
Assignment 6

1. If U and V are open subsets of Rn and Rm respectively and ϕ : U → V is a
diffeomorphism, prove that m = n. This says that if m ̸= n, then an open subset of
Rn cannot be diffeomorphic to an open subset of Rn.

2. Consider the function

f : R2 → R2, f(x, y) = (ex cos(y), ex sin(y)).

Show that the Jacobian of f is not zero at any point of R2. Thus, by IMT, any point
of R2 has a neighborhood in which f is one-one. Nevertheless, prove that f is not
one-one on R2.

3. Define f : R5 → R2, given by f = (f1, f2) where f1(x1, x2, y1, y2, y3) = 2ex1 + x2y1 −
4y2 + 3 and f2(x1, x2, y1, y2, y3) = x2 cos(x1)− 6x1 + 2y1 − y3.

(a) Show that f(0, 1, 3, 2, 7) = (0, 0)

(b) Show that ∃ a C1 map g defined on a neighbourhood of (3, 2, 7) such that
g(3, 2, 7) = (0, 1) and f(g(y), y) = (0, 0).

(c) compute Dg(3, 2, 7).

4. Using the implicit function theorem ( and not otherwise ), show that the system of
equations:

3x+ y − z + u2 = 0

x− y + 2z + u = 0

2x+ 2y − 4z + 2u = 0

has a local solution for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in
terms of x.

5. Define f : R3 → R by
f(x, y1, y2) = x2y1 + ex + y2

Show that ∂f
∂x (0, 1,−1) ̸= 0 and there exists a differentiable function g in a neigh-

borhood of (1,−1) in R2 so that g(1,−1) = 0 and f(g(y1, y2), y1, y2) = 0. Moreover
find ∂g

∂y1
(1,−1) and ∂g

∂y2
(1,−1).

6. If S is a regular k-level surface in Rn+k, k is called the dimension of S and n is called
the codimension of S. For each of the following examples, determine whether the set
f−1(0) is a regular surface. If your answer is yes, then also determine the dimension
and the codimension.
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(a) f(x, y, z) = x2 + y2 + z2 − 1

(b) f(x, y, z) = x2 − y2 − z2

7. Prove that the following are examples of regular surfaces. Also compute their di-
mension and codimension.

(a) ( the 2-torus )
T2 = f−1(1, 1),

where f : R4 → R2 is defined by

f(x1, x2, x3, x4) = (x21 + x22, x
2
3 + x24).

(b) ( the n-torus )
Tn = f−1(1, · · · 1)

where f : R2n → Rn is defined by

f(x1, x2, · · ·x2n−1, x2n) = (x21 + x22, · · ·x22n−1 + x22n).

Also prove that Tn is the n-fold Cartesian product of S1.

(c) ( the (n− 1) sphere in Rn )

Sn−1 = f−1(1)

where f : Rn → R is defined by

f(x1, · · ·xn) =
n∑
i=1

x2i .

8. Prove that Rn × {0} is an n-manifold in Rn+1.

9. Prove that GLn(R) is a manifold in Rn2
. What is its dimension?

10. (a) Recall that the derivative of the function det : GLn(R) → R is given by
D(det)(A)(X) = det(A)Tr(A−1X).

i. Compute the dimension of the vector space Ker(D(det))(I), where I de-
notes the identity matrix in Mn(R).

ii. Show that SLn(R) := {A ∈ Mn(R) : det(A) = 1} is a regular n2 − 1-level
surface in Rn2

.

(b) Prove that O(n) ( i.e, the set of all n×n real orthogonal matrices ) is a manifold

of dimension n(n−1)
2 in Mn(R).

( Hint: Let Sn denote the vector space of all n × n real symmetric matrices.
Consider the function f :Mn(R) → Sn defined by f(A) = AAt. )

11. Suppose k, l are positive integers such that M is a k-manifold in Rn and moreover,
M is an l-manifold in Rn. Prove that k = l.
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12. Suppose M and N are k-manifolds in Rn and f :M → N is a smooth function such
that for all p in M, the linear map

Df(p) : TpM → Tf(p)N

is a vector space isomorphism. Then prove that if p ∈ M, there exists an open set
V of M containing p which is diffeomorphic to an open set of N containing f(p).

13. Let us recall the statement of the implicit function theorem:

Suppose U ⊆ Rn is an open set and f : U → Rm is a smooth function. More-
over, assume that there exist (x0, y0) ∈ Rn−m × Rm such that f(x0, y0) = 0 and
DRmf(x0, y0) is invertible.

Then I.F.T. states that there exists an open set V in Rn−m containing x0, an open
set W in Rm containing y0 and a smooth map g : V → W such that DRmf(x, y) is
invertible for all (x, y) ∈ V ×W and

{(x, y) ∈ V ×W : f(x, y) = 0} = {(x, g(x)) : x ∈ V }.

We also computed an expression for Dg(x0).

(a) In the notations as above, prove that the set

M = {(x, y) ∈ U : f(x, y) = 0}

is an n−m-manifold in Rn.
(b) Prove that

T(x0,y0)M = {(v,Dg(x0)(v)) : v ∈ Rn−m}.

Thus, even without knowing the function g explicitly, the implicit function
theorem helps us to understand the tangent space to the manifold M. This
follows from the fact that we have a formula for Dg(x0, y0) in terms of the
function f from the implicit function theorem.

14. ( * ) We have seen that if p belongs to an open set U in Rn, then TpU can be
identified with the set of all derivations of C∞(p). We can go one step further, in
the context of vector fields.

Suppose U is an open set in Rn. An R-linear map δ : C∞(U) → C∞(U) is called a
derivation of C∞(U) if for all f, g ∈ C∞(U),

δ(f.g) = δ(f).g + f.δ(g).

The set of all derivations of C∞(U) is denoted by the symbol Der(C∞(U)). The goal
of this exercise is to show that X (U) = Der(C∞(U)).
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(a) We will need the following result, called the existence of partition of unity (
See Theorem 3.11 of Spivak for a proof ). We recall that the support of a real
valued function defined on a topological space is

supp(f) := {x ∈ Dom(f) : f(x) ̸= 0}.

Theorem

Let A ⊆ Rn and let {Ui}i∈I be an open cover of A. Then there exists
a collection {ϕi : i ∈ I} of smooth functions on an open subset of Rn
containing A satisfying the following conditions:

i. For all x ∈ A, 0 ≤ ϕi(x) ≤ 1.

ii. For all x ∈ A, there exists V open in Rn containing x such that all
but finitely many ϕi are zero on V.

iii. For all x ∈ A, ∑
i

ϕi(x) = 1.

Note that this equation makes sense by the previous point.

iv. For all i ∈ I, supp(ϕi) ⊆ Ui.

The collection {ϕi : i ∈ I} is called a partition of unity subordinate to
the cover {Ui : i ∈ I}.
As an application of the theorem on partition of unity, prove the following
statement:

Suppose A ⊆ Rn is closed and U be an open set in Rn such that A ⊆ U. Then
prove that there exists a real-valued smooth function ψ : Rn → R such that
ψ(x) = 1 for all x ∈ A, supp(ψ) ⊆ U and 0 ≤ ψ(x) ≤ 1.

(b) Given an element f of C∞(U) and X in X (U), we can define a real-valued
function Xf on U by the formula

(Xf)(p) = Xp(f).

Here, the element Xp of Tp(U) is viewed as an element of Der(C∞(p)) and f is
viewed as an element of C∞(p) so that Xp(f) makes sense.

Prove that Xf is a smooth function on U.

(c) Suppose X ∈ X (U). Then prove that the map

C∞(U) → C∞(U), f 7→ Xf

is a derivation of C∞(U). Thus, X (U) is a subset of Der(C∞(U)).

(d) Finally , prove that X (U) = Der(C∞(U)). This can be done in three steps:

i. Prove that if X,Y ∈ X (U) are such that X(f) = Y (f) for all f ∈ C∞(U),
then X = Y.
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ii. Suppose δ ∈ Der(C∞(U)) and f ∈ C∞(U) is such that f(x) = 0 for all x
on an open subset V of U. Prove that δ(f)(y) = 0 for all y ∈ V.
( Hint: By the problem in a), observe that there exists an open set W in
V such that p ∈ W and a smooth function g on U such that g = 1 on W
and g = 0 outside V. )

iii. Prove that X (U) = Der(C∞(U)). i.e, if δ ∈ Der(C∞(U)), then there is an
unique element X in X (U) such that for all f ∈ C∞(U), δ(f) = X(f).

(e) Let X,Y ∈ X (U). Define a map [X,Y ] : C∞(U) → C∞(U) by the formula

[X,Y ](f) = X(Y f)− Y (Xf).

This means that for all p ∈ U,

[X,Y ](f)(p) = Xp(Y f)− Yp(Xf).

Prove that [X,Y ] is a vector field on U. Moreover, write [X,Y ] as a C∞(U)-
linear combination of the vector fields ∂

∂xi
.

15. Suppose M is a k-manifold in Rn. A vector field X on M is called non-vanishing on
M if Xp ̸= 0 for all p ∈ M. A vector field X on a k-manifold M in Rn is called a
unit vector field if < X(p), X(p) >= 1 for all p ∈M.

(a) Prove that there exists a non-vanishing tangent vector field on M if and only
if there exists a unit tangent vector field on M.

(b) Prove that there exists a non-vanishing normal vector field on M if and only if
there exists a unit normal vector field on M.

(c) Prove that on a connected regular level n-surface in Rn+1, there exist exactly
two unit normal vector fields.

(d) On a connected regular level k-surface in Rn+k, how many unit normal vector
fields can you think of?

(e) Suppose k ≥ 1 and n = 2k − 1. Consider the n-manifold M = Sn inside Rn+1.
Prove that

X = (−x2
∂

∂x1
+x1

∂

∂x2
)+(−x4

∂

∂x3
+x3

∂

∂x4
)+· · ·+(−x2k

∂

∂x2k−1
+x2k−1

∂

∂x2k
)

defines a nowhere vanishing tangent vector field on M.

This shows that on an odd dimensional sphere, there always exists nan-vanishing
( equivalently unit ) tangent vector fields.

This is false for the 2 dimensional sphere S2 but we won’t prove this fact in
this course.

16. Let V be a 3-dimensional inner product space. Fix two elements v, w in V.
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(a) Then prove that there exists a unique vector g(v, w) in V such that for all z in
V, the following equation holds:

⟨g(v, w), z⟩ = det(v, w, z)t.

( Hint: Look at the map

ϕ : V → R, ϕ(z) = det(v, w, z)t.

Observe that ϕ is a linear functional on V. )

(b) Prove that g(v, w) coincides with the cross-product v × w. From now on, we
will drop the symbol g(v, w) and instead continue to denote it as v × w.

(c) From the above-made definition of v×w, prove that det(v, w, v×w)t is always
non-negative. Moreover, prove that v × w is orthogonal to both v and w.

(d) Prove that if (U,ψ) is a local parametrization of a 2-manifold in R3 such that
U is a region, then there exists a unit normal vector field along ψ.

(e) Compute this unit normal vector field for the parametrization (U,ψ) where
U = {(θ, ϕ) ∈ R2 : −π < θ < π, 0 < ϕ < π} and ψ : U → R3 is defined as

ψ(θ, ϕ) = (r cos θ sinϕ, r sin θ sinϕ, r cosϕ).

17. Let (U,ψ) be a parametrized n-surface in Rn+1. Let X1, X2, · · ·Xn be the co-ordinate
vector fields along ψ. Suppose x ∈ U. Prove that there is a unique vector N(x) ∈
(Ran(Dψ(x)))⊥ satisfying the following two conditions:

(a)

||N(x)|| := (< N(x), N(x) >Tψ(x)(Rn+1))
1
2 = 1.

(b) The determinant of the matrix with the rows X1(x), X2(x), · · ·N(x) ( in this
particular order ) is positive.

18. The goal of this exercise is to show that the vector field N constructed in the previous
problem is indeed a smooth vector field.

We continue with the notation of the previous exercise. Define

N ′(x) =

n+1∑
i=1

n′i(x)
∂

∂yi
|ψ(x),

where n′i(x) = (−1)n+i+1 times the determinant of the matrix obtained by deleting
the i-th column from the n × (n + 1) matrix with the first row X1(x), second row
X2(x), · · · the n-th row Xn(x).

Here, the entries of the vector Xi(x) are in the basis ∂
∂yi

|ψ(x), where, y1, · · · yn+1 are

the co-ordinates of Rn+1.

Prove that
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(a) N ′(x) ̸= 0 for all x ∈ U.

(b) N ′(x) ∈ (Ran(Dψ(x)))⊥.

(c) The determinant of the matrix with the rows X1(x), X2(x), · · ·Xn(x), N
′(x) (

in this particular order ) is positive.

(d) Prove that the assignment x→ N(x) constructed in the previous problem is a
( smooth ) vector field. The vector field N is called the orientation vector
field along ψ.

(e) Now here comes the moral of the story.

Prove that if (U,ψ) is a local parametrization of an n-manifold in Rn+1 so that
U is a region, then there exists a unit normal vector field along ψ.
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