
M. Math. Complex Analysis
Instructor : B. Sury

Assignment IV - Mostly Miscellaneous Problems
Due by 29th March 2024

Q 1.
(i) Determine all entire functions f satisfying f(1 − z) + f(z) = 1 for all
z ∈ C.
(ii) If g is a continuous function on C, and is holomorphic on the comple-
ment of the segment [−1, 1], then show that g is entire.

Q 2. If f is a holomorphic function in a domain D and a ∈ D, show that
we cannot have the property |f (n)(a)| ≥ nnn! for all n ≥ 1.

Q 3.
(i) Prove that e−z+z = 3 has a unique root on the right half-plane ℜ(z) > 0.
(ii) Show that the equation 1+z+z4 has exactly one root in each quadrant,
and that all of them lie in B(0, 3/2).
(iii) Show that {z ∈ C : z sin(z) = 1} ⊂ R.
Q 4.
(i) If f is a bounded holomorphic function on B(0, 1) and has zeroes at
{ζn}n, then prove |f ′(0)| ≤

∏n
r=1 |ζr| for each n ≥ 1.

(ii) If f is as in (i), and is not the zero function, then prove that
∑

n log |ζn|
converges.
(iii) Let g be holomorphic on the right half-plane ℜ(z) > 0, and if |g(z)| ≤ M

for all ℜ(z) > 0, and if {wn} are the zeroes of g, then |g(z)| ≤
∏n

r=1

∣∣∣∣ z−wr
z+wr

∣∣∣∣
for all ℜ(z) > 0, and for all n ≥ 1.
(iv) Finally, with g as above which is not the zero function, prove that∑

nℜ(1/wn) converges.

Q 5. Prove that there is no conformal isomorphism between the sets
C \ {0, 1, 2} and C \ {0, 1, 2024}.

Q 6. Mark off points on the unit circle, dividing the circumference into n
equal parts. Fix one of these points and, moving clockwise along the cir-
cumference, join this point to the k-th points for each k coprime to n. Show
that the products of the lengths of these chords equals p if n is the power of
a prime p, and equals 1 otherwise.
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Q 7. (Waring problem for polynomials).
Let n ≥ 3. If a(n) denotes the smallest positive integer such that X is a
sum of n-th powers of a(n) complex polynomials, then prove that a(n) ≥ 3
and a(n) ≤ n < a(n)2 − a(n).

Q 8. Write out in detail the proof of the following theorem of Bernstein on
polynomials using two different methods outlined below:
(Bernstein) If f is a polynomial, then ∥f ′∥ ≤ deg(f)∥f∥, where ∥f∥ :=
max{|f(z)| : |z| = 1}.
Proof 1: We shall use the Gauss-Lucas theorem (that zeroes of the deriva-
tive of a polynomial lie in the convex hull of the zeroes of the polynomial)
and the Rouché’s theorem, we can give a quicker proof. Let g be a poly-
nomial of the same degree, say n, as f and with no zeroes with |z| ≥ 1.
We show that if |f(z)| < |g(z)| on the unit circle, then |f ′(z)| < |g′(z)| for
|z| ≥ 1. Apply Rouché’s theorem to the polynomial f(z) + tg(z) for any
|t| ≥ 1 to deduce that all its zeroes lie in the open unit disc. By the Gauss-
Lucas theorem, the same is true for the polynomials f ′(z) + tg′(z) for every
t with |t| ≥ 1. If |f ′(z0)| ≥ |g′(z0)| for some point z0 with |z0| ≥ 1, then we
would be able to choose some t with |t| ≥ 1 such that f ′(z) + tg′(z) has a
zero in |z| ≥ 1, thereby contradicting what we observed earlier. Therefore,
we must have |f ′(z)| < |g′(z)| for all |z| ≥ 1. So, if we consider g(z) = czn

where c > max{|f(z)| : |z| = 1}, the above can be applied to this g and we
get |f ′(z)| < |g′(z)| = nc for |z| ≥ 1. This proves Bernstein’s inequality.
Proof 2: Let deg(f) ≤ n. Consider the roots z1, · · · , zn of the polynomial
Xn + 1; these are the roots of unity eπri/n with r odd and ≤ 2n− 1. Then,
for any z0 ∈ C, the polynomial g0(z) :=

f(z0z)−f(z0)
z−1 has degree ≤ n− 1 and

satisfies g0(1) = z0f
′(z0). Interpolating at the zi’s (1 ≤ i ≤ n), we have

g0(z) =
n∑

r=1

zn + 1

(z − zr)nz
n−1
r

g0(zr) =
1

n

n∑
r=1

zn + 1

zr − z
zrg0(zr).

Evaluating at z = 1, we have

z0f
′(z0) = g0(1) =

1

n

n∑
r=1

2zrg0(zr)

zr − 1
=

1

n

n∑
r=1

2zr

(
f(z0zr)− f(z0)

)
(zr − 1)2

.

This can be simplified by proving that

n∑
r=1

2zr
(zr − 1)2

=
−n2

2
.
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Deduce

z0f
′(z0) =

n

2
f(z0) +

1

n

n∑
r=1

2zrf(z0zr)

(zr − 1)2
.

Considering z0 on the unit disc, we have

|f ′(z0)| ≤
n

2
∥f∥+

(
1

n

n∑
r=1

∣∣∣∣ 2zr
(zr − 1)2

∣∣∣∣)∥f∥.
Observe that each 2zr

(zr−1)2
is a real number of the same sign, and conclude

that
1

n

n∑
r=1

∣∣∣∣ 2zr
(zr − 1)2

∣∣∣∣ = n

2
.

Therefore, |f ′(z0)| ≤ n∥f∥ for all z0 on the unit circle.
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