

INDIAN STATISTICAL INSTITUTE

Holiday Homework: Modules

MMath 1st year

Algebra I

By a ring, we mean a commutative ring with 1. Also, we exclude the zero ring.

1. From Dummit-Foote: Exercise 10.1: 1, 4, 5, 6, 7, 8, 9, 10, 11, 15.
2. From Dummit-Foote: Exercise 10.2: 3, 4, 5, 6, 7, 9, 10, 11, 12, 13.
3. An R -module is called *simple* if it is not the zero module and it has no proper submodule.
 - (a) Prove that an R -module M is simple if and only if it is isomorphic (as an R -module) to R/\mathfrak{m} , where \mathfrak{m} is a maximal ideal of R . Show also that M is generated by any non-zero element.
 - (b) Let M, N be simple R -modules. Prove that a module morphism $\phi : M \rightarrow N$ is either the zero morphism or an isomorphism. Conclude that if M is simple, $\text{Hom}_R(M, M)$ is a division ring.
4. Let M be an additive abelian group and $\text{End}(M)$ be the set of all group morphisms from M to M .
 - (a) Show that $\text{End}(M)$ is a ring with identity (where addition is defined pointwise, and multiplication is composition of maps).
 - (b) Show that M is an $\text{End}(M)$ -module under the action:

$$(f, m) \mapsto fm := f(m)$$

- (c) Let R be a ring and $\phi : R \rightarrow \text{End}(M)$ be a ring morphism. Show that M is an R -module under the action:

$$(r, m) \mapsto rm := \phi(r)(m)$$

5. (Converse of 4(c)): Let R be a ring and M be an R -module. Show that there is a ring morphism $\phi : R \rightarrow \text{End}(M)$.
6. Let M be an R -module and A, B, C be its submodules such that

$$A \subseteq B, \quad A + C = B + C, \quad A \cap C = B \cap C.$$

Prove that $A = B$.

7. Let $f : M \rightarrow N$ be an R -module morphism. Let A be a submodule of M . Prove that $f^{-1}(f(A)) = A + \text{Ker}(f)$. Now let B be a submodule of N . Prove that $f(f^{-1}(B)) = B \cap \text{Im}(f)$. Also, show that
$$f(A \cap f^{-1}(B)) = f(A) \cap B.$$
8. Let R be a commutative ring. Show that a map $f : R \times R \rightarrow R$ is an R -module morphism if and only if $f(x, y) = \alpha x + \beta y$ for some $\alpha, \beta \in R$.

9. Let $f : M \rightarrow N$ be an R -module morphism. Show that f can be expressed as the composition of three R -module morphisms (for appropriate R -modules): $f = g \circ h \circ k$, where g is surjective, h is an isomorphism, and k is injective.
10. Let R be an integral domain and $a \in R$ be non-zero. Let n be any positive integer. Prove that Ra^n/Ra^{n+1} is isomorphic to R/Ra (as R -modules).