X, Y) | f(x_i) \in U_i, i = 1, \dots, k\}$, where $x_1, \dots, x_k \in X$ and U_1, \dots, U_k are open subsets of Y .
(ii) Consider a sequence (f_n) in $C(X, Y)$ that converges to f in the topology of pointwise convergence on $C(X, Y)$. Then the sequence $(f_n(x))$ converges to $f(x)$ for every x .
4. Let X and Y be topological spaces. Consider all possible sets of the form

$$[K, U] := \{f \in C(X, Y) : f(K) \subset U\},$$

where $K \subset X$ is compact and $U \subset Y$ is open. The topology generated by these sets as a subbasis of open sets, is called the compact-open topology on $C(X, Y)$. Prove that when X is compact and Y is a metric space, the compact-open topology coincides with the topology of uniform convergence on the metric space $(C(X, Y), d)$, $d(f, g) = \sup_{x \in X} d(f(x), g(x))$.

5. Show that the set of all isolated points of a second countable topological space is empty or countable. Hence show that any uncountable subset A of such a space must have at least one point which is a limit point of A .