
Global Cauchy Theorem

Winding numbers: If D is a disc with center z0 and ∂D denotes the path
which surrounds the boundary of D once in the anticlockwise orientation,
then an elementary calculation shows that 1

2πi

∫
∂D

dz
z−z0

= 1. More generally,

if γ goes around the boundary n times in the anticlockwise direction, then
this integral equals +n, while if γ goes around the boundary n times in
the clockwise direction, then the integral equals −n. This motivates the
following:

Definition: If γ is a closed path and z0 is a point outside Im(γ), then the
winding number W (γ, z0) is defined by

W (γ, z0) =
1

2πi

∫
γ

dz

z − z0
.

Intuitively, this counts (with a sign for the direction), the net number of
times γ goes around z0. For this to be correct, the following lemma better
be correct:

Lemma : W (γ, z0) is an integer.

Proof: Let γ : [a, b] → C. Define F : [a, b] → C by F (t) =
t∫
a

γ′(t)
γ(t)−z0

.

Since γ is piecewise continuously differentiable, it follows that F is contin-

uous on [a, b] and F ′(t) = γ′(t)
γ(t)−z0

for all but finitely many points (where

γ is not differentiable) in the interval [a, b]. Now define G : [a, b] → C by

G(t) = eF (t)

γ(t)−z0
. Logarithmic differentiation yields G′(t)

G(t) = F ′(t)− γ′(t)
γ(t)−z0

= 0

at all but finitely many points. Thus G′(t) = 0 at all these points. So G
is a piecewise constant function. But G is continuous. So G is a constant

function. In particular, G(a) = G(b). That is, eF (a)

γ(a)−z0
= eF (b)

γ(b)−z0
. But we

have γ(a) = γ(b). Also, from its definition F (a) = 0, F (b) = 2πiW (γ, z0).
Hence we get e2πiW (γ,z0) = 1. Thus W (γ, z0) is an integer. □

Exercise : If γ is a closed path in C then show that the function z 7→
W (γ, z) from C\Im(γ) into Z is continuous. Hence conclude that W (γ, z)
is a constant on each connected component of C\Im(γ). Also show that
W (γ, z) = 0 for z in the unbounded component of C\Im(γ) [Hint: Fix
z0 ∈ C\Im(γ). Since Im(γ) is compact, the distance of z0 from points on
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Im(γ) is bounded away from 0. That is, ∃ r > 0 such that |γ(t)−zn| ≥ r ∀ t.
It follows that if z is sufficiently close to z0 then |γ(t) − z ≥ r/2. Hence
bound the absolute difference between the two integrands defining W (γ, z)
and W (γ, z0).]

Definition: We shall say that two paths γ : [a, b] → Ω and η : [a, b] → Ω are
close together if they have the same initial point, same end point (i.e., γ(a) =
η(a), γ(b) = η(b)) and there is a partition a = a1 < a2 < . . . < an = b and
closed discs D1, . . . , Dn−1 ⊆ Ω such that γ([ai, ai+1]) ⊆ Di, η([ai, ai+1]) ⊆
Di for 1 ≤ i < n.

Lemma : Let γ, η be two paths in Ω which are close together. Then for
any holomorphic function f : Ω → C, we have

∫
γ
f =

∫
η
f.

Proof: With notations as in the definition of “close together”, we have a
primitive gi of f on Di, 1 ≤ i < n. Write γi for γ|[ai,ai+1], ηi for η|[ai,ai+1], 1 ≤

i < n. Also put zi = γ(ai), wi = η(ai). Then
∫
γ
f =

n−1∑
i=1

∫
γi

f =
n−1∑
i=1

∫
γi

g′i =

n−1∑
i=1

(gi(zi+1)− gi(zi)) and similarly
∫
η
f =

n−1∑
i=1

(gi(wi+1)− gi(wi)). But gi and

gi+1 are both primitives of f on the connected open set Di ∩ Di+1. Hence
gi+1 − gi is a constant on Di ∩ Di+1. Also, Di ∩ Di+1 contains both zi+1

and wi+1. Therefore gi+1(wi+1) − gi(wi+1) = gi+1(zi+1) − gi(zi+1). That is
gi+1(wi+1)− gi+1(zi+1) = gi(wi+1)− gi(zi+1) for 1 ≤ i < n.

Therefore,∫
γ

f −
∫
n

f =
n−1∑
i=1

((gi(zi+1)− gi(zi))− (gi(wi+1)− gi(wi)))

=

n−1∑
i=1

((gi(zi+1)− gi(wi+1))− (gi(zi)− gi(wi)))

=

n−1∑
i=1

((gi+1(zi+1)− gi+1(wi+1))− (gi(zi)− gi(wi)))

=
n−1∑
i=1

(gi+1(zi+1)− gi(zi))−
n−1∑
i=1

(gi+1(wi+1)− gi(wi))
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Hence, by telescoping.∫
γ

f −
∫
η

f = gn(zn)− g1(z1)− gn(wn) + g1(w1)

= (gn(zn)− gn(wn))− (g1(z1)− g1(w1))

But zn = wn = the common end point of γ and η and z1 = w1 = the
common initial point of γ and η. Hence

∫
γ
f −

∫
η
f = 0. □

Definition: Let γ, η : [a, b] → Ω be two paths in Ω with common initial
and end points. Then we say that γ and η are homotopic in Ω (with initial
and end points held fixed) if there is a “continuous” one parameter family
γs : [a, b] → Ω, 0 ≤ s ≤ 1 such that γs(a) = γ(a), γs(b) = γ(b) for all
s ∈ [0, 1], and γ0 = γ, γ1 = η. (More precisely, the “continuity” requirement
means that the “homotopy map” (s, t) 7→ γs(t) from [0, 1] × [a, b] into Ω is
continuous.)

Exercise : If γ, η are homotopic in Ω then use the uniform continuity of
the homotopy map to show that there is an ϵ > 0 such that for s1, s2 ∈ [0, 1]
with |s1 − sn| < ϵ, γs1 and γs2 are close together. Hence conclude that there
is a partition 0 = s1 < s2 < . . . < sn = 1 such that γsi+1 and γsi are close
together for 1 ≤ i < n. Therefore, the above Lemma implies:

Homotopy Version of Cauchy’s Theorem: If γ, η are homotopic paths
in Ω then for any holomorphic f : Ω → C, we have∫

γ

f =

∫
η

f.

A closed path γ in Ω is said to be null-homotopic if it is homotopic to a
point (constant path). It is easy to see that the above theorem is equivalent
to:

Alternative homotopy version of Cauchy’s Theorem: If γ is a null-
homotopic closed path in Ω then for any holomorphic f : Ω → C,

∫
γ
f = 0.

Definition: Ω is said to be simply connected if every closed path in Ω is null
homotopic in Ω (intuitively, this means that Ω has no holes). An immediate
consequence of the theorem is:
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Corollary: If Ω is simply connected, then for any closed path γ in Ω and
any holomorphic f : Ω → C, we have

∫
γ
f = 0.

Corollary: If Ω is simply connected then any holomorphic f : Ω → C has
a global primitive g : Ω → C such that g′ = f.

Definition: Let γ and η be two paths in Ω with the same initial and end
points (γ(a) = η(a), γ(b) = η(b), where η, γ : [a, b] → C). We say that γ, η
are homologous in Ω if W (γ, z0) = W (η, z0)∀z0 ̸∈ Ω. If γ is a closed path
homologous to a point (constant path) then we say that γ is null-homologous.

For technical reasons, it is good to extend this definition as follows. We say
that γ is a chain if it is a formal sum of finitely many paths. If γ is a formal
sum of finitely many closed paths then we say that γ is a closed chain.

If γ = γ1 + . . . + γn, then Im(γ)
def
=

n⋃
i=1

Im(γi)). If z0 ̸∈ Im(γ), we define

W (γ, z0) :=
n∑

i=1
W (γi, z0). If each γi is a path in Ω we say that γ is a

chain in Ω. For a chain γ = γ1 + . . . + γn in Ω and f : Ω → C, we

define
∫
γ
f :=

n∑
i=1

∫
γi

f. Two chains γ, η in Ω are called homologous in Ω

if W (γ, z0) = W (η, z0) ∀ z0 ̸∈ Ω. A closed chain γ in Ω is called null-
homologous in Ω if W (γ, z0) = 0 ∀ z0 ̸∈ Ω.

With this definition, the most general version of Cauchy’s fundamental the-
orem is:

Global Cauchy Theorem: If γ is a null-homologous closed chain in Ω
then

∫
γ
f = 0 for all holomorphic f on Ω. Equivalently, if γ, η are homologous

closed chains in Ω then
∫
γ
f =

∫
η
f for all holomorphic f on Ω.

This is the most general version of Cauchy in the sense that if a closed chain
γ is not null-homologous in Ω then there is a holomorphic function f on Ω
such that

∫
γ
f ̸= 0 (namely f(z) = 1

z−z0
for a suitable z0 ̸∈ Ω).

To prove Cauchy’s Global Theorem, we need the following two lemmas.

We shall say that a path is rectangular if it is a concatenation of horizontal
and vertical line segments.
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Lemma : If γ is a path in Ω then there is a rectangular path η in Ω such
that γ and η are close together in Ω. Consequently (by the earlier Lemma on
equality of integrals over close paths) γ and η are homologous, and

∫
γ
f =

∫
η
f

for any holomorphic f on Ω.

In view of this Lemma, to prove the Global Cauchy Theorem, it is enough
to prove it for ”rectangular” closed chains (i.e, formal sums of rectangular
closed paths).

Proof of Lemma : Given γ : [a, b] → Ω take a partition a = a1 < an <
. . . < an = b of [a, b] such that γ([ai, ai+1]) ⊆ Di, a closed disc in Ω. Put
γi = γ|[ai,ai+1], zi = γ(ai). Take a rectangular path ηi lying inside Di and
joining zi to zi+1 (1 ≤ i < n). Let η be the concatenation of η1, . . . , ηn−1.
This clearly works.

If γ : [a, b] → C is a path and a = a1 < . . . < an = b, γi = γ|[ai,ai+1], 1 ≤ i <
n then the chain γ = γ1 + . . .+ γn−1 will be called a subdivision of γ. More
generally, if η = n1 + . . .+ nm is a chain, ni1 + . . .+ nin is a subdivision of
the path ni for each i, then the chain

∑
i,j

nij will be called a subdivision of

the chain η. Clearly if the chain η′ is a subdivision of the chain η then η, η′

are homologous (in any domain Ω such that η, η′ are in Ω).

Lemma (Artin) : If γ is a rectangular closed chain in Ω which is null-
homologous in Ω then there exist rectangles R1, . . . RN in Ω and integers

α1, . . . , αN such that the rectangular closed chain η =
N∑
i=1

di∂Ri is a sub-

division of γ. (Here ∂Ri is the closed path traversing the boundary of Ri

anticlockwise).

Sketch of Proof: Draw all the lines which contain one of the line-segments
constituting γ. These are (finitely many) horizontal and vertical lines. They
partition the complex plane into finitely many regions, some of which are
rectangles and others unbounded. If R is one of these rectangles then the
interior R0 is inside a connected component of Im(γ), and hence the winding
number W (γ, ·) is a constant, say αR, on R0. If αR ̸= 0 for some R then
R0 ⊆ Ω (since W (γ, ·) is zero in the complement of Ω). Hence it is easy to
see that the closed chain η =

∑
R:αR ̸=0

αR · ∂R is a subdivision of γ. □.

Now, the two previous lemmas together show that: if γ is a null-homologous
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closed chain in Ω then there are rectangles R1, . . . , RN in Ω and integers

α1, . . . , αN such that
∫
γ
f =

∫∑
αi∂Ri

=
N∑
i=1

αi

∫
∂Ri

f = 0, proving Cauchy’s

Global Theorem.

One application of Cauchy’s Global Theorem is to reduce the calculation of
integrals (of holomorphic functions) over complicated paths to those over
simple paths. Namely, we have:

Theorem: Let γ be a null-homologous closed chain in Ω. Let z1, . . . , zN be
finitely many distinct points in Ω and let D1, . . . , DN be pairwise disjoint
closed discs in Ω with centres z1, . . . , zN . Assume γ does not pass through
any of the points zi. Put mi = W (γ, zi) 1 ≤ i ≤ n. Then γ is homologous in

Ω\{z1, . . . , zN} to the chain
N∑
i=1

mi∂Di. Hence, for any holomorphic function

f : Ω \ {z1, . . . , zN} → C, we have∫
γ

f =
N∑
i=1

mi

∫
∂Di

f.

Proof : If α ̸∈ Ω thenW (γ, α) = 0 andW (∂Di, α) = 0.HenceW (
∑

mi∂Di, α) =
0 = W (γ, α). On the other hand if α = zi for some i then W (γ, α) =
mi, while W (∂Dj , α) = δij . Hence W (

∑
mj∂Dj , α) =

∑
mj δij = mi =

W (γ, α). Thus W (γ, α) = W (
∑

mi∂Di, α) for all α outside Ω\{z1, · · · , zN}.
this proves the first statement. The second statement follows from the global
Cauchy theorem. □

Another consequence is:

The Global version of Cauchy’s integral formula: Let γ be a null-
homologous closed chain in Ω. Let z0 ∈ Ω be such that γ does not pass
through z0. Then for any holomorphic f : Ω → C, we have 1

2πi

∫
γ

f(z)
z−z0

=

W (γ, z0)f(z0).

Proof: In view of the definition of W (γ, z0), this formula may be written

as 1
2πi

∫
γ
g(z)dz = 0 where g : Ω → C is defined by g(z) = f(z)−f(z0

z−z0
if

z ̸= z0, g(z0) = f ′(z0). Since γ is null-homologous and g is (analytic and
hence) holomorphic, this follows from Global Cauchy Theorem. □
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