

Assignment 5

1. Suppose $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ is differentiable, where U is an open set in \mathbb{R}^n . Let $p \in U$ and $v \in \mathbb{R}^m$. Prove that

$$Df(x)(v) = \frac{d}{dt}|_{t=0} f(\gamma(t)),$$

where γ is a smooth curve passing through p with velocity v .

2. Suppose $X \in M_n(\mathbb{R})$. Prove that

$$\gamma : \mathbb{R} \rightarrow M_n(\mathbb{R}), \gamma(t) = e^{tX}$$

is a curve passing through I with velocity X .

3. Prove that for any $X \in M_n(\mathbb{R})$,

$$\frac{d}{dt}|_{t=0} \det(e^{tX}) = \text{Tr}(X).$$

(**Hint:** Use the fact that for any $X \in M_n(\mathbb{R})$, $D(\det)(I)(X) = \text{Tr}(X)$.)

4. Prove that for any $X \in M_n(\mathbb{R})$,

$$\det(e^X) = e^{\text{Tr}(X)}.$$

(**Hint:** Consider the function $g(t) = \det(e^{tX})$. Note that $g(0) = I$. Since $e^{(s+t)X} = e^{sX}e^{tX}$, observe that we can write

$$g'(s) = g(s) \frac{d}{dt}|_{t=0} \det(e^{tX}).$$

Now solve this differential equation with the initial condition $g(0) = I$.)

5. We had found out a very nice formula for $D(\det)(I)(X)$, namely, $D(\det)(I)(X) = \text{Tr}(X)$. Now if A is an arbitrary element of $\text{GL}_n(\mathbb{R})$, does there exist a nice formula for $D(\det)(A)(X)$? This exercise answers this question.

Prove that for all $A \in \text{GL}_n(\mathbb{R})$ and for all $X \in M_n(\mathbb{R})$,

$$D(\det)(A)(X) = \det(A) \text{Tr}(A^{-1}X).$$

(**Hint:** Observe that $\gamma(t) = Ae^{tA^{-1}X}$ is a curve passing through A with velocity X . Next, you will need to use the equation $\det(e^X) = e^{\text{Tr}(X)}$.)