

Assignment 8

1. If V is a vector space of dimension n , then prove that $\Lambda^k(V) = 0$ if $k > n$.
2. (a) Prove that if ω is a k -form on an open subset U , k being odd, then $\omega \wedge \omega = 0$.
(b) Suppose the coordinates in \mathbb{R}^4 are given by x_1, x_2, y_1, y_2 . Consider the 2 form in \mathbb{R}^4 defined by

$$\omega = d(x_1) \wedge d(y_1) + d(x_2) \wedge d(y_2).$$

Then prove that

$$\omega \wedge \omega = 2d(x_1) \wedge d(y_1) \wedge d(x_2) \wedge d(y_2)$$

and hence $\omega \wedge \omega \neq 0$.

3. Compute the exterior derivative of the following differential forms:

- (a) $\omega = e^{xy}dx$ considered as a one-form in \mathbb{R}^2 .
- (b) $\omega = z^2dx + x^2dy + y^2dz$ considered as a one form in \mathbb{R}^3 .
- (c) $\omega = x_1x_2dx_3 \wedge dx_4$ considered as a two-form in \mathbb{R}^4 .

4. Compute the pullback $g^*\omega$ for the following examples:

- (a) $g(u, v) = (\cos u, \sin u, v)$ and $\omega = zdx + xdy + ydz$.
- (b) g being the spherical co-ordinate map from $(0, \infty) \times (0, 2\pi) \times (0, \pi)$ to \mathbb{R}^3 and $\omega = dx \wedge dy \wedge dz$.

5. Suppose U, V, W are open sets in $\mathbb{R}^n, \mathbb{R}^m$ and \mathbb{R}^p respectively. If $f : U \rightarrow V$ and $g : V \rightarrow W$ are smooth functions, then prove that

$$(g \circ f)^* \omega = (f^* \circ g^*) \omega.$$

6. Prove that if U is an open subset of \mathbb{R}^n , then $dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n$ is a nowhere vanishing form on U .

7. Let U be an open set in \mathbb{R}^n . Suppose $\omega : U \rightarrow \bigcup_{q \in U} \Lambda^k(T_q(U))$ is a map such that $\omega(p) \in \Lambda^k(T_p(U))$ for all $p \in U$. Prove that $\omega \in \Omega^k(U)$ if and only if for all $X_1, X_2, \dots, X_k \in \mathfrak{X}(U)$, the map

$$\omega_{X_1, \dots, X_k} : U \rightarrow \mathbb{R}, \quad \omega_{X_1, \dots, X_k}(x) = \omega(x)(X_1(x), X_2(x), \dots, X_k(x))$$

is C^∞ .

8. Suppose $\gamma : [a, b] \rightarrow \mathbb{R}^n$ defines a parametrized 1-surface in \mathbb{R}^n and let $\gamma = (\gamma_1, \dots, \gamma_n)$.

Let $\omega = \sum_{i=1}^n f_i dx_i$ is a one-form on \mathbb{R}^n .

(a) Prove that $\gamma^*(dx_i) = \gamma_i^* dt$, where dt denotes the generating one-form on \mathbb{R} .

(b) Prove that

$$\int_{\gamma([a, b])} \omega = \sum_{i=1}^n \int_a^b (f_i \circ \gamma)(t) \gamma_i^*(t) dt.$$

9. Let C be the line segment joining $(1, -1, 0)$ and $(2, 2, 2)$ in \mathbb{R}^3 and let $\omega = xy dz$. Give a suitable parametrization of C and calculate $\int_C \omega$.

10. Consider the rectangle $R = [a, b] \times [c, d]$. Endow ∂R with the anti-clockwise parametrization, i.e,

$$\begin{aligned} \gamma(t) &= \gamma_1(t), \quad 0 \leq t < 1 \\ &= \gamma_2(t), \quad 1 \leq t < 2 \\ &= \gamma_3(t), \quad 2 \leq t < 3 \\ &= \gamma_4(t), \quad 3 \leq t < 4, \end{aligned}$$

where

$$\begin{aligned} \gamma_1(t) &= ((1-t)a + tb, c) \\ \gamma_2(t) &= (b, (2-t)c + (t-1)d) \\ \gamma_3(t) &= ((3-t)b + (t-2)a, d) \\ \gamma_4(t) &= (a, (4-t)d + (t-3)c). \end{aligned}$$

(a) Compute $\int_{\partial R} f dx + g dy$.

(b) Compute $\int_R d\omega$.

(c) Prove the Green's theorem for rectangles:

Let $R \subseteq \mathbb{R}^2$ be a 2-dimensional rectangle and let $\omega \in \Omega^1(U)$, where U is an open set in \mathbb{R}^2 containing R . -Then

$$\int_{\partial R} \omega = \int_R d\omega,$$

where ∂R is given the anticlockwise parametrization.

(d) Prove that the Green's theorem fails if the boundary ∂R is given a clockwise parametrization.

11. Consider the trapezium with vertices $(a, 0), (b, 0), (e, f), (c, d)$. Here, $b > a, e > a, f > 0, c < b$ and $d > 0$.

Moreover, let $R = [0, 1] \times [0, 1]$.

(a) Prove that the following equations define a parametrization

$$\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4 : \partial R \rightarrow \mathbb{R}^2$$

of the boundary of the trapezium.

$$\begin{aligned}\gamma_1(t, 0) &= (1-t)(a, 0) + t(b, 0) \\ \gamma_2(1, t) &= (1-t)(b, 0) + t(c, d) \\ \gamma_3(1-t, 1) &= (1-t)(c, d) + t(e, f) \\ \gamma_4(0, 1-t) &= (1-t)(e, f) + t(a, 0).\end{aligned}$$

(b) Prove that the interior of R parametrizes the interior of the trapezium by the equation

$$\psi(x, y) = (1-x)\gamma_4(0, y) + x\gamma_2(1, y).$$

(c) Using the Green's theorem for the rectangle, prove the Green's theorem for the trapezium.

(d) Prove Green's theorem for the closed half-disk $\{(x, y) \in \mathbb{R}^2 : x \in [-1, 1], 0 \leq y \leq \sqrt{1-x^2}\}$.

12. (Gradient, divergence and curl)

Suppose U is an open set in \mathbb{R}^3 .

(a) If $X = \sum_{i=1}^3 f_i \frac{\partial}{\partial x_i}$ is a vector field, then the work form associated to X is the one-form W_X on U defined by

$$W_X(p)(v) = \langle X_p, v \rangle,$$

where $v \in T_p U$ and the inner product is taken in the vector space $T_p(U)$.

Prove that if $X = \sum_{i=1}^3 f_i \frac{\partial}{\partial x_i}$, then

$$W_X = \sum_{i=1}^3 f_i dx_i.$$

(b) The flux form Φ_X associated to a vector field X on U is the two-form on U defined by

$$\Phi_X(p)(v, w) = \det(X_p, v, w)^t$$

for all $v, w \in T_p(U)$.

Here, $(X_p, v, w)^t$ is the transpose of the matrix (X_p, v, w) .

Prove that if $X = \sum_{i=1}^3 f_i \frac{\partial}{\partial x_i}$, then

$$\Phi_X = f_1 dy \wedge dz + f_2 dz \wedge dx + f_3 dx \wedge dy.$$

(c) If $f \in C^\infty(U)$ (i.e, f is a scalar field), then the mass form M_f is the three-form defined by

$$M_f(p)(v_1, v_2, v_3) = f(p) \det(v_1, v_2, v_3)^t$$

for all v_1, v_2, v_3 in $T_p(U)$.

Prove that $M_f = f dx \wedge dy \wedge dz$.

(d) Suppose $X, Y \in \mathfrak{X}(U)$, then prove the following equations:

i. Let $X \times Y$ be the vector field on U defined by

$$(X \times Y)(p) = X_p \times Y_p,$$

where \times denotes the cross-product of two vectors in \mathbb{R}^3 .

Prove that

$$\Phi_{X \times Y} = W_X \wedge W_Y.$$

ii. Let $X \cdot Y$ be scalar field on U defined by

$$(X \cdot Y)(p) = \langle X_p, Y_p \rangle,$$

where the inner product has been taken in the vector space $T_p(U)$.

Prove that

$$M_{X \cdot Y} = W_X \wedge \Phi_Y = W_Y \wedge \Phi_X.$$

(e) Now let us recall the definitions of gradient, curl and divergence.

i. The gradient of a scalar field f is defined to be the vector field

$$\nabla f = \sum_{i=1}^3 \frac{\partial f}{\partial x_i} \frac{\partial}{\partial x_i}.$$

ii. The curl of a vector field $X = \sum^3 f_i \frac{\partial}{\partial x_i}$ is defined to be the vector field

$$\nabla \times X = \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3} \right) \frac{\partial}{\partial x_1} + \left(\frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1} \right) \frac{\partial}{\partial x_2} + \left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2} \right) \frac{\partial}{\partial x_3}.$$

iii. The divergence of a vector-field $X = \sum^3 f_i \frac{\partial}{\partial x_i}$, denoted by $\text{div}(X)$ is the scalar field on U defined by

$$\nabla \cdot X = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_3}{\partial x_3}.$$

Now, for $f \in C^\infty(U)$ (i.e, a scalar field on U) and a vector field X on U , prove that

$$df = W_{\nabla f}, \quad dW_X = \Phi_{\nabla \times X}, \quad d\Phi_X = M_{\nabla \cdot X}.$$

Observe that these three equations taken together prove that the diagram in the attached file is commutative.

(f) Using the commutativity of the above diagram and the relation $d^2 = 0$, prove that

$$\nabla \times \nabla f = 0 = \operatorname{div}(\nabla \times X).$$

(g) If f is a scalar field on U , then the Laplacian of f is defined as $\Delta f := \operatorname{div} \nabla f$. Prove that

$$\Delta f = \sum_{i=1}^3 \frac{\partial^2 f}{\partial x_i^2}.$$

13. Suppose (U, ψ) is a parametrized n -surface in \mathbb{R}^{n+1} , where U is an open region and let N be the orientation vector field along ψ introduced in Assignment 6. Recall that we defined $\operatorname{Vol}(\psi(U))$ to be the quantity

$$\int_U \det(X_1(u_1, \dots, u_n), X_2(u_1, \dots, u_n), \dots, X_n(u_1, \dots, u_n), N(u_1, \dots, u_n))^t du_1 \dots du_n. \quad (1)$$

(a) Prove that $\operatorname{Vol}(\psi(U))$ is positive.

(b) Prove that

$$\operatorname{Vol}(\psi(U)) = \int_U [\det(g(u_1, \dots, u_n))]^{\frac{1}{2}} du_1 \dots du_n,$$

where $g(u_1, \dots, u_n)$ is the $M_n(\mathbb{R})$ -valued function on U whose (i, j) -th entry is $\langle X_i(u_1, \dots, u_n), X_j(u_1, \dots, u_n) \rangle$.

(c) Suppose (U, ψ) is a local parametrization of an oriented n -manifold (M, ω) in \mathbb{R}^{n+1} where U is an open region. Observe that $\psi(U)$ is also a manifold. Prove that $\operatorname{Vol}(\psi(U))$ as defined by equation (1) is equal to $\int_U \psi^*(d\operatorname{vol}_M)$ if (U, ψ) is positively oriented. Thus, the two definitions of volume agree on the manifold $\psi(U)$.

(d) In Assignment 7, we computed $\operatorname{vol}(\psi(U))$, where

$U = \{(\theta, \phi) \in \mathbb{R}^2 : 0 < \theta < \frac{\pi}{2}, 0 < \phi < \frac{\pi}{2}\}$ and $\psi : U \rightarrow \mathbb{R}^3$ be defined as

$$\psi(\theta, \phi) = (r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi).$$

Now here is a follow up problem:

Construct an orientation form η on S^2 such that $\operatorname{vol}(\psi(U))$ is the volume of the manifold $(\psi(U), \eta)$.

(e) Suppose $\gamma : [a, b] \rightarrow \mathbb{R}^2$ define a parametrized 1-surface. Prove that

$$\operatorname{vol}(\gamma([a, b])) = \int_a^b \|\dot{\gamma}(t)\| dt.$$

14. Prove that a regular n -level surface in \mathbb{R}^{n+k} is orientable. compute the volume form corresponding to the orientation form you have constructed.

15. Suppose f is a real valued smooth function on an open set U in \mathbb{R}^n . If $\phi : U \rightarrow \mathbb{R}^{n+1}$ is defined as

$$\phi(u_1, u_2, \dots, u_n) = (u_1, \dots, u_n, f(u_1, \dots, u_n)),$$

then prove that

(a) $(U, \phi, \text{Graph}(f))$ is a parametrized n -surface in \mathbb{R}^{n+1} .
 (b) Show that the orientation vector field along ϕ is given by

$$N = \frac{(-\frac{\partial f}{\partial u_1}, \dots, -\frac{\partial f}{\partial u_n}, 1)}{[1 + \sum_{i=1}^n (\frac{\partial f}{\partial u_i})^2]^{\frac{1}{2}}}.$$

(c) Compute the volume of $\text{Graph}(f)$.

16. Let (U, ψ) be a parametrized 2-surface in \mathbb{R}^3 and let X_1, X_2 denote the coordinate vector fields along ψ . We define three functions E, F, G on U as

$$E = \langle X_1, X_1 \rangle, G = \langle X_2, X_2 \rangle, F = \langle X_1, X_2 \rangle,$$

i.e, for $p \in U$, $E(p) = \langle X_1(p), X_1(p) \rangle_{T_{\psi(p)}(\psi(U))}$, etc.

Then prove that

$$\text{Vol}(\psi(U)) = \int_U \sqrt{EG(u_1, u_2) - F^2(u_1, u_2)} du_1 du_2.$$

17. If S is a regular n -level surface with boundary in \mathbb{R}^{n+1} , then prove that $\partial_M S$ is a disjoint union of regular $n-1$ level surfaces in \mathbb{R}^{n+1} .

18. Consider the following subsets of Euclidean spaces:

(a) The closed unit disk in \mathbb{R}^2 .
 (b) The set $\overline{B(a, r)} := \{x \in \mathbb{R}^n : \|x - a\| \leq r\}$.
 (c) The closed annulus in \mathbb{R}^2 , i.e, the set $\{(x, y) \in \mathbb{R}^2 : a \leq x^2 + y^2 \leq b\}$, where a, b are two positive real numbers.

Then show that all these subsets have the following property (for a certain choice of n in each of the cases), which we shall call **Property *** for the moment:

S is a compact regular n-surface with boundary in \mathbb{R}^{n+1} of the form $f^{-1}(0) \cap (\cap_{i=1}^k g_i^{-1}(-\infty, c_i])$ with $f : \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ defined by $f(x_1, \dots, x_{n+1}) = x_{n+1}$.

Note that if S satisfies property $*$, then $S \subseteq \mathbb{R}^n \times \{0\}$.

In each of the above mentioned examples, identify the manifold boundaries.

19. The following observations are needed in the proof of the divergence theorem:

(a) Suppose V is a vector space of dimension n and $\{e_1, \dots, e_n\}$ is an orthonormal basis of V . If $X, Y \in \Lambda^n(V)$ are such that $X(e_1, \dots, e_n) = Y(e_1, \dots, e_n)$, then prove that $X = Y$ as elements of $\Lambda^n(V)$.

(b) Suppose M is a compact k -manifold in \mathbb{R}^n and ω, η are k -forms on M .

Recall that this means that there exists an open set W in \mathbb{R}^n which contains M and that $\omega, \eta \in \Omega^k(W)$.

Suppose for all $x \in M$ and for all $\{v_1, \dots, v_n\}$ in $T_x M$, we have

$$\omega(x)(v_1, \dots, v_n) = \eta(x)(v_1, \dots, v_n).$$

Prove that $\int_M \omega = \int_M \eta$.

(c) If S has the property $*$ as in the previous problem, and X is a vector field defined on an open subset V of \mathbb{R}^n containing S , then prove that X can be extended to a smooth vector field on the set $V \times \mathbb{R}$ which is an open set in \mathbb{R}^{n+1} .

(d) Suppose S has the property $*$ as in the previous problem. If x_1, \dots, x_n, x_{n+1} denotes the co-ordinates on \mathbb{R}^{n+1} and the orientation form on \mathbb{R}^n is defined to be $dx_1 \wedge dx_2 \wedge \dots \wedge dx_n$, then prove that

$$d\text{vol}_S = dx_1 \wedge dx_2 \wedge \dots \wedge dx_n.$$

(e) Suppose S has the property $*$ as in the previous problem so that we have $d\text{vol}_S = dx_1 \wedge dx_2 \wedge \dots \wedge dx_n$. Prove that

$$i_{f_j \frac{\partial}{\partial x_j}} (d\text{vol}_S) = (-1)^j f_j dx_1 \wedge dx_2 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_n,$$

where the symbol $\widehat{dx_j}$ means that dx_j is not present in the term.

20. (a) Let V be a 3-dimensional inner product space. Fix two elements v, w in V . Then prove that there exists a unique vector $g(v, w)$ in V such that for all z in V , the following equation holds:

$$\langle g(v, w), z \rangle = \det(v, w, z)^t.$$

(**Hint:** Look at the map

$$\phi : V \rightarrow \mathbb{R}, \phi(z) = \det(v, w, z)^t.$$

Observe that ϕ is a linear functional on V .)

(b) Prove that $g(v, w)$ coincides with the cross-product $v \times w$. From now on, we will drop the symbol $g(v, w)$ and instead continue to denote it as $v \times w$.

(c) From the above-made definition of $v \times w$, prove that $\det(v, w, v \times w)^t$ is always non-negative. Moreover, prove that $v \times w$ is orthogonal to both v and w .

(d) Now suppose that S is a compact connected regular 2-level surface in \mathbb{R}^3 and let n be a nowhere vanishing normal vector field on S . If we orient S by the vector field n , then prove that for all $x \in S$ and for all $v, w \in T_x S$,

$$d\text{vol}(x)(v, w) = \det(v, w, n(x))^t. \quad (2)$$

(e) Let S be as above. Prove that for all x in S and for all $v, w \in T_x S$ and for all $z \in T_x \mathbb{R}^3$, the following equation holds:

$$\langle z, n(x) \rangle d\text{vol}_S(x)(v, w) = \langle z, v \times w \rangle. \quad (3)$$

(**Hint:** Use the equation (2). Remember that $v \times w$ is a scalar multiple of $n(x)$.)

21. Let S be a compact connected regular 2-level surface with boundary in \mathbb{R}^3 . Let

$$n = n_1 \frac{\partial}{\partial x} + n_2 \frac{\partial}{\partial y} + n_3 \frac{\partial}{\partial z}$$

be a unit normal orientation vector field on S .

(a) Prove that the volume form (should be called the area-form in this case) is given by

$$d\text{vol}_S = n_1 dy \wedge dz + n_2 dz \wedge dx + n_3 dx \wedge dy.$$

(**Hint:** Let $\omega = n_1 dy \wedge dz + n_2 dz \wedge dx + n_3 dx \wedge dy$. Observe that it is enough to prove that if $(v, w) = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y})$ or $(\frac{\partial}{\partial y}, \frac{\partial}{\partial z})$ or $(\frac{\partial}{\partial z}, \frac{\partial}{\partial x})$, then

$$\omega(x)(v, w) = d\text{vol}_S(x)(v, w).$$

)

(b) Moreover, prove that the following equations hold:

$$n_1 d\text{vol}_S = dy \wedge dz, \quad n_2 d\text{vol}_S = dz \wedge dx, \quad n_3 d\text{vol}_S = dx \wedge dy. \quad (4)$$

(**Hint:** Use (3) with suitable choices of z . Remember that $dx \wedge dy(v, w)$ is the determinant of a 2×2 minor of a 2×3 matrix.)

22. The goal of this exercise is to derive the classical version of the Stokes' formula from the version of the Stokes theorem presented during the lecture.

Let S be a compact connected oriented regular level 2-surface with boundary in \mathbb{R}^3 . Let X be a vector field on an open set V' in \mathbb{R}^3 such that $S \subseteq V'$. Let $\nabla \times X$ denote $\text{curl}(X)$, N the unit normal vector on S consistent with the orientation and T be the unique tangent vector field on $\partial_M S$ with $d\text{vol}_{\partial_M S}(T) = 1$.

Then the classical Stokes' formula states that

$$\int_S \langle \nabla \times X, N \rangle \, d\text{vol}_S = \int_{\partial_M S} \langle X, T \rangle \, d\text{vol}_{\partial_M S}. \quad (5)$$

The classical Stokes' formula follows by applying the Stokes' theorem to the work-form W_X associated to the vector field X .

(a) Prove that

$$\int_S dW_X = \int_S \langle \nabla \times X, N \rangle \, d\text{vol}_S.$$

(**Hint:** Use the equation (4) from the previous problem.)

(b) Prove that

$$\int_{\partial_M S} W_X = \int_{\partial_M S} \langle X, T \rangle \, d\text{vol}_{\partial_M S}.$$

(**Hint:** Remember that $\partial_M S$ is a one-manifold. If (U, γ) is a positively oriented local parametrization of $\partial_M S$, then it is enough to prove that for all smooth function f such that $0 \leq f \leq 1$, we have

$$\int_U f \circ \gamma \cdot \gamma^*(W_X) = \int_U f \circ \gamma \langle X, T \rangle \circ \gamma \cdot \gamma^*(d\text{vol}_{\partial_M S}).$$

)

(c) Now combine the above two statements along with the Stokes theorem to derive the classical Stokes' formula (5).

23. Compute the flux of the vector field

$$X = xz^2 \frac{\partial}{\partial x} + yx^2 \frac{\partial}{\partial y} + zy^2 \frac{\partial}{\partial z}$$

outward across the surface $x^2 + y^2 + z^2 = a^2$.

You can use the usual spherical co-ordinate parametrization $\psi : (0, \pi) \times (0, 2\pi) \rightarrow \mathbb{R}^3$ is defined by

$$\psi(\phi, \theta) = (a \sin \phi \cos \theta, a \sin \phi \sin \theta, a \cos \phi).$$

24. Consider the two-form ω on \mathbb{R}^3 defined by:

$$\omega = xzdy \wedge dz + yzdz \wedge dx + (x^2 + y^2)dx \wedge dy.$$

We define a subset Ω of the paraboloid $z = 4 - x^2 - y^2$ as follows:

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : z = 4 - x^2 - y^2, z \geq 0\}.$$

We declare the orientation on Ω to be the one which corresponds to the normal vector field $2x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$. Compute $\int_{\Omega} \omega$.