

Assignment 1

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a linear map.
 - (a) How does f look like?
 - (b) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous such that f satisfies $f(x+y) = f(x) + f(y)$. How does f look like?

2. For each $p \in [0, \infty]$, we have the norms $\|\cdot\|_p$ on \mathbb{R}^n . Let

$$B_p = \{x \in \mathbb{R}^2 : \|x\|_p \leq 1\}$$

Draw $\mathcal{B}_1, \mathcal{B}_2$ and \mathcal{B}_∞ and observe how \mathcal{B}_p behaves as $p \rightarrow \infty$.

3. Prove that any finite dimensional nls is complete.
4. (a) Prove that any linear map from $(\mathbb{R}^n, \|\cdot\|)$ to $(\mathbb{R}^m, \|\cdot\|')$ is continuous.
(Hint: We have already seen that if $\|\cdot\|_2$ is the Euclidean norm, then

$$\|T(x)\|_2 \leq \|T\|_E \|x\|_2.$$

Use this to show that T is continuous.)

- (b) Prove that any linear map between any two finite dimensional normed linear spaces is continuous.
- (c) Prove that if $(V, \|\cdot\|)$ and $(W, \|\cdot\|')$ are finite dimensional normed linear spaces, then $\mathcal{L}(V, W)$ is a normed linear space under the operator norm.
5. Suppose $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ are finite dimensional nls and T_1, T_2 are linear maps from V to W such that

$$T_1(x) = T_2(x) \quad \forall x \in \{y \in \mathbb{R}^n : \|y\|_V < \delta\},$$

where δ is a positive number. Prove that $T_1 = T_2$.

6. Prove that any subspace of a finite dimensional nls is closed.
7. Suppose W is a subspace of a finite dimensional nls which is open. What can you say about W ?
8. Suppose $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a linear isomorphism. Then what can you say about m and n ?
9. Suppose V is a finite dimensional vector space of dimension n such that $T^2 = 0$. Prove that

$$\text{rank}(T) \leq \frac{n}{2}.$$

10. Let $\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{R}$ be an inner product on a vector space V . Prove that $\langle \cdot, \cdot \rangle$ is continuous in both the variables, i.e., if $x_0, y_0 \in V$, then the maps

$$I_{x_0,1} : V \rightarrow V, \quad I_{x_0,1}(y) = \langle x_0, y \rangle$$

and

$$I_{y_0,2} : V \rightarrow V, \quad I_{y_0,2}(y) = \langle y, y_0 \rangle$$

are continuous.

11. Prove that

$$\|f\|_{\sup} = \sup_{x \in [0,1]} |f(x)|$$

defines a norm on $C[0, 1]$.

12. Prove that

$$\|f\|_{\sup} = \sup_{x \in \mathbb{R}} |f(x)|$$

defines a norm on $C_0(\mathbb{R}) := \{f : \mathbb{R} \rightarrow \mathbb{R} \text{ continuous such that } \lim_{|x| \rightarrow \infty} |f(x)| = 0\}$.

13. Let $\mathcal{R}[a, b]$ denotes the set of all Riemann integrable functions on $[a, b]$

(a) Does $\|f\| = \int_a^b |f(x)| dx$ define a norm on $\mathcal{R}[a, b]$?
 (b) Does $\langle f, g \rangle = \int_a^b f(x)g(x) dx$ define an inner product on $C[a, b]$?

14. Let $(V, \|\cdot\|_V)$, $(W, \|\cdot\|_W)$ and $(X, \|\cdot\|_X)$ be finite dimensional nls.

(a) If $T \in \mathcal{L}(V, W)$, prove that

$$\begin{aligned} \|T\|_{op} &= \sup\{\|T(x)\|_W : \|x\|_V = 1\} \\ &= \sup\{\|T(x)\|_W : \|x\|_V < 1\} \\ &= \inf\{K : K \geq 0 \text{ and } \|T(x)\|_W \leq K\|x\|_V\} \end{aligned}$$

(b) Prove that $\|T(x)\|_W \leq \|T\|_{op}\|x\|_V \ \forall x \in V$.

(c) If S is a bounded subset of V in $\|\cdot\|_V$, and $T \in \mathcal{L}(V, W)$, prove that $T(S)$ is bounded subset of W in $\|\cdot\|_W$.

(d) If $T_1 \in \mathcal{L}(V, W)$ and $T_2 \in \mathcal{L}(W, X)$, prove that $\|T_2 T_1\|_{op} \leq \|T_1\|_{op} \|T_2\|_{op}$.

(e) Prove that if $V = W$ and $\|\cdot\|_V = \|\cdot\|_W$, then $\|I\|_{op} = 1$.

(f) Now suppose $\langle \cdot, \cdot \rangle$ be inner products on V which induces $\|\cdot\|_V$.

An element $T \in \mathcal{L}(V, V)$ is called an orthogonal projection if $T^2 = T$ and $T^* = T$; i.e. $\langle Tv, w \rangle = \langle v, Tw \rangle, \forall v, w \in V$.

Prove that the operator norm of a non-zero orthogonal projection is 1.

15. Prove that a subset K of a finite dimensional nls is compact if and only if it is closed and bounded.