

Assignment 2

1. Examine the continuity of the following functions $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ at the point $(0, 0)$:

(a)

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2+y^2}} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{when } (x, y) = (0, 0) \end{cases}$$

(b)

$$f(x, y) = \begin{cases} \frac{xy(x^2-y^2)}{x^2+y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{when } (x, y) = (0, 0) \end{cases}$$

(c)

$$f(x, y) = \begin{cases} \frac{|x|}{y^2} e^{\frac{-|x|}{y^2}} & \text{if } y \neq 0 \\ 0 & \text{o.w.} \end{cases}$$

(d)

$$f(x, y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x} & \text{if } xy \neq 0 \\ 0 & \text{o.w.} \end{cases}$$

2. Consider the following function $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by:

$$f(x, y) = \begin{cases} \frac{x^2 y}{x^4+y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{when } (x, y) = (0, 0) \end{cases}$$

Let $m \in \mathbb{R}$. Prove that $\lim_{x \rightarrow 0} f(x, mx) = f(0, 0) = 0$ but f is not continuous at $(0, 0)$.

3. If $x = (x_1, \dots, x_n)$ denotes an element of \mathbb{R}^n , prove that

$$\|x\| \leq \sum_{i=1}^n |x_i|.$$

4. Suppose x and y belong to \mathbb{R}^n . When does equality hold in the triangle inequality

$$\|x + y\| \leq \|x\| + \|y\|?$$

5. Suppose \mathbb{R}^n is equipped with the usual inner product and the usual norm. A linear map $T: \mathbb{R}^n \rightarrow \mathbb{R}^n$ is called norm preserving if $\|Tx\| = \|x\|$. T is called angle-preserving if $\langle Tx, Ty \rangle = \langle x, y \rangle$.

(a) Prove that T is norm-preserving if and only if T is angle-preserving.

(b) Prove that a norm-preserving linear map T as above is one-one and moreover, T^{-1} is also norm-preserving.

6. Suppose \mathbb{R}^n is equipped with the usual inner product and the usual norm. We will let $(\mathbb{R}^n)^*$ denote the vector space $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$. More generally, if V is a real vector-space, V^* will denote the vector space $\mathcal{L}(V, \mathbb{R})$.

Now for $x \in \mathbb{R}^n$, we define an element ϕ_x in $(\mathbb{R}^n)^*$ by the formula

$$\phi_x(y) = \langle x, y \rangle.$$

(a) Check that ϕ_x is indeed a linear map from \mathbb{R}^n to \mathbb{R} .

(b) Prove that

$$\psi : \mathbb{R}^n \rightarrow (\mathbb{R}^n)^*$$

is a vector space isomorphism. This shows that given any functional ϕ on \mathbb{R}^n , there exists a unique y in \mathbb{R}^n such that for all x in \mathbb{R}^n ,

$$\phi(x) = \langle x, y \rangle.$$

7. Suppose \mathbb{R}^n is equipped with the usual inner product and the usual norm. Two vectors x, y are called orthogonal if $\langle x, y \rangle = 0$. If x and y are orthogonal, prove that

$$\|x + y\|^2 = \|x\|^2 + \|y\|^2.$$

8. (a) If (X, d) is a metric space and $Y \subseteq X$, prove that (Y, d) is a metric space.

(b) If X and Y are as in part a, prove that a set U is open in (Y, d) if and only if $U = Y \cap V$, where V is an open set in X .

(c) Let $X \subseteq \mathbb{R}^n$. A function $f: X \rightarrow \mathbb{R}^m$ is said to be continuous at $a \in X$ if given $\epsilon > 0$, there exists $\delta > 0$ such that for all $y \in X$ such that $\|y - a\| < \delta$, we have $\|f(y) - f(a)\| < \epsilon$.

f is said to be continuous on X if f is continuous at a , for all $a \in X$.

Prove that f is continuous if and only if $\forall W \subseteq \mathbb{R}^m$ open, we have $f^{-1}(W) = X \cap V$ for some V open in \mathbb{R}^n .

9. Give an example of an open set U in \mathbb{R}^2 such that U is not of the form $V \times W$, where V and W are subsets of \mathbb{R} .

10. Examine whether the following subsets of $M_n(\mathbb{R})$ are open, closed, compact, connected subsets of $M_n(\mathbb{R})$:

(a) $Gl_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : A \text{ is invertible}\}$

(b) $O_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : A^t A = A A^t = I_n\}$

(c) $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$