

REPRESENTATION THEORY- PRACTICE SHEET

Note: G is a finite group and all representations are complex vector spaces.

- (1) Let (V, ϕ) and (W, ρ) be two G -representations. Show that $V^* \otimes W$ and $\text{Hom}(V, W)$ are equivalent representations of G .
- (2) Show that if V is irreducible if and only if V^* is also irreducible.
- (3) Let $H = \{e, r, r^2, r^3\}$ be the subgroup of $D_8 = \langle r, s/r^4 = e, s^2 = e \rangle$. Let $\phi : H \rightarrow \mathbb{C}^*$ be the 1-dimensional representation of H such that $\phi(r^k) = i^k$. Find the decomposition of the induced representation $\text{Ind}_H^{D_8} \phi$ into irreducible representations of D_8 .
- (4) Let ϕ be the standard representation of S_3 . Decompose the induced representation $\text{Ind}_{S_3}^{S_4} \phi$ into irreducibles of S_4 .
- (5) Let $\rho : G \rightarrow GL(V)$ be a representation of degree n . Define a subset of G by

$$\ker \chi_\rho = \{g \in G : \chi_\rho(g) = n\}.$$

Show that $\ker \chi_\rho = \ker \rho$, and hence $\ker \chi_\rho$ is a normal subgroup of G .

- (6) Show that $\cap_{k=1}^r \ker \chi_k = \{e\}$, where χ_1, \dots, χ_r are the distinct irreducible characters of G .
- (7) Let χ_1, \dots, χ_r be the distinct irreducible characters of G , and let $X = \{1, \dots, r\}$. Then a subgroup N of G is normal if and only if it has the form

$$N = \cap_{k \in S} \ker \chi_k$$

for some subset $S \subseteq X$.

- (8) G is simple if and only if for every irreducible non-trivial character χ_k , for $g \neq e$, $\chi_k(g) \neq \chi_k(e)$. Hence the character table can be used to decide whether G is simple.
- (9) Show that if H is an abelian subgroup of a group G , and d is the degree of any irreducible representation of G , then d is at most the index of H in G .
- (10) Show that every irreducible representations of D_n are of degree 1 or 2.