

INDIAN STATISTICAL INSTITUTE

Rings: Assignment II

MMath 1st year

Algebra I

By a ring, we mean a commutative ring with 1. Also, we exclude the zero ring.

1. Prove that $\mathbb{Z}[\sqrt{-2}]$, $\mathbb{Z}[\sqrt{2}]$, $\mathbb{Z}[\sqrt{3}]$ are all Euclidean domains.
2. Show that $\langle 2, 1 + \sqrt{-17} \rangle$ is not a principal ideal in $\mathbb{Z}[\sqrt{-17}]$. Is this a prime ideal?
3. We just saw above that $\mathbb{Z}[\sqrt{-17}]$ is not a PID. Is it a UFD?
4. Let $R = \mathbb{Z}[\sqrt{-5}]$. Verify the following :
 - (a) There are two distinct (i.e. non-associate) factorizations of 6 into irreducibles in R :
 $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$.
 - (b) The ideals $\langle 2, 1 \pm \sqrt{-5} \rangle$, $\langle 3, 1 \pm \sqrt{-5} \rangle$ are all prime ideals.
 - (c) The following factorization of ideals into prime ideals holds:
 - $\langle 2 \rangle = \langle 2, 1 + \sqrt{-5} \rangle^2$,
 - $\langle 3 \rangle = \langle 3, 1 + \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle$,
 - $\langle 1 + \sqrt{-5} \rangle = \langle 2, 1 + \sqrt{-5} \rangle \langle 3, 1 + \sqrt{-5} \rangle$,
 - $\langle 1 - \sqrt{-5} \rangle = \langle 2, 1 + \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle$.
 - (d) Uniqueness of factorization is restored in (a) at the level of ideals.
 - (e) The ideal $\langle 3, 1 + \sqrt{-5} \rangle$ is not a principal ideal.
5. Find gcd of $11 + 7i$ and $18 - i$ in $\mathbb{Z}[i]$.
6. Show that $\frac{\mathbb{Z}[i]}{I}$ is a finite ring for any nonzero ideal I .
7. Let R be an ID. Assume that:
 - (a) any two $a, b \in R \setminus \{0\}$ have gcd, say, d and there are $x, y \in R$ such that $d = ax + by$;
 - (b) If a_1, a_2, \dots be nonzero elements of R such that $a + i + 1$ divides a_i for $i = 1, 2, \dots$, then there is $N > 0$ such that $a_n = u_n a_N$ for some unit $u_n \in R$ for all $n \geq N$.Show that R is a PID.
8. Prove that $\frac{\mathbb{R}[X]}{(X^3+X)}$ is a product of fields.
9. Let $m, n \in \mathbb{Z}$ be two nonzero elements and $d = \gcd(m, n)$ in \mathbb{Z} . Prove that d is also a gcd of m, n in $\mathbb{Z}[i]$.
10. Let $m, n \in \mathbb{Z}$ be two nonzero elements and let m divide n in $\mathbb{Z}[i]$. Does m also divide n in \mathbb{Z} ?