Assignment 6

. If U and V are open subsets of R" and R™ respectively and ¢ : U — V is a
diffeomorphism, prove that m = n. This says that if m # n, then an open subset of
R™ cannot be diffeomorphic to an open subset of R™.

. Consider the function
fiR? = R? f(z,y) = (" cos(y), e”sin(y)).

Show that the Jacobian of f is not zero at any point of R%. Thus, by IMT, any point
of R? has a neighborhood in which f is one-one. Nevertheless, prove that f is not
one-one on R?.

. Define f: R®> — R?, given by f = (f1, f2) where fi(x1, %2, y1,y2,y3) = 2™ + xay1 —
4ys + 3 and fo(x1, 2, Y1, Y2, y3) = T2 cos(z1) — 6x1 + 2y1 — Y3.

(a) Show that f(0,1,3,2,7) = (0,0)

(b) Show that 3 a C' map g defined on a neighbourhood of (3,2,7) such that
9(3,2,7) = (0,1) and f(g(y),y) = (0,0).

(¢) compute Dg(3,2,7).

. Using the implicit function theorem ( and not otherwise ), show that the system of

equations:
3x+y—2z+ u?=0

r—y+2z+u=0
20+ 2y —4z+2u=20

has a local solution for x,y,u in terms of z; for x, z,u in terms of y; for y, z,u in
terms of x.

. Define f: R?* = R by
Fl@y,y2) = 2y + € + o

Show that %(O, 1,—1) # 0 and there exists a differentiable function ¢ in a neigh-
borhood of (1, —1) in R? so that g(1,—1) = 0 and f(g(y1,%2), y1,y2) = 0. Moreover
find 29(1,~1) and 29 (1,-1).

Y1 Y2

. If S is a regular k-level surface in R***_ £ is called the dimension of S and n is called
the codimension of S. For each of the following examples, determine whether the set
f71(0) is a regular surface. If your answer is yes, then also determine the dimension
and the codimension.



(a) f(z,y,2) =2 +y*+2° -1
(b) f(‘rvyaz) :.’I/’Q—yQ—ZQ

7. Prove that the following are examples of regular surfaces. Also compute their di-
mension and codimension.

(a) ( the 2-torus )
T? = f7H(1,1),

where f : R* — R? is defined by
f(x1, w0, w3, 24) = (2] + 23, 23 + 7).
(b) ( the n-torus)
™ =f1(1,---1)
where f : R?” — R” is defined by

fla, @, op—1,Ton) = (a1 + 23, - 25,1 + 3,).

Also prove that T" is the n-fold Cartesian product of S*.
(¢) ( the (n — 1) sphere in R™ )

§7t = F)

where f : R™ — R is defined by
flz1,- ) = Zx?

8. Prove that R™ x {0} is an n-manifold in R"*!.
9. Prove that GL,(R) is a manifold in R"*. What is its dimension?

10. (a) Recall that the derivative of the function det : GL,(R) — R is given by
D(det)(A)(X) = det(A)Tr(A1X).
i. Compute the dimension of the vector space Ker(D(det))(I), where I de-
notes the identity matrix in M, (R).
ii. Show that SL,(R) := {A € M,(R) : det(A) = 1} is a regular n? — 1-level
surface in R™”.
(b) Prove that O(n) ( i.e, the set of all n x n real orthogonal matrices ) is a manifold
of dimension ™1 in M, (R).
( Hint: Let S,, denote the vector space of all n x n real symmetric matrices.
Consider the function f : M,(R) — S, defined by f(A) = AA'.)

11. Suppose k,l are positive integers such that M is a k-manifold in R” and moreover,
M is an [-manifold in R™. Prove that k = [.



12.

13.

14.

Suppose M and N are k-manifolds in R™ and f : M — N is a smooth function such
that for all p in M, the linear map

Df(p) : TpM — Tf(p)N

is a vector space isomorphism. Then prove that if p € M, there exists an open set
V of M containing p which is diffeomorphic to an open set of N containing f(p).
Let us recall the statement of the implicit function theorem:

Suppose U C R™ is an open set and f : U — R™ is a smooth function. More-
over, assume that there exist (zg,y0) € R ™ x R™ such that f(zo,y9) = 0 and
Drgm f(x0,y0) is invertible.

Then I.LF.T. states that there exists an open set V in R®™™ containing xg, an open
set W in R™ containing yo and a smooth map g : V' — W such that Dgm f(z,y) is
invertible for all (z,y) € V x W and

{(z,y) e VxW: f(z,y) =0} ={(z,9(x)) :x € V}.
We also computed an expression for Dg(x).

(a) In the notations as above, prove that the set

M:{({B,y) EU:f(x,y):()}

is an n — m-manifold in R™.

(b) Prove that
T(HCo,yo)M = {(Ua DQ(CUO)(U)) RS Rn_m}.

Thus, even without knowing the function g explicitly, the implicit function
theorem helps us to understand the tangent space to the manifold M. This
follows from the fact that we have a formula for Dg(xo,yp) in terms of the
function f from the implicit function theorem.

( * ) We have seen that if p belongs to an open set U in R", then T,U can be
identified with the set of all derivations of C*°(p). We can go one step further, in
the context of vector fields.

Suppose U is an open set in R™. An R-linear map 0 : C®°(U) — C*°(U) is called a
derivation of C*°(U) if for all f,g € C*(U),

6(f.9) =0(f)-g+ f4(g).

The set of all derivations of C*°(U) is denoted by the symbol Der(C*°(U)). The goal
of this exercise is to show that X'(U) = Der(C>(U)).



(a) We will need the following result, called the existence of partition of unity (

(d)

See Theorem 3.11 of Spivak for a proof ). We recall that the support of a real
valued function defined on a topological space is

supp(f) := {z € Dom(f) : f(z) # 0}.

Theorem
Let A C R"™ and let {U,};,c; be an open cover of A. Then there exists
a collection {¢; : i € I} of smooth functions on an open subset of R"
containing A satisfying the following conditions:
i. For all x € A, 0 < ¢;(x) < 1.
ii. For all x € A, there exists V open in R” containing z such that all
but finitely many ¢; are zero on V.

iii. For all z € A,
Z ¢Z($) =1.

Note that this equation makes sense by the previous point.
iv. For all i € I, supp(¢;) C U;.
The collection {¢; : i € I'} is called a partition of unity subordinate to
the cover {U;:i € I}.
As an application of the theorem on partition of unity, prove the following
statement:

Suppose A C R” is closed and U be an open set in R"™ such that A C U. Then
prove that there exists a real-valued smooth function 3 : R™ — R such that
P(x) =1for all z € A, supp(¢p) CU and 0 < ¢(z) < 1.

Given an element f of C*°(U) and X in X(U), we can define a real-valued
function X f on U by the formula

(XF)(p) = Xp(f)-

Here, the element X, of T,(U) is viewed as an element of Der(C*(p)) and f is
viewed as an element of C*°(p) so that X, (f) makes sense.

Prove that X f is a smooth function on U.

Suppose X € X(U). Then prove that the map
C*U)—=C®U), f—Xf

is a derivation of C*°(U). Thus, X' (U) is a subset of Der(C*°(U)).
Finally , prove that X' (U) = Der(C*°(U)). This can be done in three steps:

i. Prove that if X,Y € X (U) are such that X(f) =Y (f) for all f € C>(U),
then X =Y.



ii. Suppose 6 € Der(C*(U)) and f € C*®°(U) is such that f(z) = 0 for all =
on an open subset V' of U. Prove that 6(f)(y) =0 for all y € V.
( Hint: By the problem in a), observe that there exists an open set W in
V such that p € W and a smooth function g on U such that g =1 on W
and g = 0 outside V. )

iii. Prove that X (U) = Der(C*>°(U)). i.e, if § € Der(C*°(U)), then there is an
unique element X in X(U) such that for all f € C*(U), 6(f) = X(f).

(e) Let X, Y € X(U). Define a map [X,Y]: C®(U) — C*>(U) by the formula

(X, Y](f) = XY f) =Y (X]).

This means that for all p € U,

(X, YT(H)(p) = Xp(Y[) = Yp(X[).

Prove that [X,Y] is a vector field on U. Moreover, write [X,Y] as a C*°(U)-
linear combination of the vector fields 8%1-'

15. Suppose M is a k-manifold in R™. A vector field X on M is called non-vanishing on
M if X, # 0 for all p € M. A vector field X on a k-manifold M in R" is called a
unit vector field if < X(p), X(p) >=1 for all p € M.

(a) Prove that there exists a non-vanishing tangent vector field on M if and only
if there exists a unit tangent vector field on M.

(b) Prove that there exists a non-vanishing normal vector field on M if and only if
there exists a unit normal vector field on M.

(c) Prove that on a connected regular level n-surface in R™*!, there exist exactly
two unit normal vector fields.

(d) On a connected regular level k-surface in R"** how many unit normal vector
fields can you think of?

(e) Suppose k > 1 and n = 2k — 1. Consider the n-manifold M = S™ inside R" 1.
Prove that
3} 0 3} 0 0

+I187x2)+( a 3+:E38 4)+"'+(—$2k +332k_1872k)

X =(—x9

0y 0Tok—1

defines a nowhere vanishing tangent vector field on M.

This shows that on an odd dimensional sphere, there always exists nan-vanishing
( equivalently unit ) tangent vector fields.

This is false for the 2 dimensional sphere S? but we won’t prove this fact in
this course.

16. Let V be a 3-dimensional inner product space. Fix two elements v, w in V.



(a) Then prove that there exists a unique vector g(v,w) in V such that for all z in
V, the following equation holds:

(9(v,w), 2) = det(v,w, 2)".
( Hint: Look at the map
¢:V =R, ¢(2) = det(v,w, 2)".

Observe that ¢ is a linear functional on V. )

(b) Prove that g(v,w) coincides with the cross-product v x w. From now on, we
will drop the symbol g(v, w) and instead continue to denote it as v x w.

(c) From the above-made definition of v x w, prove that det(v,w,v x w)* is always
non-negative. Moreover, prove that v x w is orthogonal to both v and w.

(d) Prove that if (U,) is a local parametrization of a 2-manifold in R? such that
U is a region, then there exists a unit normal vector field along 1.

(e) Compute this unit normal vector field for the parametrization (U, 1)) where
U={(0,0) eR?: —1 < <7m0<¢<n}and :U — R? is defined as
Y(0,¢) = (r cos @ sin ¢, rsin O sin ¢, r cos ¢).

17. Let (U, 1) be a parametrized n-surface in R"*!. Let X1, X, - - - X,, be the co-ordinate
vector fields along 1. Suppose x € U. Prove that there is a unique vector N(x) €
(Ran(D1(x)))* satisfying the following two conditions:

(a)

N

IN(@)]| == (< N(@), N(2) >1,, @ner)? = L.

(b) The determinant of the matrix with the rows Xj(z), Xa(x), - N(x) ( in this
particular order ) is positive.

18. The goal of this exercise is to show that the vector field N constructed in the previous
problem is indeed a smooth vector field.

We continue with the notation of the previous exercise. Define

n+1
0

N'(z)=>)_ ”é(x)@|¢(x)a

i=1

where n/(x) = (=1)"""*! times the determinant of the matrix obtained by deleting
the i-th column from the n x (n + 1) matrix with the first row X;(x), second row
Xo(x),- - the n-th row X, (z).

Here, the entries of the vector X;(x) are in the basis aiin(w)? where, y1, - Yn11 are
the co-ordinates of R™*1,

Prove that



(a) N'(z) #0 for all x € U.
(b) N'(z) € (Ran(Dy(x)))*
(¢) The determinant of the matrix with the rows Xj(z), Xa(z), - X (), N'(z) (

in this particular order ) is positive.

(d) Prove that the assignment z — N (z) constructed in the previous problem is a
( smooth ) vector field. The vector field N is called the orientation vector
field along .

(e) Now here comes the moral of the story.

Prove that if (U, %)) is a local parametrization of an n-manifold in R"*! so that
U is a region, then there exists a unit normal vector field along ).



