

Assignment 6

1. If U and V are open subsets of \mathbb{R}^n and \mathbb{R}^m respectively and $\phi : U \rightarrow V$ is a diffeomorphism, prove that $m = n$. This says that if $m \neq n$, then an open subset of \mathbb{R}^n cannot be diffeomorphic to an open subset of \mathbb{R}^n .

2. Consider the function

$$f : \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad f(x, y) = (e^x \cos(y), e^x \sin(y)).$$

Show that the Jacobian of f is not zero at any point of \mathbb{R}^2 . Thus, by IMT, any point of \mathbb{R}^2 has a neighborhood in which f is one-one. Nevertheless, prove that f is not one-one on \mathbb{R}^2 .

3. Define $f : \mathbb{R}^5 \rightarrow \mathbb{R}^2$, given by $f = (f_1, f_2)$ where $f_1(x_1, x_2, y_1, y_2, y_3) = 2e^{x_1} + x_2 y_1 - 4y_2 + 3$ and $f_2(x_1, x_2, y_1, y_2, y_3) = x_2 \cos(x_1) - 6x_1 + 2y_1 - y_3$.

- (a) Show that $f(0, 1, 3, 2, 7) = (0, 0)$
- (b) Show that \exists a C^1 map g defined on a neighbourhood of $(3, 2, 7)$ such that $g(3, 2, 7) = (0, 1)$ and $f(g(y), y) = (0, 0)$.
- (c) compute $Dg(3, 2, 7)$.

4. Using the implicit function theorem (and not otherwise), show that the system of equations:

$$3x + y - z + u^2 = 0$$

$$x - y + 2z + u = 0$$

$$2x + 2y - 4z + 2u = 0$$

has a local solution for x, y, u in terms of z ; for x, z, u in terms of y ; for y, z, u in terms of x .

5. Define $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ by

$$f(x, y_1, y_2) = x^2 y_1 + e^x + y_2$$

Show that $\frac{\partial f}{\partial x}(0, 1, -1) \neq 0$ and there exists a differentiable function g in a neighborhood of $(1, -1)$ in \mathbb{R}^2 so that $g(1, -1) = 0$ and $f(g(y_1, y_2), y_1, y_2) = 0$. Moreover find $\frac{\partial g}{\partial y_1}(1, -1)$ and $\frac{\partial g}{\partial y_2}(1, -1)$.

6. If S is a regular k -level surface in \mathbb{R}^{n+k} , k is called the dimension of S and n is called the codimension of S . For each of the following examples, determine whether the set $f^{-1}(0)$ is a regular surface. If your answer is yes, then also determine the dimension and the codimension.

(a) $f(x, y, z) = x^2 + y^2 + z^2 - 1$
 (b) $f(x, y, z) = x^2 - y^2 - z^2$

7. Prove that the following are examples of regular surfaces. Also compute their dimension and codimension.

(a) (the 2-torus)

$$\mathbb{T}^2 = f^{-1}(1, 1),$$

where $f : \mathbb{R}^4 \rightarrow \mathbb{R}^2$ is defined by

$$f(x_1, x_2, x_3, x_4) = (x_1^2 + x_2^2, x_3^2 + x_4^2).$$

(b) (the n -torus)

$$\mathbb{T}^n = f^{-1}(1, \dots, 1)$$

where $f : \mathbb{R}^{2n} \rightarrow \mathbb{R}^n$ is defined by

$$f(x_1, x_2, \dots, x_{2n-1}, x_{2n}) = (x_1^2 + x_2^2, \dots, x_{2n-1}^2 + x_{2n}^2).$$

Also prove that \mathbb{T}^n is the n -fold Cartesian product of S^1 .

(c) (the $(n-1)$ sphere in \mathbb{R}^n)

$$S^{n-1} = f^{-1}(1)$$

where $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is defined by

$$f(x_1, \dots, x_n) = \sum_{i=1}^n x_i^2.$$

8. Prove that $\mathbb{R}^n \times \{0\}$ is an n -manifold in \mathbb{R}^{n+1} .

9. Prove that $\mathrm{GL}_n(\mathbb{R})$ is a manifold in \mathbb{R}^{n^2} . What is its dimension?

10. (a) Recall that the derivative of the function $\det : \mathrm{GL}_n(\mathbb{R}) \rightarrow \mathbb{R}$ is given by $D(\det)(A)(X) = \det(A)\mathrm{Tr}(A^{-1}X)$.

i. Compute the dimension of the vector space $\mathrm{Ker}(D(\det))(I)$, where I denotes the identity matrix in $M_n(\mathbb{R})$.

ii. Show that $\mathrm{SL}_n(\mathbb{R}) := \{A \in M_n(\mathbb{R}) : \det(A) = 1\}$ is a regular $n^2 - 1$ -level surface in \mathbb{R}^{n^2} .

(b) Prove that $O(n)$ (i.e, the set of all $n \times n$ real orthogonal matrices) is a manifold of dimension $\frac{n(n-1)}{2}$ in $M_n(\mathbb{R})$.

(**Hint:** Let S_n denote the vector space of all $n \times n$ real symmetric matrices. Consider the function $f : M_n(\mathbb{R}) \rightarrow S_n$ defined by $f(A) = AA^t$.)

11. Suppose k, l are positive integers such that M is a k -manifold in \mathbb{R}^n and moreover, M is an l -manifold in \mathbb{R}^n . Prove that $k = l$.

12. Suppose M and N are k -manifolds in \mathbb{R}^n and $f : M \rightarrow N$ is a smooth function such that for all p in M , the linear map

$$Df(p) : T_p M \rightarrow T_{f(p)} N$$

is a vector space isomorphism. Then prove that if $p \in M$, there exists an open set V of M containing p which is diffeomorphic to an open set of N containing $f(p)$.

13. Let us recall the statement of the implicit function theorem:

Suppose $U \subseteq \mathbb{R}^n$ is an open set and $f : U \rightarrow \mathbb{R}^m$ is a smooth function. Moreover, assume that there exist $(x_0, y_0) \in \mathbb{R}^{n-m} \times \mathbb{R}^m$ such that $f(x_0, y_0) = 0$ and $D_{\mathbb{R}^m} f(x_0, y_0)$ is invertible.

Then I.F.T. states that there exists an open set V in \mathbb{R}^{n-m} containing x_0 , an open set W in \mathbb{R}^m containing y_0 and a smooth map $g : V \rightarrow W$ such that $D_{\mathbb{R}^m} f(x, y)$ is invertible for all $(x, y) \in V \times W$ and

$$\{(x, y) \in V \times W : f(x, y) = 0\} = \{(x, g(x)) : x \in V\}.$$

We also computed an expression for $Dg(x_0)$.

(a) In the notations as above, prove that the set

$$M = \{(x, y) \in U : f(x, y) = 0\}$$

is an $n - m$ -manifold in \mathbb{R}^n .

(b) Prove that

$$T_{(x_0, y_0)} M = \{(v, Dg(x_0)(v)) : v \in \mathbb{R}^{n-m}\}.$$

Thus, even without knowing the function g explicitly, the implicit function theorem helps us to understand the tangent space to the manifold M . This follows from the fact that we have a formula for $Dg(x_0, y_0)$ in terms of the function f from the implicit function theorem.

14. (*) We have seen that if p belongs to an open set U in \mathbb{R}^n , then $T_p U$ can be identified with the set of all derivations of $C^\infty(p)$. We can go one step further, in the context of vector fields.

Suppose U is an open set in \mathbb{R}^n . An \mathbb{R} -linear map $\delta : C^\infty(U) \rightarrow C^\infty(U)$ is called a derivation of $C^\infty(U)$ if for all $f, g \in C^\infty(U)$,

$$\delta(f \cdot g) = \delta(f) \cdot g + f \cdot \delta(g).$$

The set of all derivations of $C^\infty(U)$ is denoted by the symbol $\text{Der}(C^\infty(U))$. The goal of this exercise is to show that $\mathcal{X}(U) = \text{Der}(C^\infty(U))$.

(a) We will need the following result, called the existence of partition of unity (See Theorem 3.11 of Spivak for a proof). We recall that the support of a real valued function defined on a topological space is

$$\text{supp}(f) := \overline{\{x \in \text{Dom}(f) : f(x) \neq 0\}}.$$

Theorem

Let $A \subseteq \mathbb{R}^n$ and let $\{U_i\}_{i \in I}$ be an open cover of A . Then there exists a collection $\{\phi_i : i \in I\}$ of smooth functions on an open subset of \mathbb{R}^n containing A satisfying the following conditions:

- i. For all $x \in A$, $0 \leq \phi_i(x) \leq 1$.
- ii. For all $x \in A$, there exists V open in \mathbb{R}^n containing x such that all but finitely many ϕ_i are zero on V .
- iii. For all $x \in A$,

$$\sum_i \phi_i(x) = 1.$$

Note that this equation makes sense by the previous point.

- iv. For all $i \in I$, $\text{supp}(\phi_i) \subseteq U_i$.

The collection $\{\phi_i : i \in I\}$ is called a partition of unity subordinate to the cover $\{U_i : i \in I\}$.

As an application of the theorem on partition of unity, prove the following statement:

Suppose $A \subseteq \mathbb{R}^n$ is closed and U be an open set in \mathbb{R}^n such that $A \subseteq U$. Then prove that there exists a real-valued smooth function $\psi : \mathbb{R}^n \rightarrow \mathbb{R}$ such that $\psi(x) = 1$ for all $x \in A$, $\text{supp}(\psi) \subseteq U$ and $0 \leq \psi(x) \leq 1$.

(b) Given an element f of $C^\infty(U)$ and X in $\mathcal{X}(U)$, we can define a real-valued function Xf on U by the formula

$$(Xf)(p) = X_p(f).$$

Here, the element X_p of $T_p(U)$ is viewed as an element of $\text{Der}(C^\infty(p))$ and f is viewed as an element of $C^\infty(p)$ so that $X_p(f)$ makes sense.

Prove that Xf is a smooth function on U .

(c) Suppose $X \in \mathcal{X}(U)$. Then prove that the map

$$C^\infty(U) \rightarrow C^\infty(U), f \mapsto Xf$$

is a derivation of $C^\infty(U)$. Thus, $\mathcal{X}(U)$ is a subset of $\text{Der}(C^\infty(U))$.

(d) Finally , prove that $\mathcal{X}(U) = \text{Der}(C^\infty(U))$. This can be done in three steps:

- i. Prove that if $X, Y \in \mathcal{X}(U)$ are such that $X(f) = Y(f)$ for all $f \in C^\infty(U)$, then $X = Y$.

ii. Suppose $\delta \in \text{Der}(C^\infty(U))$ and $f \in C^\infty(U)$ is such that $f(x) = 0$ for all x on an open subset V of U . Prove that $\delta(f)(y) = 0$ for all $y \in V$.

(**Hint:** By the problem in a), observe that there exists an open set W in V such that $p \in W$ and a smooth function g on U such that $g = 1$ on W and $g = 0$ outside V .)

iii. Prove that $\mathcal{X}(U) = \text{Der}(C^\infty(U))$. i.e, if $\delta \in \text{Der}(C^\infty(U))$, then there is an unique element X in $\mathcal{X}(U)$ such that for all $f \in C^\infty(U)$, $\delta(f) = X(f)$.

(e) Let $X, Y \in \mathcal{X}(U)$. Define a map $[X, Y] : C^\infty(U) \rightarrow C^\infty(U)$ by the formula

$$[X, Y](f) = X(Yf) - Y(Xf).$$

This means that for all $p \in U$,

$$[X, Y](f)(p) = X_p(Yf) - Y_p(Xf).$$

Prove that $[X, Y]$ is a vector field on U . Moreover, write $[X, Y]$ as a $C^\infty(U)$ -linear combination of the vector fields $\frac{\partial}{\partial x_i}$.

15. Suppose M is a k -manifold in \mathbb{R}^n . A vector field X on M is called non-vanishing on M if $X_p \neq 0$ for all $p \in M$. A vector field X on a k -manifold M in \mathbb{R}^n is called a unit vector field if $\langle X(p), X(p) \rangle = 1$ for all $p \in M$.

(a) Prove that there exists a non-vanishing tangent vector field on M if and only if there exists a unit tangent vector field on M .

(b) Prove that there exists a non-vanishing normal vector field on M if and only if there exists a unit normal vector field on M .

(c) Prove that on a connected regular level n -surface in \mathbb{R}^{n+1} , there exist exactly two unit normal vector fields.

(d) On a connected regular level k -surface in \mathbb{R}^{n+k} , how many unit normal vector fields can you think of?

(e) Suppose $k \geq 1$ and $n = 2k - 1$. Consider the n -manifold $M = S^n$ inside \mathbb{R}^{n+1} . Prove that

$$X = (-x_2 \frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial x_2}) + (-x_4 \frac{\partial}{\partial x_3} + x_3 \frac{\partial}{\partial x_4}) + \cdots + (-x_{2k} \frac{\partial}{\partial x_{2k-1}} + x_{2k-1} \frac{\partial}{\partial x_{2k}})$$

defines a nowhere vanishing tangent vector field on M .

This shows that on an odd dimensional sphere, there always exists non-vanishing (equivalently unit) tangent vector fields.

This is false for the 2 dimensional sphere S^2 but we won't prove this fact in this course.

16. Let V be a 3-dimensional inner product space. Fix two elements v, w in V .

(a) Then prove that there exists a unique vector $g(v, w)$ in V such that for all z in V , the following equation holds:

$$\langle g(v, w), z \rangle = \det(v, w, z)^t.$$

(**Hint:** Look at the map

$$\phi : V \rightarrow \mathbb{R}, \phi(z) = \det(v, w, z)^t.$$

Observe that ϕ is a linear functional on V .)

(b) Prove that $g(v, w)$ coincides with the cross-product $v \times w$. From now on, we will drop the symbol $g(v, w)$ and instead continue to denote it as $v \times w$.

(c) From the above-made definition of $v \times w$, prove that $\det(v, w, v \times w)^t$ is always non-negative. Moreover, prove that $v \times w$ is orthogonal to both v and w .

(d) Prove that if (U, ψ) is a local parametrization of a 2-manifold in \mathbb{R}^3 such that U is a region, then there exists a unit normal vector field along ψ .

(e) Compute this unit normal vector field for the parametrization (U, ψ) where $U = \{(\theta, \phi) \in \mathbb{R}^2 : -\pi < \theta < \pi, 0 < \phi < \pi\}$ and $\psi : U \rightarrow \mathbb{R}^3$ is defined as

$$\psi(\theta, \phi) = (r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi).$$

17. Let (U, ψ) be a parametrized n -surface in \mathbb{R}^{n+1} . Let X_1, X_2, \dots, X_n be the co-ordinate vector fields along ψ . Suppose $x \in U$. Prove that there is a unique vector $N(x) \in (\text{Ran}(D\psi(x)))^\perp$ satisfying the following two conditions:

(a)

$$\|N(x)\| := (\langle N(x), N(x) \rangle_{T_{\psi(x)}(\mathbb{R}^{n+1})})^{\frac{1}{2}} = 1.$$

(b) The determinant of the matrix with the rows $X_1(x), X_2(x), \dots, N(x)$ (in this particular order) is positive.

18. The goal of this exercise is to show that the vector field N constructed in the previous problem is indeed a smooth vector field.

We continue with the notation of the previous exercise. Define

$$N'(x) = \sum_{i=1}^{n+1} n'_i(x) \frac{\partial}{\partial y_i}|_{\psi(x)},$$

where $n'_i(x) = (-1)^{n+i+1}$ times the determinant of the matrix obtained by deleting the i -th column from the $n \times (n+1)$ matrix with the first row $X_1(x)$, second row $X_2(x), \dots$ the n -th row $X_n(x)$.

Here, the entries of the vector $X_i(x)$ are in the basis $\frac{\partial}{\partial y_i}|_{\psi(x)}$, where, y_1, \dots, y_{n+1} are the co-ordinates of \mathbb{R}^{n+1} .

Prove that

- (a) $N'(x) \neq 0$ for all $x \in U$.
- (b) $N'(x) \in (\text{Ran}(D\psi(x)))^\perp$.
- (c) The determinant of the matrix with the rows $X_1(x), X_2(x), \dots, X_n(x), N'(x)$ (in this particular order) is positive.
- (d) Prove that the assignment $x \rightarrow N(x)$ constructed in the previous problem is a (smooth) vector field. The vector field N is called the **orientation vector field along ψ** .
- (e) Now here comes the moral of the story.

Prove that if (U, ψ) is a local parametrization of an n -manifold in \mathbb{R}^{n+1} so that U is a region, then there exists a unit normal vector field along ψ .