

REPRESENTATION THEORY OF FINITE GROUPS

ASSIGNMENT-IA

- (1) Show that a representation $\phi : G \rightarrow \mathrm{GL}(V)$ is irreducible if and only if for all nonzero $v \in V$, the set $\{\phi_g(v); g \in G\}$ spans V .
- (2) Let S_n denote the symmetric group on n elements. Let $\rho : S_n \rightarrow \mathrm{GL}(\mathbb{C}^n)$ be the permutation representation, ie.

$$\rho_\sigma(e_i) = e_{\sigma(i)},$$

for all $\sigma \in S_n$, and e_1, \dots, e_n denoting the standard basis of \mathbb{C}^n .

- (a) Show that the following are subrepresentations:

$$V_1 = \left\{ \sum_{i=1}^n a_i e_i : a_1 = a_2 = \dots = a_n \right\}$$

and

$$V_2 = V_1^\perp = \left\{ \sum_{i=1}^n a_i e_i : \sum a_i = 0 \right\}.$$

(Note that V_2 is the standard representation of S_n .)

- (b) Determine the dimensions of V_1 and V_2 .
- (c) Show that V_1 and V_2 are irreducible representations.
- (d) Show that these are the only nonzero proper subrepresentations of ρ .
- (3) Let G be a group with commutator subgroup G' . Then prove the following:
 - (a) $G' = \bigcap \ker \phi$, where the intersection runs over all one-dimensional representations ϕ of G .
 - (b) Index of G' in G is the number of one-dimensional representations of G .
 - (c) Find the number of one-dimensional representations of S_n , $n \geq 2$.
 - (d) Find the number of one-dimensional representations of A_n , for $n \geq 2$.
- (4) Let G is a non-abelian group of order p^3 , for some prime p .
 - (a) Show that the order of the commutator subgroup G' is p .
 - (b) Show that $G/G' \cong \mathbb{Z}_p \times \mathbb{Z}_p$, ie. G/G' is abelian but not cyclic.
 - (c) Construct p^2 distinct irreducible 1-dimensional representations of $\mathbb{Z}_p \times \mathbb{Z}_p$ and justify these are all the irreducible representations of $\mathbb{Z}_p \times \mathbb{Z}_p$.
 - (d) Show that G has p^2 irreducible representations of dimension 1 and $p-1$ irreducible representations of dimension p .
 - (e) Conclude that G has $p^2 + p - 1$ conjugacy classes.
- (5) Show that a group G is abelian if and only if all irreducible representations are 1-dimensional.
- (6) Find all the representations for the dihedral group D_{2n} of order $2n$,
 - (a) for n even,
 - (b) for n odd.
- (7) Consider the representations of S_4 and their restrictions to A_4 .
 - (a) Which are still irreducible when restricted to A_4 , and which are no more irreducible?
 - (b) Which pairs of nonisomorphic representations of S_4 become isomorphic when restricted?
 - (c) Which representations of A_4 arise as restrictions from S_4 ?
- (8) Write down the character table for the group of quaternions Q_8 .
- (9) Write down the character table for the group S_5 and A_5 with complete justifications.
- (10) Let $C_4 = \{1, r, r^2, r^3\}$ denote the cyclic subgroup of order 4 of the dihedral group $D_8 = \langle r, s : r^4 = e, s^2 = e, rs = sr^3 \rangle$. Note that C_4 has an irreducible representation $\phi : C_4 \rightarrow \mathbb{C}^\times$ such that $\phi_r = e^{\pi i/2}$. Show by Frobenius reciprocity that the induced representation $\mathrm{Ind}_H^G \phi$ of D_8 is also irreducible.