
Harmonic Analysis - B. Math. III

Worksheet — 2nd Semester 2023-2024 (Final)

1 Haar Integration

1. Show that the multiplication mapping R×R → R (given by (x, y) 7→ xy) is not a closed

map.

2. Let G be a topological group and suppose there exists a compact subset K of G such

that xK ∩K ̸= ∅ for every x ∈ G. Show that G is compact.

3. Let G be a locally compact group with Haar measure µ, and let S ⊆ G be a measurable

subset with 0 < µ(S) < ∞. Show that the map x 7→ µ(S ∩ xS) from G to R is

continuous.

4. Let B be the subgroup of GL2(R) defined by

B =

{(
1 x

0 y

)
: x, y ∈ R, y ̸= 0

}
.

Show that I(f) =
∫
R×

∫
R f

(
1 x

0 y

)
dxdy

y
is a Haar-integral on B. Show that the modular

function ∆ of B satisfies:

∆

(
1 x

0 y

)
= |y|.

5. Let C× be the multiplicative group of non-zero complex numbers. Let R>0 denote the

multiplicative group of positive real numbers. Show that C× is isomorphic to R>0 × T
(where T is the circle group) under the polar decomposition map (r, u) 7→ ru. We write

u = e2πiθ. Show that the Haar integral on C× is given by

f 7→
∫ 1

0

∫ ∞

0

f(re2πiθ)
dr

r
dθ.

6. Let G = GLn(R) be the group of real n × n matrices. Show that Haar measure on G

is given by dx/| detx|, if dx is a Haar measure on the n2-dimensional space of all n× n

matrices.

7. If ∆ is the modular function on G, show that∫
G

f(x−1)∆(x−1) dx =

∫
G

f(x) dx,

where dx is a Haar measure on G. Show that ∆(x−1)dx is a right Haar measure.
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8. Compute the modular function for the group G of all affine maps x 7→ ax+b with a ∈ R×

and b ∈ R. (In this case, the right Haar measure is not equal to the left Haar measure.)

Show that the right Haar measure is the Cartesian product measure on R× × R.

9. Let G,H be locally compact groups and assume that G acts on H (via π : G → Aut(H))

by group homomorphisms h 7→ π(g)h, such that the ensuing map G × H → H is

continuous.

(i) Show that the product (h, g)(h′, g′) = (h·π(g)h′, gg′) gives H×G (with the product

topology) the structure of a locally compact group, called the semi-direct product

H ⋊G.

(ii) Show that there is a unique group homomorphism δ : G → (0,∞) such that

µH(π(g)A) = δ(g)µH(A), where µH is a Haar measure on H and A is a measurable

subset of H.

(iii) Show that
∫
H
f(π(g)x)dµH(x) = δ(g)

∫
H
f(x)dµH(x) for f ∈ Cc(H) and deduce

that δ is continuous.

(iv) Show that a Haar integral on H ⋊G is given by∫
H

∫
G

f(h, g)δ(g)dµH(h)dµG(g).

(v) What is the right Haar measure of H ⋊G?

2 Banach algebras

10. Let A be a complex Banach algebra with unit element, and let u ∈ A. Let σA(u) be the

spectrum of u. Let p be a polynomial with complex coefficients. Show that σA

(
p(u)

)
is

equal to p(σA(u)) := {p(α) : α ∈ σ(u)}.

11. Let A be a unital Banach algebra and x, y ∈ A. Prove that xy−yx ̸= 1. In other words,

the Heisenberg commutation relation cannot be realized in Banach algebras. (Hint:

Show that σ(xy) ∪ {0} = σ(yx) ∪ {0}.)

12. Give an example of a unital Banach algebra A and two elements x, y ∈ A with xy = 1,

but yx ̸= 1.
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13. Let (A, ∥ · ∥) be a Banach algebra. Show that for every a ∈ A, the series

exp(a) :=
∞∑
n=0

an

n!

converges and that, for a, b ∈ A with ab = ba, one has exp(a+ b) = exp(a) exp(b).

14. Let A = C(X) for a compact Hausdorff space X. For x ∈ X let mx : A → C be defined

by mx(f) = f(x). Show that the map x 7→ mx is a homeomorphism from X to the

structure space ∆A.

15. (Wiener’s Lemma) Suppose that f : R → C is a 2π-periodic function such that

f(x) =
∑
n∈Z

ane
inx with

∑
n∈Z

|an| < ∞.

Show that if f(x) ̸= 0 for every x ∈ R, then there exist bn ∈ C such that

1

f(x)
=
∑
n∈Z

bne
inx with

∑
n∈Z

|bn| < ∞.

16. Let A and B be commutative C∗-algebras, and let ϕ : A → B be a linear map with

ϕ(aa′) = ϕ(a)ϕ(a′) for any a, a′ ∈ A. Show that ϕ is a continuous ∗-homomorphism.

3 Duality for LCA groups

Let G be a locally compact group. The character group, (Pontryagin) dual group of G

is the (abelian) group Ĝ of characters of G, under the pointwise product, equipped with

the compact-open topology.

17. Let G be a locally compact group. Show that Ĝ is an LCA group, and that the assign-

ment G 7→ Ĝ is a contravariant functor, in the sense that for any continuous homomor-

phism φ : G′ → G, there is a dual continuous homomorphism φ̂ : Ĝ → Ĝ′ given by

φ̂(χ) = χ ◦ φ.

18. A topological space is called second countable if its topology admits a countable base.

Show that if an LCA-group A is second countable, then so is its dual Â.

19. Let A and B be two LCA groups. Show that Â×B ∼= Â× B̂.

20. Show that the multiplicative group C× is locally compact with the topology of C and

that Ĉ× ∼= Z× R.
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21. Let A be an LCA group. Prove that C∗(A) ∼= C0(Â) as C
∗-algebras.

22. Let A be an LCA group, and let f ∈ L1(A). Show that f̂ ∈ C0(Â). Using the previous

exercise, show that the Fourier transform L1(A) → C0(Â) is injective.

23. Let A be an LCA group, and let f ∈ L1(A) such that f ∈ L1(Â). Show that f ∈ L2(A).

24. Let A be an LCA group, and consider the mapping x 7→ δx from A to
̂̂
A where δx(χ) =

χ(x). Prove that the mapping is a homeomorphism when A is isomorphic toK×Rn×Zm

where K is a compact abelian group and m,n ≥ 0. (These are the compactly generated

LCA groups. After proving that every LCA group is a union of its open compactly

generated subgroups and noting compatibility of Pontryagin duals with limits, this

provides another derivation of Pontryagin duality.)
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