

Stochastic Processes: Assignment 2

Yogeshwaran D.

February 9, 2024

There will be a Quiz from these problems on Feb 15th (Thursday) from 9-11 AM.

1. Let $\mathcal{X} = \mathcal{X}_1 \times \dots \times \mathcal{X}_n$ and $f : \mathcal{X} \rightarrow mR$ be a function. Let X_1, \dots, X_n be independent random variables, $Y = f(X_1, \dots, X_n)$. Show that

$$\text{VAR}(Y) \leq \sum_{i=1}^n \mathbb{E}\{(Y - Y^{(i)})_+^2\} = \sum_{i=1}^n \mathbb{E}\{(Y - Y^{(i)})_-^2\} \leq 2 \sum_{i=1}^n \mathbb{E}\{(Y - f_i(X_1, \dots, \hat{X}_i, \dots, X_n))^2\},$$

where $f_i : \mathcal{X}_1 \times \dots \times \hat{\mathcal{X}}_i \times \dots \times \mathcal{X}_n \rightarrow \mathbb{R}$, $1 \leq i \leq n$ are functions.

2. Let X be a mean zero random variable. Show that the following are equivalent.

- (a) $\mathbb{P}\{|X| \geq t\} \leq 2e^{-c_1 t^2}$, $t \geq 0$.
- (b) $\mathbb{E}\{|X|^p\}^{1/p} \leq c_2 \sqrt{p}$ for all $p \geq 1$.
- (c) $\mathbb{E}\{e^{\lambda^2 X^2}\} \leq \exp\{c_3^2 \lambda^2\}$ for all $|\lambda| \leq c_3^{-1}$.
- (d) $\mathbb{E}\{e^{c_4^2 X^2}\} \leq 2$ for some c_4 .
- (e) $\mathbb{E}\{e^{\lambda X^2}\} \leq \exp\{c_5^2 \lambda^2\}$ for all $\lambda \in \mathbb{R}$.

Further the constants c_1, \dots, c_5 differ from each other by an absolute constant.

3. Let X be a mean zero random variable. Show that the following are equivalent.

- (a) $\mathbb{P}\{|X| \geq t\} \leq 2e^{-c_1 t}$, $t \geq 0$.
- (b) $\mathbb{E}\{|X|^p\}^{1/p} \leq c_2 p$ for all $p \geq 1$.
- (c) $\mathbb{E}\{e^{\lambda|X|}\} \leq \exp\{c_3 \lambda\}$ for all $|\lambda| \leq c_3^{-1}$.
- (d) $\mathbb{E}\{e^{c_4|X|}\} \leq 2$ for some c_4 .
- (e) $\mathbb{E}\{e^{\lambda X}\} \leq \exp\{c_5^2 \lambda^2\}$ for all $|\lambda| \leq c_5^{-1}$.

Further the constants c_1, \dots, c_5 differ from each other by an absolute constant.

4. We give an alternative proof of Azuma-Hoeffding inequality.

- (a) Show that for all $x \in [-1, 1]$ and $a > 0$, $e^{ax} \leq \cosh(a) + x \sinh(a)$ and for all x , $\cosh(x) \leq e^{x^2/2}$.
- (b) Let X_1, \dots, X_n be 'mutually uncorrelated' random variables i.e., $\mathbb{E}\{X_{i_1} \dots X_{i_k}\} = 0$ for all $1 \leq i_1 < \dots < i_k \leq n$. Assume further that $|X_i| \leq c_i$ for all i . Show that for all $b > 0$,

$$\mathbb{P}\left\{\sum_{i=1}^n X_i \geq b\right\} \leq \exp\{-b^2/(2 \sum_{i=1}^n c_i^2)\}.$$

5. Let $M_i, i = 1, \dots, n$ be a martingale difference sequence such that $|M_i| \leq c_i$ for all i . Show that

$$\mathbb{P} \left\{ \sum_{i=1}^n M_i \geq b \right\} \leq \exp \left\{ -b^2 / (2 \sum_{i=1}^n c_i^2) \right\}.$$

6. Let $c_i \in (0, \infty)$ for all $i = 1, \dots, n$ and $\mathcal{X} = \mathcal{X}_1 \times \dots \times \mathcal{X}_n$. Define weighted Hamming distance as

$$d_c(x, y) = \sum_{i=1}^n c_i \mathbf{1}[x_i \neq y_i], \quad x, y \in \mathcal{X}.$$

Show that $f : \mathcal{X} \rightarrow \mathbb{R}$ is Lipschitz w.r.t. d_c (i.e., $|f(x) - f(y)| \leq d_c(x, y)$) iff $\|D_i f\|_\infty \leq c_i$ for all i .

7. Let $G(n, p)$ be the Erdös-Rényi random graph with $p = \lambda/n$, $\lambda \in (0, \infty)$ and n large such that $p \leq 1$. Set $I(n, p)$ to be the number of isolated vertices in $G(n, p)$. Show that as $n \rightarrow \infty$,

$$n^{-1} I(n, p) \rightarrow e^{-\lambda}, \quad \text{a.s.}.$$

8. Let $\mathcal{X} = [0, 1]^2$ and define the *toroidal metric* on \mathcal{X} as follows : $d(x, y) = \min\{|x - y + z| : z \in \mathbb{Z}^2\}$. Let X_1, \dots, X_n be i.i.d. uniform points in \mathcal{X} . Consider the graph whose vertex set is $1, \dots, n$ and edge between i and j if $|X_i - X_j| \leq r_n$ where $r_n \in (0, \infty)$ is such that $(n-1)\pi r_n^2 = \lambda \in (0, \infty)$. Show the following :

(a) Show that as $n \rightarrow \infty$, $\deg(i) \xrightarrow{d} \text{Poi}(\lambda)$, the Poisson random variables with mean λ .
 (b) Let I_n be the number of isolated vertices. Show that

$$n^{-1} I_n \rightarrow e^{-\lambda}, \quad \text{a.s.}.$$