
Assignment 8

1. If V is a vector space of dimension n, then prove that Λk(V ) = 0 if k > n.

2. (a) Prove that if ω is a k-form on an open subset U, k being odd, then ω ∧ ω = 0.

(b) Suppose the coordinates in R4 are given by x1, x2, y1, y2. Consider the 2 form
in R4 defined by

ω = d(x1) ∧ d(y1) + d(x2) ∧ d(y2).

Then prove that

ω ∧ ω = 2d(x1) ∧ d(y1) ∧ d(x2) ∧ d(y2)

and hence ω ∧ ω ̸= 0.

3. Compute the exterior derivative of the following differential forms:

(a) ω = exydx considered as a one-form in R2.

(b) ω = z2dx+ x2dy + y2dz considered as a one form in R3.

(c) ω = x1x2dx3 ∧ dx4 considered as a two-form in R4.

4. Compute the pullback g∗ω for the following examples:

(a) g(u, v) = (cosu, sinu, v) and ω = zdx+ xdy + ydz.

(b) g being the spherical co-ordinate map from (0,∞)× (0, 2π)× (0, π) to R3 and
ω = dx ∧ dy ∧ dz.

5. Suppose U, V,W are open sets in Rn,Rm and Rp respectively. If f : U → V and
g : V →W are smooth functions, then prove that

(g ◦ f)∗ω = (f∗ ◦ g∗)ω.

6. Prove that if U is an open subset of Rn, then dx1∧dx2∧· · · dxn is a nowhere vanishing
form on U.

7. Let U be an open set in Rn. Suppose ω : U → ∪q∈UΛk(Tq(U)) is a map such
that ω(p) ∈ Λk(Tp(U)) for all p ∈ U. Prove that ω ∈ Ωk(U) if and only if for all
X1, X2, · · ·Xk ∈ X(U), the map

ωX1,···Xk : U → R, ωX1,···Xk(x) = ω(x)(X1(x), X2(x), · · ·Xk(x))

is C∞.

1



8. Suppose γ : [a, b] → Rn defines a parametrized 1-surface in Rn and let γ = (γ1, · · · γn).
Let ω =

∑n
i=1 fidxi is a one-form on Rn.

(a) Prove that γ∗(dxi) = γ·idt, where dt denotes the generating one-form on R.
(b) Prove that ∫

γ([a,b])
ω =

n∑
i=1

∫ b

a
(fi ◦ γ)(t)γ·i(t)dt.

9. Let C be the line segment joining (1,−1, 0) and (2, 2, 2) in R3 and let ω = xydz.
Give a suitable parametrization of C and calculate

∫
C ω.

10. Consider the rectangleR = [a, b]×[c, d]. Endow ∂R with the anti-clockwise parametriza-
tion, i.e,

γ(t) = γ1(t), 0 ≤ t < 1

= γ2(t), 1 ≤ t < 2

= γ3(t), 2 ≤ t < 3

= γ4(t), 3 ≤ t < 4,

where

γ1(t) = ((1− t)a+ tb, c)

γ2(t) = (b, (2− t)c+ (t− 1)d)

γ3(t) = ((3− t)b+ (t− 2)a, d)

γ4(t) = (a, (4− t)d+ (t− 3)c).

(a) Compute
∫
∂R fdx+ gdy.

(b) Compute
∫
R dω.

(c) Prove the Green’s theorem for rectangles:

Let R ⊆ R2 be a 2-dimensional rectangle and let ω ∈ Ω1(U), where U is an
open set in R2 containing R. -Then∫

∂R
ω =

∫
R
dω,

where ∂R is given the anticlockwise parametrization.

(d) Prove that the Green’s theorem fails if the boundary ∂R is given a clockwise
parametrization.

11. Consider the trapezium with vertices (a, 0), (b, 0), (e, f), (c, d). . Here, b > a, e > a,
f > 0, c < b and d > 0.

Moreover, let R = [0, 1]× [0, 1].
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(a) Prove that the following equations define a parametrization

γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 : ∂R→ R2

of the boundary of the trapezium.

γ1(t, 0) = (1− t)(a, 0) + t(b, 0)

γ2(1, t) = (1− t)(b, 0) + t(c, d)

γ3(1− t, 1) = (1− t)(c, d) + t(e, f)

γ4(0, 1− t) = (1− t)(e, f) + t(a, 0).

(b) Prove that the interior of R parametrizes the interior of the trapezium by the
equation

ψ(x, y) = (1− x)γ4(0, y) + xγ2(1, y).

(c) Using the Green’s theorem for the rectangle, prove the Green’s theorem for the
trapezium.

(d) Prove Green’s theorem for the closed half-disk {(x, y) ∈ R2 : x ∈ [−1, 1], 0 ≤
y ≤

√
1− x2}.

12. ( Gradient, divergence and curl )

Suppose U is an open set in R3.

(a) If X =
∑3

i=1 fi
∂
∂xi

is a vector field, then the work form associated to X is the
one-form WX on U defined by

WX(p)(v) = ⟨Xp, v⟩ ,

where v ∈ TpU and the inner product is taken in the vector space Tp(U).

Prove that if X =
∑3

i=1 fi
∂
∂xi
, then

WX =

3∑
i=1

fidxi.

(b) The flux form ΦX associated to a vector field X on U is the two-form on U
defined by

ΦX(p)(v, w) = det(Xp, v, w)
t

for all v, w ∈ Tp(U).

Here, (Xp, v, w)
t is the transpose of the matrix (Xp, v, w).

Prove that if if X =
∑3

i=1 fi
∂
∂xi
, then

ΦX = f1dy ∧ dz + f2dz ∧ dx+ f3dx ∧ dy.
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(c) If f ∈ C∞(U) ( i.e, f is a scalar field ), then the mass formMf is the three-form
defined by

Mf (p)(v1, v2, v3) = f(p)det(v1, v2, v3)
t

for all v1, v2, v3 in Tp(U).

Prove that Mf = fdx ∧ dy ∧ dz.
(d) Suppose X,Y ∈ X(U), then prove the following equations:

i. Let X × Y be the vector field on U defined by

(X × Y )(p) = Xp × Yp,

where × denotes the cross-product of two vectors in R3.
Prove that

ΦX×Y =WX ∧WY .

ii. Let X · Y be scalar field on U defined by

(X.Y )(p) = ⟨Xp, Yp⟩ ,

where the inner product has been taken in the vector space Tp(U).
Prove that

MX·Y =WX ∧ ΦY =WY ∧ ΦX .

(e) Now let us recall the definitions of gradient, curl and divergence.

i. The gradient of a scalar field f is defined to be the vector field

∇f =
3∑
i=1

∂f

∂xi

∂

∂xi
.

ii. The curl of a vector field X =
∑3 fi

∂
∂xi

is defined to be the vector field

∇×X = (
∂f3
∂x2

− ∂f2
∂x3

)
∂

∂x1
+ (

∂f1
∂x3

− ∂f3
∂x1

)
∂

∂x2
+ (

∂f2
∂x1

− ∂f1
∂x2

)
∂

∂x3
.

iii. The divergence of a vector-field X ==
∑3 fi

∂
∂xi
, denoted by div(X) is the

scalar field on U defined by

∇.X =
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

.

Now, for f ∈ C∞(U) ( i.e, a scalar field on U ) and a vector field X on U, prove
that

df =W∇f , dWX = Φ∇×X , dΦX =M∇.X .

Observe that these three equations taken together prove that the diagram in
the attached file is commutative.
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(f) Using the commutativity of the above diagram and the relation d2 = 0, prove
that

∇×∇f = 0 = div(∇×X).

(g) If f is a scalar field on U, then the Laplacian of f is defined as ∆f := div∇f.
Prove that

∆f =

3∑
i=1

∂2f

∂x2i
.

13. Suppose (U,ψ) is a parametrized n-surface in Rn+1, where U is an open region and
let N be the orientation vector field along ψ introduced in Assignment 6. Recall
that we defined Vol(ψ(U)) to be the quantity∫

U
det(X1(u1, · · ·un), X2(u1, · · ·un), · · · , Xn(u1, · · ·un), N(u1, · · ·un))tdu1 · · · dun.

(1)

(a) Prove that Vol(ψ(U)) is positive.

(b) Prove that

Vol(ψ(U)) =

∫
U
[det(g(u1, · · ·un))]

1
2du1 · · · dun,

where g(u1, · · ·un) is the Mn(R)-valued function on U whose (i, j)-th entry is
⟨Xi(u1, · · ·un), Xj(u1, · · ·un)⟩ .

(c) Suppose (U,ψ) is a local parametrization of an oriented n-manifold (M,ω) in
Rn+1 where U is an open region. Observe that ψ(U) is also a manifold. Prove
that Vol(ψ(U)) as defined by equation (1) is equal to

∫
U ψ

∗(dvolM ) if (U,ψ) is
positively oriented. Thus, the two definitions of volume agree on the manifold
ψ(U).

(d) In Assignment 7, we computed vol(ψ(U)), where

U = {(θ, ϕ) ∈ R2 : 0 < θ < π
2 , 0 < ϕ < π

2 } and ψ : U → R3 be defined as

ψ(θ, ϕ) = (r cos θ sinϕ, r sin θ sinϕ, r cosϕ).

Now here is a follow up problem:

Construct an orientation form η on S2 such that vol(ψ(U)) is the volume of the
manifold (ψ(U), η).

(e) Suppose γ : [a, b] → R2 define a parametrized 1-surface. Prove that

vol(γ([a, b]) =

∫ b

a
||γ·(t)||dt.

14. Prove that a regular n-level surface in Rn+k is orientable. compute the volume form
corresponding to the orientation form you have constructed.
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15. Suppose f is a real valued smooth function on an open set U in Rn. If ϕ : U → Rn+1

is defined as
ϕ(u1, u2, · · ·un) = (u1, · · ·un, f(u1, · · ·un)),

then prove that

(a) (U, ϕ,Graph(f)) is a parametrized n-surface in Rn+1.

(b) Show that the orientation vector field along ϕ is given by

N =
(− ∂f

∂u1
, · · · ,− ∂f

∂un
, 1)

[1 +
∑n

i=1(
∂f
∂ui

)2]
1
2

.

(c) Compute the volume of Graph(f).

16. Let (U,ψ) be a parametrized 2-surface in R3 and let X1, X2 denote the coordinate
vector fields along ψ. We define three functions E,F,G on U as

E = ⟨X1, X1⟩ , G = ⟨X2, X2⟩ , F = ⟨X1, X2⟩ ,

i.e, for p ∈ U, E(p) = ⟨X1(p), X1(p)⟩Tψ(p)(ψ(U)) , etc.

Then prove that

Vol(ψ(U)) =

∫
U

√
EG(u1, u2)− F 2(u1, u2)du1du2.

17. If S is a regular n-level surface with boundary in Rn+1, then prove that ∂MS is a
disjoint union of regular n− 1 level surfaces in Rn+1.

18. Consider the following subsets of Euclidean spaces:

(a) The closed unit disk in R2.

(b) The set B(a, r) := {x ∈ Rn : ∥x− a∥ ≤ r}.
(c) The closed annulus in R2, i.e, the set {(x, y) ∈ R2 : a ≤ x2+ y2 ≤ b}, where a, b

are two positive real numbers.

Then show that all these subsets have the following property ( for a certain choice
of n in each of the cases ), which we shall call Property ∗ for the moment:

S is a compact regular n-surface with boundary in Rn+1 of the form f−1(0) ∩
(∩ki=1g

−1
i (−∞, ci]) with f : Rn+1 → R defined by f(x1, · · · , xn+1) = xn+1.

Note that if S satisfies property ∗, then S ⊆ Rn × {0}.
In each of the above mentioned examples, identify the manifold boundaries.

19. The following observations are needed in the proof of the divergence theorem:
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(a) Suppose V is a vector space of dimension n and {e1, · · · en} is an orthonormal
basis of V. If X,Y ∈ Λn(V ) are such that X(e1, · · · en) = Y (e1, · · · en), then
prove that X = Y as elements of Λn(V ).

(b) Suppose M is a compact k-manifold in Rn and ω, η are k-forms on M.

Recall that this means that there exists an open set W in Rn which contains
M and that ω, η ∈ Ωk(W ).

Suppose for all x ∈M and for all {v1, · · · vn} in TxM, we have

ω(x)(v1, · · · vn) = η(x)(v1, · · · vn).

Prove that
∫
M ω =

∫
M η.

(c) If S has the property ∗ as in the previous problem, and X is a vector field
defined on an open subset V of Rn containing S, then prove that X can be
extended to a smooth vector field on the set V × R which is an open set in
Rn+1.

(d) Suppose S has the property ∗ as in the previous problem. If x1, · · ·xn, xn+1

denotes the co-ordinates on Rn+1 and the orientation form on Rn is defined to
be dx1 ∧ dx2 ∧ · · · ∧ dxn, then prove that

dvolS = dx1 ∧ dx2 · · · dxn.

(e) Suppose S has the property ∗ as in the previous problem so that we have
dvolS = dx1 ∧ dx2 · · · ∧ dxn. Prove that

ifj ∂
∂xj

(dvolS) = (−1)jfjdx1 ∧ dx2 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn,

where the symbol d̂xj means that dxj is not present in the term.

20. (a) Let V be a 3-dimensional inner product space. Fix two elements v, w in V.
Then prove that there exists a unique vector g(v, w) in V such that for all z in
V, the following equation holds:

⟨g(v, w), z⟩ = det(v, w, z)t.

( Hint: Look at the map

ϕ : V → R, ϕ(z) = det(v, w, z)t.

Observe that ϕ is a linear functional on V. )

(b) Prove that g(v, w) coincides with the cross-product v × w. From now on, we
will drop the symbol g(v, w) and instead continue to denote it as v × w.

(c) From the above-made definition of v×w, prove that det(v, w, v×w)t is always
non-negative. Moreover, prove that v × w is orthogonal to both v and w.
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(d) Now suppose that S is a compact connected regular 2-level surface in R3 and
let n be a nowhere vanishing normal vector field on S. If we orient S by the
vector field n, then prove that for all x ∈ S and for all v, w ∈ TxS,

dvol(x)(v, w) = det(v, w, n(x))t. (2)

(e) Let S be as above. Prove that for all x in S and for all v, w ∈ TxS and for all
z ∈ TxR3, the following equation holds:

⟨z, n(x)⟩dvolS(x)(v, w) = ⟨z, v × w⟩ . (3)

( Hint: Use the equation (2). Remember that v × w is a scalar multiple of
n(x). )

21. Let S be a compact connected regular 2-level surface with boundary in R3. Let

n = n1
∂

∂x
+ n2

∂

∂y
+ n3

∂

∂z

be a unit normal orientation vector field on S.

(a) Prove that the volume form ( should be called the area-form in this case ) is
given by

dvolS = n1dy ∧ dz + n2dz ∧ dx+ n3dx ∧ dy.

( Hint: Let ω = n1dy ∧ dz + n2dz ∧ dx+ n3dx ∧ dy. Observe that it is enough
to prove that if (v, w) = ( ∂∂x ,

∂
∂y ) or (

∂
∂y ,

∂
∂z ) or (

∂
∂z ,

∂
∂x), then

ω(x)(v, w) = dvolS(x)(v, w).

)

(b) Moreover, prove that the following equations hold:

n1dvolS = dy ∧ dz, n2dvolS = dz ∧ dx, n3dvolS = dx ∧ dy. (4)

( Hint: Use (3) with suitable choices of z. Remember that dx∧ dy(v, w) is the
determinant of a 2× 2 minor of a 2× 3 matrix. )

22. Tho goal of this exercise is to derive the classical version of the Stokes’ formula from
the version of the Stokes theorem presented during the lecture.

Let S be a compact connected oriented regular level 2-surface with boundary in R3.
Let X be a vector field on an open set V ′ in R3 such that S ⊆ V ′. Let ∇×X denote
curl(X), N the unit normal vector on S consistent with the orientation and T be
the unique tangent vector field on ∂MS with dvol∂MS(T ) = 1.
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Then the classical Stokes’ formula states that∫
S
⟨∇ ×X,N⟩dvolS =

∫
∂MS

⟨X,T ⟩dvol∂MS . (5)

The classical Stokes’ formula follows by applying the Stokes’ theorem to the work-
form WX associated to the vector field X.

(a) Prove that ∫
S
dWX =

∫
S
⟨∇ ×X,N⟩dvolS .

( Hint: Use the equation (4) from the previous problem. )

(b) Prove that ∫
∂MS

WX =

∫
∂MS

⟨X,T ⟩ dvol∂MS .

( Hint: Remember that ∂MS is a one-manifold. If (U, γ) is a positively oriented
local parametrization of ∂MS, then it is enough to prove that for all smooth
function f such that 0 ≤ f ≤ 1, we have∫

U
f ◦ γ.γ∗(WX) =

∫
U
f ◦ γ ⟨X,T ⟩ ◦ γ.γ∗(dvol∂MS).

)

(c) Now combine the above two statements along with the Stokes theorem to derive
the classical Stokes’ formula (5).

23. Compute the flux of the vector field

X = xz2
∂

∂x
+ yx2

∂

∂y
+ zy2

∂

∂z

outward across the surface x2 + y2 + z2 = a2.

You can use the usual spherical co-ordinate parametrization ψ : (0, π)×(0, 2π) → R3

is defined by
ψ(ϕ, θ) = (a sinϕ cos θ, a sinϕ sin θ, a cosϕ).

24. Consider the two-form ω on R3 defined by:

ω = xzdy ∧ dz + yzdz ∧ dx+ (x2 + y2)dx ∧ dy.

We define a subset Ω of the paraboloid z = 4− x2 − y2 as follows:

Ω = {(x, y, z) ∈ R3 : z = 4− x2 − y2, z ≥ 0}.

We declare the orientation on Ω to be the one which corresponds to the normal
vector field 2x ∂

∂x + 2y ∂
∂y +

∂
∂z . Compute

∫
Ω ω.
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