

Assignment 4

1. Suppose U is an open set in \mathbb{R}^n and $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ is a differentiable function such that f attains a **local maxima or minima** at the point x . Using the function $g(t) = f(x+tv)$ defined on a suitable open interval containing 0, prove that $\nabla f(x) = 0$, i.e., $\frac{\partial f}{\partial x_i}(x) = 0$ for all $i = 1, 2, \dots, n$.
2. Suppose U is an open set in \mathbb{R}^n and $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ is a differentiable function. Let x_0 be a fixed element in U where at least one partial derivative of f is not equal to zero. Let us denote by S^{n-1} the set

$$S^{n-1} := \{x \in \mathbb{R}^n : \|x\| = 1\}.$$

Define a function

$$g : S^{n-1} \rightarrow \mathbb{R}, \quad g(v) = |D_v f(x_0)|.$$

Prove that g attains its maxima at the points $\pm \frac{\nabla f(x_0)}{\|\nabla f(x_0)\|}$.

In other words, the direction v in which $|D_v f(x_0)|$ is maximum is along $\nabla f(x_0)$.

3. Let $f : \mathbb{R} \rightarrow \mathbb{R}^2$ be defined as $f(t) = (\cos(t), \sin(t))$. Prove that there exist $x, y \in [0, 2\pi]$ such that the equation

$$f(y) - f(x) = Df(z)(y - x)$$

cannot hold for any $z \in [x, y]$.

4. Suppose U is an open set in \mathbb{R}^n which is convex, i.e., for any a, b in U , the set $\{ta + (1-t)b : 0 \leq t \leq 1\}$ is contained in U .

- (a) Prove that if $f : U \rightarrow \mathbb{R}^m$ is a C^1 -function, then

$$\sup_{0 \leq t \leq 1} \|Df(x + t(y - x))\|_{\text{op}} < \infty.$$

- (b) Suppose f is a real-valued differentiable function defined on an open set U in \mathbb{R}^n . If x, y belonging to U is such that $L(x, y) \subseteq U$, then prove that

$$f(y) - f(x) = \langle \nabla f(z), y - x \rangle$$

for some $z \in L(x, y)$.

- (c) Suppose $U \subseteq \mathbb{R}^n$ is a convex open set and $f : U \rightarrow \mathbb{R}^m$ is a differentiable function such that all partial derivatives of f are bounded on U . Prove that f is Lipschitz on U , i.e.,

there exists a **real number** $A > 0$ such that for all $x, y \in U$,

$$\|f(y) - f(x)\| \leq A \|y - x\|.$$

- (d) Prove that if $f : U \rightarrow \mathbb{R}^m$ is a differentiable function and T is any linear map from \mathbb{R}^n to \mathbb{R}^m , then for $x, y \in U$ such that $L(x, y) \subseteq U$, we have

$$\|f(y) - f(x) - T(y - x)\| \leq \|y - x\| \sup_{0 \leq t \leq 1} \|Df(x + t(y - x)) - T\|_{\text{op}}.$$

5. If V and W are finite dimensional vector spaces, prove that the dimension of the vector space of all k -multilinear maps from V to W is equal to $\dim(V)^k \dim(W)$.
6. Suppose U is an open convex set in \mathbb{R}^n and $f : U \rightarrow \mathbb{R}$ be a C^2 -function. Prove that for all a in U and h in \mathbb{R}^n such that $\|h\|$ is sufficiently small,

$$f(a + h) = f(a) + \langle \nabla f(a), h \rangle + \frac{1}{2} D^2 f(a)h + \|h\|^2 E(h),$$

where E is a real-valued function defined on an open set containing zero such that $\|E(h)\| \rightarrow 0$ as $\|h\| \rightarrow 0$.

7. Prove that the map

$$f : \text{GL}_n(\mathbb{R}) \rightarrow \text{GL}_n(\mathbb{R}), \quad f(A) = A^{-1}$$

is C^∞ .