
(i) $U \subseteq \mathbb{C}/\mathbb{R}^2$ open. (ii) $B_r(z_0) := \{z \in \mathbb{C} : |z - z_0| < r\}$. (iii) $C_r(z_0) := \{z \in \mathbb{C} : |z - z_0| = r\}$.
 (iv) $Hol(U) = \{f : U \rightarrow \mathbb{C} \text{ holomorphic}\}$. (v) $\mathbb{D} = B_1(0)$. (vi) \mathcal{D} = a domain in \mathbb{C} .

(1) Let $M > 0$ and let $|a_n| \leq M$ for all $n \geq 0$. Prove or disprove that the radius of convergence of $\sum_{n \geq 0} a_n z^n$ is ≥ 1 .

(2) Determine the region of convergence of the following series: (i) $\sum_{n=1}^{\infty} (z - 1)^n$, (ii) $\sum_{n=3}^{\infty} (\log n)^{\frac{n}{2}} z^n$, (iii) $\sum_{n=1}^N 2^n \log n z^n$, N is a fixed integer, (iv) $\sum_p \text{prime} z^p$.

(3) Determine the power series expansion and the radius of convergence of f at z_0 where:
 (i) $f(z) = \frac{1}{4-z}$ and $z_0 = i$, (ii) $f(z) = \frac{z^2}{4-z}$ and $z_0 = i$, (iii) $f(z) = \frac{1}{z}$ and $z_0 = 1 - i$,
 (iv) $f(z) = 1 + z + z^2 + z^3$ and $z_0 = i$, (v) $f(z) = \frac{1}{(z+1)(z+2)}$ at $z_0 = 0$.

(4) Prove using power series that $e^{-z} = \frac{1}{e^z}$.

(5) Prove that $f'(z) = \frac{1}{z^2+1}$, where

$$f(z) = z - \frac{z^3}{3} + \frac{z^5}{5} - \frac{z^7}{7} + \dots$$

(6) Let $\overline{B_R(0)} \subseteq U$, $f \in Hol(U)$ and let $r < R$. Prove that (Cauchy theorem!!)

$$f(0) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) d\theta = \frac{1}{\pi R^2} \int \int_{B_R(0)} f(x + iy) dy dx.$$

(7) Let γ be a simple closed curve enclosing 0. Compute

$$\int_{\gamma} \frac{e^z + e^{-z}}{2z^4} dz.$$

(8) Compute

$$(a) \int_{C_1(0)} \frac{\sin z}{z} dz, (ii) \int_{C_1(0)} \frac{\cos z}{z} dz, (c) \int_{C_1(0)} \frac{\cos(z^2)}{z} dz.$$

(9) Compute

$$(a) \int_{C_1(-1)} \frac{z^2 + 1}{z^2 - 1} dz, (ii) \int_{C_3(0)} \frac{\exp z}{z^3} dz, (c) \int_{C_1(0)} \exp(z^2) dz.$$

(10) Prove that an entire function whose real part is nonpositive is constant.

(11) Let $f \in Hol(U)$ and let $\overline{B_r(z_0)} \subseteq U$. Prove that

$$\int_{C_r(z_0)} \frac{f(z)}{(z - z_0)^2} dz = \int_{C_r(z_0)} \frac{f'(z)}{(z - z_0)} dz.$$

(12) Suppose f is an entire function and

$$f(z) = f(z + 1) = f(z + i).$$

for all $z \in \mathbb{C}$. Prove that f is a constant function.

(13) Let $f \in Hol(\mathbb{C})$ and $f(z) \rightarrow \infty$ as $z \rightarrow \infty$. Prove that $f(z_0) = 0$ for some $z_0 \in \mathbb{C}$.
 [What does it mean - “ $f(z) \rightarrow \infty$ as $z \rightarrow \infty$ ”?]
 (14) If $f, g \in Hol(\mathbb{C})$ and $|f(z)| \leq |g(z)| \neq 0$ for all $z \in \mathbb{C}$, then prove that $f = cg$ for some scalar c .

(15) True/False? (i) Let $f \in Hol(\mathbb{C})$ and $|f'(z)| \leq |z|$ for all z . Then $f(z) = a + bz^2$ for some $a, b \in \mathbb{C}$. (ii) Let $f \in Hol(\mathbb{C})$, and let f is constant on $C_1(0)$. Then f is constant. (iii) $\exists f \in Hol(\mathbb{D})$ such that $f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^2}$ for all $n \geq 1$.

(16) Prove that the image of a nonconstant entire function is dense in \mathbb{C} .