M. Math. Complex Analysis
Instructor : B. Sury

Assignment IV - Mostly Miscellaneous Problems
Due by 29th March 2024

Q1.

(i) Determine all entire functions f satisfying f(1 — z) + f(z) = 1 for all
z e C.

(i) If ¢ is a continuous function on C, and is holomorphic on the comple-
ment of the segment [—1, 1], then show that g is entire.

Q 2. If f is a holomorphic function in a domain D and a € D, show that
we cannot have the property | £ (a)| > n"n! for all n > 1.

Q 3.

(i) Prove that e #+2z = 3 has a unique root on the right half-plane R(z) > 0.
(ii) Show that the equation 1+ z+ z* has exactly one root in each quadrant,
and that all of them lie in B(0,3/2).

(iii) Show that {z € C: zsin(z) =1} C R.

Q 4.

(i) If f is a bounded holomorphic function on B(0,1) and has zeroes at
{¢n}n, then prove |f/(0)] < [I"_; |¢| for each n > 1.

(ii) If f is as in (i), and is not the zero function, then prove that ), log|(,|
converges.

(iii) Let g be holomorphic on the right half-plane $(z) > 0, and if |g(2)| < M

for all R(z) > 0, and if {w,} are the zeroes of g, then |g(2)] <[]~ ’Zq“”’“

r=1 | z4+w,
for all ®(z) > 0, and for all n > 1.
(iv) Finally, with g as above which is not the zero function, prove that
>, R(1/wy,) converges.

Q 5. Prove that there is no conformal isomorphism between the sets
C\ {0,1,2} and C\ {0, 1,2024}.

Q 6. Mark off points on the unit circle, dividing the circumference into n
equal parts. Fix one of these points and, moving clockwise along the cir-
cumference, join this point to the k-th points for each k£ coprime to n. Show
that the products of the lengths of these chords equals p if n is the power of
a prime p, and equals 1 otherwise.



Q 7. (Waring problem for polynomials).

Let n > 3. If a(n) denotes the smallest positive integer such that X is a
sum of n-th powers of a(n) complex polynomials, then prove that a(n) > 3
and a(n) < n < a(n)? — a(n).

Q 8. Write out in detail the proof of the following theorem of Bernstein on
polynomials using two different methods outlined below:

(Bernstein) If f is a polynomial, then ||f|| < deg(f)||f|l, where |f| :=
maz{|f(z)] : [z] = 1}.

Proof 1: We shall use the Gauss-Lucas theorem (that zeroes of the deriva-
tive of a polynomial lie in the convex hull of the zeroes of the polynomial)
and the Rouché’s theorem, we can give a quicker proof. Let g be a poly-
nomial of the same degree, say n, as f and with no zeroes with |z| > 1.
We show that if |f(2)| < |g(z)| on the unit circle, then |f'(2)| < |¢'(2)]| for
|z| > 1. Apply Rouché’s theorem to the polynomial f(z) + tg(z) for any
|t| > 1 to deduce that all its zeroes lie in the open unit disc. By the Gauss-
Lucas theorem, the same is true for the polynomials f'(z) + t¢’(z) for every
t with [¢t| > 1. If |f'(20)] > |¢'(20)] for some point zy with |z9| > 1, then we
would be able to choose some ¢ with |t| > 1 such that f'(z) 4 t¢’(2) has a
zero in |z| > 1, thereby contradicting what we observed earlier. Therefore,
we must have |f/(2)] < |¢'(z)| for all |z] > 1. So, if we consider g(z) = 2"
where ¢ > maz{|f(z)| : |z| = 1}, the above can be applied to this g and we
get | f'(2)] < |¢'(z)| = nc for |z| > 1. This proves Bernstein’s inequality.
Proof 2: Let deg(f) < n. Consider the roots zi,- -, z, of the polynomial
X™+ 1; these are the roots of unity e™i/" with r odd and < 2n — 1. Then,
for any zog € C, the polynomial go(z) := w has degree < n — 1 and
satisfies go(1) = 20f'(z0). Interpolating at the z;’s (1 <1i < n), we have
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Evaluating at z = 1, we have
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This can be simplified by proving that
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Deduce
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Observe that each (szTl)Q is a real number of the same sign, and conclude
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Therefore, |f'(z0)| < n||f|| for all zp on the unit circle.

Considering zg on the unit disc, we have
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