
Further additions and clarifications of some things we discussed in class yes-
terday (5th February 2024) and earlier:

Remember that we are following Ahlfors in our discussions. Recall that our
paths are piecewise differentiable. Recall also that I had defined (in the pre-
vious week) the index of a point with respect to a loop (or winding number
of the loop around that point), and proved some of its properties yesterday.
These were as follows:

Definition. If γ is a closed path and z0 is a point outside Im(γ), then the
winding number W (γ, z0) is defined by

W (γ, z0) =
1

2πi

∫
γ

dz

z − z0
.

Intuitively, this counts (with a sign for the direction), the net number of
times γ goes around z0. This makes sense in view of the following lemma in
section 2.1 of chapter 4 of Ahlfors:

Lemma. The number W (γ, z0) is an integer. (Ahlfors calls it the index of
z0 w.r.t. γ, and denotes it as n(γ, z0)).

Proof. Let γ : [a, b] → C. Define F : [a, b] → C by F (t) =
t∫
a

γ′(t)
γ(t)−z0

.

Since γ is piecewise continuously differentiable, it follows that F is contin-
uous on [a, b] and F ′(t) = γ′(t)

γ(t)−z0
for all but finitely many points (where

γ is not differentiable) in the interval [a, b]. Now define G : [a, b] → C by

G(t) = eF (t)

γ(t)−z0
. Logarithmic differentiation yields G′(t)

G(t)
= F ′(t) − γ′(t)

γ(t)−z0
= 0

at all but finitely many points. Thus G′(t) = 0 at all these points. So G
is a piecewise constant function. But G is continuous. So G is a constant
function. In particular, G(a) = G(b). That is, eF (a)

γ(a)−z0
= eF (b)

γ(b)−z0
. But we have

γ(a) = γ(b). Also, from its definition F (a) = 0, F (b) = 2πiW (γ, z0). Hence
we get e2πiW (γ,z0) = 1. Thus W (γ, z0) is an integer. □

We proved yesterday (the next result in Ahlfors) that the winding number is
constant on the two connected components. More precisely,
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If γ is a closed path in C, then the function z 7→ W (γ, z) from C\Im(γ) into
Z is continuous.
This implies that W (γ, z) is a constant on each connected component of
C\Im(γ). Also, W (γ, z) = 0 for z in the unbounded component of C\Im(γ).
Idea of proof:- Fix z0 ∈ C\Im(γ). Since Im(γ) is compact, the distance
of z0 from points on Im(γ) is bounded away from 0. That is, ∃ r > 0
such that |γ(t) − zn| ≥ r ∀ t. It follows that if z is sufficiently close to
z0 then |γ(t) − z ≥ r/2. Hence bound the absolute difference between the
two integrands defining W (γ, z) and W (γ, z0).

Yesterday, we had also discussed what would be the ‘most general form’ of
Cauchy’s theorem. Instead of looking for domains where integrals of an-
alytic functions over ALL closed paths inside it are zero - which happens
for simply connected domains, one looks at general domains and tries to
find WHICH closed paths have the property of this vanishing integral. Call
a closed path γ (or a formal concatenation of closed paths) to be ‘null-
homologous’ if W (γ, z0) = 0 for all z0 outside D̄. Then, here was the point
of view I mentioned:

Let D be a domain in C. Consider the vector space generated by all closed
paths in D, and consider the quotient space H1(D) of the above by those
elements which are null-homologous. Similarly, consider the vector space
H1(D) of holomorphic functions on D quotiented by the subspace generated
by those which are derivatives. Then, the map

(γ, f) 7→
∫
γ

fdz;

H1(D)×H1(D) → C
is a non-degenerate bilinear pairing.
In other words, these two spaces are naturally duals of each other. In this
form of Cauchy’s theorem, we see a simple form of what is called the de
Rham theorem.

I mentioned yesterday that concerning the local behaviour of analytic func-
tions, aspects such as the ‘order of a zero’ or the notion of ‘removable singu-
larity’ have not yet been discussed in Jaydeb’s class. But, I stated the ‘finite’
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Taylor expansion for analytic function, without proving it.

This is theorem 8 of section 3 of chapter 4 of Ahlfors, and depends only
on the fact that using Cauchy’s integral formula, one can deduce that for
a holomorphic function f in a domain D, and a point z0 ∈ D. there is
a holomorphic function f1 which equals f(z)−f(z0)

z−z0
for z ̸= z0, and f1(z0) =

f ′(z0). This is repeated with f1 in place of f etc. This is how one obtains
the finite Taylor theorem (Theorem 8 mentioned above).

The point to note in the above theorem is that in the finite version

f(z) =
n−1∑
r=0

f (r)(z0)
(z − z0)

r

r!
+ fn(z)(z − z0)

n,

the ‘error term’ fn(z) is the analytic function given explicitly as

fn(z) =
1

2iπ

∫
γ

f(w)dw

(w − z0)n(w − z)

where γ is any circle around z0 such that the corresponding closed disc is
contained in D. This enables us to observe that

|fn(z)(z − z0)
n| ≤ M |z − z0|n

Rn−1(R− |z − z0|)

if M is an upper bound for |f(z)| on γ, and R is the radius of γ. Clearly,
this tends to 0 uniformly in every closed disc {|z − z0| ≤ r} with r < R. If
we choose R to be arbitrarily close to the distance between z0 and ∂D, we
have the usual (infinite) Taylor series (chapter 5, section 1.2):

f(z) =
∑
n≥0

f (n)(z0)
(z − z0)

n

n!

which is valid in the largest open disc centered at z0 and contained in D.

The reason to recall the above facts about Taylor series etc., is to make some
strong observations, which are as follows:
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For a holomorphic function f (other than the zero function), we shall observe
that (similar to polynomials) each zero z0 has a ‘finite multiplicity’ in the
sense that there is some n > 0 such that f (n)(z0) ̸= 0. A word of warning here
is that it may be true that f (k)(z0) = 0 for infinitely many k, nevertheless!
The function Sin(z) is an example.

The implication “If f ∈ Hol(D) satisfies, for some z0, the property f
(n)(z0) =

0 for all n ≥ 0, then f must be the zero function on D”, follows by looking
at the zero set of f and showing that it is also open, using the existence of
the Taylor series above. The above properties are also equivalent to the zero
set having a limit point in D.
The main result that we note from the above observation is that for each
holomorphic function f on D (other than the zero function) and any z0 ∈ D,
there is a unique positive integer n ≥ 0 such that f (k)(z0) = 0 for all k < n,
and f (n)(z0) ̸= 0. Thus, if f(z0) = 0, one can write f(z) = (z − z0)

ng(z) for
some n ≥ 1, and some holomorphic function g on D such that g(z0) ̸= 0.
Note that the corresponding result for real functions on intervals is not true.
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