

Function Spaces - B. Math. III

Assignment 1 — Odd Semester 2023-2024

Due date: August 29, 2023

Note: Total number of points is 60. Plagiarism is prohibited. But after sustained effort, if you cannot find a solution, you may discuss with others and write the solution in your own words **only after** you have understood it.

1. (10 points) For $n \in \mathbb{N}$, let $f_n \in C([0, 1]; \mathbb{R})$ be given by $f_n(x) = x^n$.
 - (a) (5 points) Prove that the sequence $\{f_n\}$ converges pointwise but not uniformly.
 - (b) (5 points) Let $g \in C([0, 1]; \mathbb{R})$ with $g(1) = 0$. Show that the sequence $\{x^n g(x)\}$ converges uniformly on $[0, 1]$.
2. (10 points) Prove that $\sum_{n=1}^{\infty} x^n (1-x)$ converges pointwise but not uniformly on $[0, 1]$, whereas $\sum_{n=1}^{\infty} (-1)^n x^n (1-x)$ converges uniformly on $[0, 1]$. (This illustrates that uniform convergence of $\sum f_n(x)$ along with pointwise convergence of $\sum |f_n(x)|$.)
3. (10 points) Let $\{a_n\}$ be a decreasing sequence of positive real numbers. Prove that the series $\sum_{n=1}^{\infty} a_n \sin(nx)$ converges uniformly on \mathbb{R} if, and only if, $na_n \rightarrow 0$ as $n \rightarrow \infty$.
4. (10 points) Prove that the series $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ converges uniformly on the interval $[1 + \varepsilon, \infty)$ for every $\varepsilon > 0$. Show that the equation $\zeta'(s) = -\sum_{n=1}^{\infty} \frac{\log n}{n^s}$ is valid for each $s > 1$ and obtain a similar formula for the k th derivative $\zeta^{(k)}(s)$.
5. (10 points) Assume that $\{f_n\}$ is a sequence of monotonically increasing functions on \mathbb{R} such that $0 \leq f_n(x) \leq 1$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Prove that there is a function f and a subsequence $\{n_k\}$ such that
$$f(x) = \lim_{n \rightarrow \infty} f_{n_k}(x)$$
for all $x \in \mathbb{R}$.
6. (10 points) Prove that the unit ball of $(C[0, 1], \|\cdot\|_{\infty})$ is not compact.