Assignment 8

1. If V is a vector space of dimension n, then prove that A¥(V) =0 if & > n.

2. (a) Prove that if w is a k-form on an open subset U, k being odd, then w A w = 0.

(b) Suppose the coordinates in R* are given by x1,xa,y1,%2. Consider the 2 form
in R* defined by
w = d(z1) Nd(y1) + d(z2) A d(y2).

Then prove that
wAw=2d(z1) ANd(y1) Ad(x2) Ad(y2)
and hence w A w # 0.

3. Compute the exterior derivative of the following differential forms:

(a) w = e"dx considered as a one-form in R2.
(b) w = 22dx + x?dy + y*dz considered as a one form in R3.

(¢) w = x1w2dx3 A dry considered as a two-form in R*.
4. Compute the pullback g*w for the following examples:

(a) g(u,v) = (cosu,sinu,v) and w = zdz + xdy + ydz.

(b) g being the spherical co-ordinate map from (0, ) x (0,27) x (0,7) to R and
w=dx Ndy ANdz.

5. Suppose U, V,W are open sets in R” R™ and RP respectively. If f: U — V and
g : V — W are smooth functions, then prove that

(go f)'w=(f"og")w.

6. Prove that if U is an open subset of R™, then dx1 AdzsA- - - dx,, is a nowhere vanishing
form on U.

7. Let U be an open set in R™. Suppose w : U — UueyA¥(T,(U)) is a map such
that w(p) € A*(T,(U)) for all p € U. Prove that w € QF(U) if and only if for all
X1, X9, - X € :{(U), the map

WXy 1 U = R, wixyx, (&) = 0(@) (X1 (@), Xa (@), - X))

is C°°.



8. Suppose 7 : [a,b] — R™ defines a parametrized 1-surface in R™ and let v = (71, - - Yn).

Let w =Y, fidz; is a one-form on R™.

(a) Prove that v*(dx;) = ~;dt, where dt denotes the generating one-form on R.
(b) Prove that

/v([a,b]) “T ;/a (fi o) ()i (t)dt.

9. Let C be the line segment joining (1,—1,0) and (2,2,2) in R? and let w = xydz.
Give a suitable parametrization of C' and calculate fcw.

10. Consider the rectangle R = [a, b] X [¢, d]. Endow R with the anti-clockwise parametriza-

tion, i.e,
() = m(), 0<t<1
= ’72(25), 1<t <2
= y(t), 2<t<3
- 74(75)’ 3<t< 4’
where
() = (1 —=t)a+tdb,c)
72(t) = (b,(2—t)c+ (t—1)d)
13(t) = (B—=1)b+ (t —2)a,d)
v(t) = (a,(4—=t)d+ (t —3)c).

(a) Compute [, fdx + gdy.
(b) Compute [ dw.
(c) Prove the Green’s theorem for rectangles:

Let R C R? be a 2-dimensional rectangle and let w € Q!(U), where U is an
open set in R? containing R. -Then

/ w:/dw,
OR R

where OR is given the anticlockwise parametrization.

(d) Prove that the Green’s theorem fails if the boundary OR is given a clockwise
parametrization.

11. Consider the trapezium with vertices (a,0), (b,0), (e, f), (¢,d). . Here, b > a, e > a,
f>0,c<bandd>0.

Moreover, let R = [0,1] x [0, 1].



(a) Prove that the following equations define a parametrization
V=7 UypUy U7 : OR — R?

of the boundary of the trapezium.

1(0) = (1-1)(a0) +1(b,0)

1o(11) = (1-1)(5,0) + tc,d)
s —61) = (1= 0)(e,d) +He, /)
v4(0,1—¢t) = (1—t)(e, f)+t(a,0).

(b) Prove that the interior of R parametrizes the interior of the trapezium by the
equation
Y(z,y) = (1 - 2)74(0,y) + 272(1, y).

(c) Using the Green’s theorem for the rectangle, prove the Green’s theorem for the
trapezium.

(d) Prove Green’s theorem for the closed half-disk {(z,y) € R? : z € [-1,1],0 <

y<v1-a?}
12. ( Gradient, divergence and curl )

Suppose U is an open set in R3.

a) If X = 3: f;-2- is a vector field, then the work form associated to X is the
i=1J9gx;
one-form Wx on U defined by

WX(p)(U) = <Xp7 'U) )

where v € T,U and the inner product is taken in the vector space T,,(U).
Prove that if X = Z?:l fia%iv then

3
Wx = Z fidx;.
=1

(b) The flux form ®x associated to a vector field X on U is the two-form on U
defined by
Dx(p)(v,w) = det(Xp, v, w)"
for all v,w € T,(U).
Here, (X,,v,w)" is the transpose of the matrix (X,, v, w).
Prove that if if X =), fiz2-, then

Ox = frdy Ndz + fadz Adx + fsdx A dy.



(c) If f € C®(U) (i, fisascalar field ), then the mass form Mj is the three-form

defined by
Mg (p)(v1,va,v3) = f(p)det(vi,va, v3)"

for all vy, va, vz in T(U).
Prove that My = fdx Ady A dz.
(d) Suppose X,Y € X(U), then prove the following equations:

i. Let X x Y be the vector field on U defined by
(X xY)(p) = Xp XYy,

where x denotes the cross-product of two vectors in R>.

Prove that
Py = Wx AWy

ii. Let X -Y be scalar field on U defined by
(X.Y)(p) = (Xp,Yp)

where the inner product has been taken in the vector space T},(U).

Prove that
Mxy =Wx AN®y =Wy APx.

(e) Now let us recall the definitions of gradient, curl and divergence.

i. The gradient of a scalar field f is defined to be the vector field
S af 9

ii. The curl of a vector field X = $7° fia%i is defined to be the vector field

_Ofs Ofs, @ Ofh Ofs. 0 _ Ofs Ofi. D
VXX = (8$2 8x3 8331 + 8%3 8%1 8%2 axl 81‘2 81‘3.

iii. The divergence of a vector-field X == $* fia%i’ denoted by div(X) is the
scalar field on U defined by

ofi  0fy  Ofs
X ="+ == 4 ==,
v 8.731 + 8332 + (9:133

Now, for f € C*(U) ( i.e, a scalar field on U ) and a vector field X on U, prove
that

df = Wy, dWx = ®yyxx, dPx = My x.

Observe that these three equations taken together prove that the diagram in
the attached file is commutative.



(f)

(g)

Using the commutativity of the above diagram and the relation d> = 0, prove
that
VxVf=0=div(V x X).

If f is a scalar field on U, then the Laplacian of f is defined as Af := divVf.

Prove that ;
0% f
Af = —.
/ ; 335@2

13. Suppose (U, 1) is a parametrized n-surface in R"*!, where U is an open region and
let N be the orientation vector field along v introduced in Assignment 6. Recall
that we defined Vol(¢(U)) to be the quantity

/ det(Xl(Ul, T un)7X2(u17 T un)7 e 7Xn(ul7 T un)7 N(U’l? T un))tdul e du?’L'
U

(a)
(b)

()

(1)

Prove that Vol(y(U)) is positive.
Prove that

Vol(i(U)) = /U (det(gur, - wn)) s - - dun,

where g(uq,---uy,) is the M, (R)-valued function on U whose (i,7)-th entry is
(Xi(ut, - up)s Xjur, - un)) .

Suppose (U, 1) is a local parametrization of an oriented n-manifold (M,w) in
R™*! where U is an open region. Observe that ¢)(U) is also a manifold. Prove
that Vol((U)) as defined by equation (1) is equal to [;; ¥*(dvolas) if (U, ) is
positively oriented. Thus, the two definitions of volume agree on the manifold
$(U).

In Assignment 7, we computed vol(¢(U)), where
U:{(0,¢)€R2:0<9<%,0<¢<§} and 1 : U — R? be defined as

Y(0,¢) = (r cos @ sin ¢, rsin O sin ¢, r cos ¢).

Now here is a follow up problem:

Construct an orientation form 7 on S? such that vol(y(U)) is the volume of the
manifold (¢(U),n).

Suppose 7 : [a,b] — R? define a parametrized 1-surface. Prove that

b
vol(y([a, b]) = / Iy (&)t

14. Prove that a regular n-level surface in R** is orientable. compute the volume form
corresponding to the orientation form you have constructed.



15. Suppose f is a real valued smooth function on an open set U in R™. If ¢ : U — R**!
is defined as

¢(U1,’LL2, o un) = (Ul, cr o Up, f(uly o un))7
then prove that

(a) (U, ¢, Graph(f)) is a parametrized n-surface in R" 1.
(b) Show that the orientation vector field along ¢ is given by

of of
v o T Y

L+ 30, (22

(c) Compute the volume of Graph(f).

16. Let (U,%) be a parametrized 2-surface in R? and let X1, X5 denote the coordinate
vector fields along 1. We define three functions F, F,G on U as

E=(X1,X1),G= (X2, X9),F = (X1,Xy),

i'e) for pe U, E(p) = <X1(p)7Xl(p)>T¢(p)(1j)(U)) , ete.
Then prove that

Vol(z/J(U))—/U\/EG(ul,uQ)—F2(u1,u2)du1duQ.

17. If S is a regular n-level surface with boundary in R”*!, then prove that 9;/9 is a
disjoint union of regular n — 1 level surfaces in R*+1.

18. Consider the following subsets of Euclidean spaces:

(a) The closed unit disk in R.

(b) The set B(a,r):={z € R": ||z —al <r}.

(c) The closed annulus in R? i.e, the set {(z,y) € R? : a < 2% +5? < b}, where a,b
are two positive real numbers.

Then show that all these subsets have the following property ( for a certain choice
of n in each of the cases ), which we shall call Property x for the moment:

S is a compact regular n-surface with boundary in R™' of the form f~1(0) N
(ME_ g, (=00, cil) with f: R™™ — R defined by f(x1,- -+, Tn11) = Tni1.

Note that if S satisfies property *, then S C R™ x {0}.

In each of the above mentioned examples, identify the manifold boundaries.

19. The following observations are needed in the proof of the divergence theorem:



20.

(a)

(b)

Suppose V is a vector space of dimension n and {ej,---e,} is an orthonormal
basis of V. If X, Y € A™(V) are such that X(ej,---e,) = Y(e1,---e,), then
prove that X =Y as elements of A"(V).

Suppose M is a compact k-manifold in R™ and w,n are k-forms on M.

Recall that this means that there exists an open set W in R™ which contains
M and that w,n € QF(W).

Suppose for all z € M and for all {vy,---v,} in T, M, we have

w(@)(v1,---vn) = () (01, vp).

Prove that [, w= [}, 7.

If S has the property * as in the previous problem, and X is a vector field
defined on an open subset V of R™ containing S, then prove that X can be

extended to a smooth vector field on the set V' x R which is an open set in
R+,

Suppose S has the property * as in the previous problem. If xy,---xn, Tpi1
denotes the co-ordinates on R”*! and the orientation form on R” is defined to
be dxy A dxo A --- A dx,, then prove that

dvolg = dxq Adxs - - - dx,.

Suppose S has the property * as in the previous problem so that we have
dvolg = dx1 Adzs - - - A dz,. Prove that

ip o (dvolg) = (=1) fidwy Adzg A+ Aduj A+ Aday,

]B:L'J

where the symbol g;y means that dz; is not present in the term.

Let V be a 3-dimensional inner product space. Fix two elements v,w in V.
Then prove that there exists a unique vector g(v,w) in V such that for all z in
V, the following equation holds:

<g(v,w),z> = det(v,w,z)t.
( Hint: Look at the map
¢:V =R, ¢(2) = det(v,w, 2)".

Observe that ¢ is a linear functional on V. )

Prove that g(v,w) coincides with the cross-product v x w. From now on, we
will drop the symbol g(v,w) and instead continue to denote it as v x w.

From the above-made definition of v x w, prove that det(v,w,v x w) is always
non-negative. Moreover, prove that v x w is orthogonal to both v and w.



(d) Now suppose that S is a compact connected regular 2-level surface in R and
let n be a nowhere vanishing normal vector field on S. If we orient S by the
vector field n, then prove that for all z € S and for all v,w € TS,

dvol(z) (v, w) = det (v, w, n(x))". (2)

(e) Let S be as above. Prove that for all z in S and for all v,w € T,S and for all
z € T,R3, the following equation holds:

(z,n(z)) dvolg(x)(v,w) = (z,v X w) . (3)
( Hint: Use the equation (2). Remember that v x w is a scalar multiple of
n(z).)
21. Let S be a compact connected regular 2-level surface with boundary in R3. Let

0 0
n=n1z—+nN27 +N35-

ox oy 0z
be a unit normal orientation vector field on S.
(a) Prove that the volume form ( should be called the area-form in this case ) is
given by
dvolg = nidy A dz + nadz A dz + n3dx A dy.

( Hint: Let w = n1dy A dz + nadz A dx + nzdx A dy. Observe that it is enough
: 0 0 o 0 g 0
to prove that if (v, w) = (77, 5;) or (75, 5;) or (37, 57), then

w(z)(v,w) = dvolg(x) (v, w).

)

(b) Moreover, prove that the following equations hold:
nidvolg = dy A dz, nadvolg = dz A dz, ngdvolg = dx A dy. (4)

( Hint: Use (3) with suitable choices of z. Remember that dz A dy(v, w) is the
determinant of a 2 x 2 minor of a 2 x 3 matrix. )

22. Tho goal of this exercise is to derive the classical version of the Stokes’ formula from
the version of the Stokes theorem presented during the lecture.

Let S be a compact connected oriented regular level 2-surface with boundary in R3.
Let X be a vector field on an open set V’ in R? such that S C V’. Let V x X denote
curl(X), N the unit normal vector on S consistent with the orientation and 7" be
the unique tangent vector field on dpsS with dvoly,,s(T") = 1.



Then the classical Stokes’ formula states that

/ (V % X, N) dvols = / (X,T) dvoly, 5. (5)
S oS

The classical Stokes’ formula follows by applying the Stokes’ theorem to the work-
form W associated to the vector field X.

(a) Prove that
/dWX = / (V x X, N)dvolg.
S S
( Hint: Use the equation (4) from the previous problem. )
(b) Prove that
WX = / <X, T> dVOlaMs.
om S S
( Hint: Remember that 0575 is a one-manifold. If (U, ) is a positively oriented

local parametrization of dps.S, then it is enough to prove that for all smooth
function f such that 0 < f < 1, we have

/ foyy (Wx) = / foy(X,T)o~~y"(dvoly,,s)-
U U

)

(¢c) Now combine the above two statements along with the Stokes theorem to derive
the classical Stokes’ formula (5).

23. Compute the flux of the vector field

0 0
X = 2222 2 YV 2 ¢
Tz 8$+y:c ay—i—zy g

outward across the surface 22 + 3% + 22 = a?.

You can use the usual spherical co-ordinate parametrization ¢ : (0, 7) x (0, 27) — R3
is defined by
Y(¢,0) = (asin @ cos @, asin ¢sin b, acos @).

24. Consider the two-form w on R? defined by:
w = zzdy A dz + yzdz A de + (2* + y?)dz A dy.
We define a subset Q of the paraboloid z = 4 — 22 — y? as follows:
Q={(z,y,2) eR3: z=4—2% — 32 2> 0}.

We declare the orientation on {2 to be the one which corresponds to the normal
vector field 233% + Zya% + %. Compute [, w.



