
M. Math. Measure Theory
Problems and complements 1

1. Let A be the set of rational numbers between 0 and 1, and let {In} be a finite collection of open intervals
covering A. The show that

∑
l(In) ≥ 1.

2. Given any set A and any ϵ > 0, show that there is an open set O such that A ⊂ O and m⋆(O) ≤ m⋆(A)+ϵ.
(Sketch: take A ⊂ ∪Ij ,

∑
l(Ij) ≤ m⋆(A) + ϵ. But clearly for O = ∪Ij ,m⋆(O) ≤

∑
l(Ij), why? You may

also increase each interval by ϵ/2j and proceed. What if m⋆(A) = ∞?)

3. Prove that m⋆ is translation invariant.

4. Prove that if m⋆(A) = 0, then m⋆(A ∪B) = m⋆(B).

5. Show that if E is a measurable set then each translate E + y of E is also measurable.

6. Show that if E1 and E2 are measurable then m(E1 ∪ E2) +m(E1 ∩ E1) = m(E1) +m(E2).

7. Give a decreasing sequence {En} of measurable sets with ϕ =
⋂
En and m(En) = ∞ for all n.

8. Let {Ei} be a sequence disjoint measurable sets and A any set. Then show that m⋆(A ∩ ∪∞
i=1Ei) =∑∞

i=1m
⋆(A ∩ Ei).

9. Consider [0, 1]. Remove the middle third (1/3, 2/3). Then from each of the remaining intervals remove the
middle thirds, i.e. remove (1/9, 2/9) and (7/9, 8/9), and so on. The limiting set left is called the Cantor
set C. The ternary expansion of any number in C has only 0 and 2 for its digits. (a) Uniqueness? Some
rationals in this type of expansion (on entire [0, 1]) may have two expressions, e.g. .1 and .022 . . .. (b)
Show that C can be put into a one to one correspondence with [0, 1] so that its cardinality is c. (c) Is C
a Borel set? (d) Show that C has measure zero. Thus there are uncountable sets with measure zero.

10. A set which is a countable union of closed sets is called an Fσ. A set which is a countable intersection of
open sets is called aGδ. Show that given any set A there is aG ∈ Gδ such that A ⊂ G andm⋆(G) = m⋆(A).

Sketch: ∃ open In,i such that A ⊂ On = ∪iIn,i and m⋆(On) ≤ m⋆(A) + ϵn where ϵn ↓ 0. Consider
Gn = ∩nk=1Ok ↓ G. A ⊂ G and m⋆(G) ≤ m⋆(Gn) ≤ m⋆(On) ≤ m⋆(A) + ϵn,∀n.

11. If E is measurable, then given ϵ > 0 (i) exists open O such that E ⊂ O and m⋆(O\E) ≤ ϵ, (ii) exists
closed F such that F ⊂ E and m⋆(E\F ) ≤ ϵ, (iii) m(E) <∞ implies exists compact K such that K ⊂ E
and m(E\K) ≤ ϵ, (iv) m(E) < ∞ implies exists finite union of open (resp. closed) intervals U (resp. F )
such that m(E∆U) (resp. m(E∆F )) ≤ ϵ.

Sketch: (i) Constructed O earlier, now E measurable impliesm⋆(O) = m⋆(O∩E)+m⋆(O∩Ec) = m⋆(E)+
m⋆(O\E). But m⋆(O) ≤ m⋆(E)+ ϵ. (ii) Ec measurable, exists open O such that Ec ⊂ O,m⋆(O\Ec) < ϵ.
Take F = Oc and see that E\F = O\Ec. (iii) Pick F closed, F ⊂ E,m⋆(E\F ) ≤ ϵ/2. [−n, n] ∩ F = Kn

are compact (why?) and E\Kn ↓ E\F,m(E) < ∞ ⇒ ∃n ∋ m(E\Kn) ≤ ϵ. (iv) m(E) < ∞. Choose
E ⊂ ∪Ij ,

∑
l(Ij) < m(E) + ϵ/2. Choose N ∋

∑∞
N+1 l(Ij) < ϵ/2. If U = ∪N1 Ij ,m(E∆U) = m(E\U) +

m(U\E) ≤ m(∪∞
N+1Ij) +m((∪∞

1 Ij)\E) ≤
∑∞
N+1 l(Ij) +

∑∞
1 l(Ij) −m(E) ≤ ϵ/2 + ϵ/2. Verify the last

but one inequality.

12. Show that (i) E measurable, implies (ii) given ϵ > 0, exists open O ⊃ E ∋ m⋆(O\E) < ϵ, implies (iii)
exists G ∈ Gδ ∋ E ⊂ G and m⋆(G\E) = 0, implies (i). (In the last use that m⋆(A) = 0 implies A
measurable, Gδ’s are measurable and E = G\(G\E).) Formulate a similar statement with Fσ and prove
it.

Problem 11, for m⋆(A) = ∞: An = A∩ [n, n+1) can be enclosed in On with m⋆(On\An) < ϵn so that∑
ϵn < ϵ. See that ∪An = A, (∪On)\A = ∪(On\A) ⊂ ∪(On\An).

Remark: Problem 11 is referred to as approximation from above by open sets and from below by compact
sets.
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M. Math. Measure Theory
Problems and Complements 2

1. (a) Suppose A is a subset of R. Describe the algebra generated by A. (b) If you start with two sets A,B
then describe the algebra generated by them (i.e. smallest algebra containing A,B). (c) What if you
started with A1, A2, · · · , Ak and wanted the smallest algebra containing them? Remember to include ϕ
and R in these algebras.

2. Consider a function 1E where E is any set. For such functions show that (a) 1A∩B = 1A1B , (b) 1A∪B =
1A + 1B − 1A.1B , (c) 1Ac = 1− 1A. (d) 1A∆B = |1A − 1B |.

3. Let f be a function with measurable domain D. Show that f is measurable iff the function g defined by
g(x) = f(x) for x ∈ D and g(x) = 0 for x /∈ D is measurable.

4. Suppose E is any set and consider the function f = 1E . What are the sets f−1[a,∞) for (a) a ≤ 0, (b)
0 < a ≤ 1 (c) a > 1?

5. If f is a continuous function from R to R then for open set O why is f−1(O) open? Is such an f measurable?

6. A step function with domain R is one which takes a finite number of distinct real values c1, c2, . . . , cn
(assume these are in increasing order) and f−1(ci) = Ei is a union of a finite number of intervals (the
intervals can be infinite in length). The Ei’s are disjoint and their union is R. Are step functions
measurable?

7. A simple function with domain R is a measurable function which assumes a finite number of (distinct) real
values. (a) Show that such a function can be written as

∑n
1 ci1Ei

where ci’s are distinct real numbers and
Ei’s are disjoint measurable sets whose union is R. (b) WLG assuming the ci’s are arranged in increasing
order describe f−1[a,∞) where a ∈ R. (c) Just from the representation in (a) show that the sum and
product of two simple functions is measurable.

8. Suppose f is a nonnegative function. Show that

ϕk =

k2k−1∑
i=0

i

2k
1f−1( i

2k
, i+1

2k
] + k1f−1(k,∞],

is (take the first interval to be [0, 1/2k]) a sequence of functions increasing to f everywhere. (At the
(k+1)st level the measurable set f−1( i

2k
, i+1

2k
] gets decomposed into f−1( 2i

2k+1 ,
2i+1
2k+1 ]∪ f−1( 2i+1

2k+1 ,
2i+2
2k+1 ] on

which ϕk+1 can take values 2i/2k+1 or (2i+ 1)/2k+1 which are greater than or equal to the value i/2k of
ϕk on the union. Also f−1((k,∞]) = f−1((k, k+1])∪f−1(k+1,∞]), value of ϕk on the LHS is k, value of
ϕk+1 on f−1((k, k+1]) is of the form j/2k+1, j = k.2k+1 to (k+1)2k+1 − 1, and k+1 on f−1(k+1,∞]).
Thus ϕk ≤ ϕk+1.

(If you omit k1f−1(k,∞] then the limit of ϕk’s gives only the real valued part of f .)

9. In the same set up if you define Fk(x) = f(x) if x ∈ [−k, k] or f(x) ≤ k, Fk(x) = k if x ∈ [−k, k] and
f(x) > k, and Fk(x) = 0 otherwise then show that Fk are nondecreasing. (either support increases and
recall f is nonnegative, or Fk+1 evaluated at the same point where Fk is positive may be larger.)

10. Thus Fk+1 evaluated at points of F−1
k ( i

2k
, i+1

2k
] is greater than or equal to the value of Fk at the same

point. From this show that

ψk =

k2k−1∑
i=0

i

2k
1F−1

k ( i

2k
, i+1

2k
],

are nondecreasing and go to f everywhere. See that this ψk requires simple functions of measurable sets
of finite measure, in fact sets which are also bounded at each kth step.
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11. (a) Given a measurable function f on [a, b] that takes the values ±∞ only on a set of measure zero, and
given ϵ > 0, there is an M such that |f | ≤M except on a set of measure less than ϵ/3.

(b) Let f be a measurable function on [a, b]. Given ϵ > 0 and M , there is a simple function ϕ such that
|f(x)− ϕ(x)| < ϵ except where |f(x)| ≥M . If m ≤ f ≤M , then we may take ϕ so that m ≤ ϕ ≤M .

(c) Given a simple function ϕ on [a, b], there is a step function g on [a, b] such that g(x) = ϕ(x) except on
a set of measure less than ϵ/3. If m ≤ ϕ ≤ M , then we can take g so that m ≤ g ≤ M . (Outside the set
the exact value may not have any relation with ϕ.)

(d) Given a step function g on [a, b], there is a continuous function h such that g(x) = h(x) except on a set
of measure less than ϵ/3. If m ≤ g ≤M , then we may take h so that m ≤ h ≤M . (This is of importance
in Fourier analysis, specially in the Riemann-Lebesgue lemma.)

12. Egorov’s theorem: Suppose {fk}∞k=1 is a sequence of measurable functions defined on a measurable set
E with m(E) < ∞, and assume that fk → f a.e. on E. Given ϵ > 0, we can find a closed set Aϵ ⊂ E
such that M(E\Eϵ) ≤ ϵ and fk → f uniformly on Aϵ.

Proof: Assume wlg (otherwise subtract a measure zero set) fk → f, ∀x ∈ E. For each pair of nonnegative
integers n and k, let

Enk = {x ∈ E : |fj(x)− f(x)| < 1/n, for all j > k}.

Now fix n and note that Enk ⊂ Enk+1, and E
n
k ↑ E as k → ∞. Since E has finite measure, exists kn such

that m(E\Enkn) < 1/2n. By construction, we then have

|fj(x)− f(x)| < 1/n whenever j > kn and x ∈ Enk .

Choose N such that
∑∞
n=N 2−n < ϵ/2, and let

Ãϵ =
⋂
n≥N

Enkn .

First observe that

m(E\Ãϵ) ≤
∞∑
n=N

m(E\Enkn) < ϵ/2.

Next, if δ > 0, choose n ≥ N such that 1/n < δ and note that x ∈ Ãϵ implies x ∈ Enkn . Therefore

|fj(x)−f(x)| < δ whenever j > kn. Hence fk converges uniformly to f on Ãϵ. Finally can choose a closed

subset Aϵ ⊂ Ãϵ with m(Ãϵ\Aϵ) < ϵ/2. Hence, m(E\Aϵ) < ϵ. 2

13. The Lebesgue integral of a nonnegative simple function: A simple function f can be uniquely
represented as

∑n
1 ci1Ei where c1, . . . , cn are the n distinct possible values of f , Ei = f−1(ci) making Ei

disjoint with ∪Ei = R. For a nonnegative simple function uniquely represented as above the Lebesgue
integral is defined as ∫

fdm =

n∑
1

cim(Ei),

where the convention is that 0 · ∞ = 0, i.e. if the value zero is assumed on a set of infinite measure then
that contributes zero to the RHS.

It is well defined: If we also have f =
∑m

1 dj1Fj , Fj ’s disjoint, ∪Fj = R, then since f also assumes values
d1, . . . , dm, so each dj is some ci (say if Ei∩Fj nonempty, also implying Fj ⊂ Ei since Ei = f−1(ci)). Hence
n ≤ m, some dj ’s repeated, Ei = ∪j:dj=ciFj , giving

∑
j djm(Fj) =

∑
i ci

∑
j:dj=ci

m(Fj) =
∑
i cim(Ei)

since m(Ei) =
∑
j:dj=ci

m(Fj), Fj ’s being disjoint.

A function of the form f =
∑m

1 dj1Aj
, Aj ’s not necessarily disjoint, can be put in the above form using

problems 1 and 2. Disjointify as follows: say for m = 2, d1(1A1
+ 0.1A1

c) · (1A2
+ 1A2

c) + d2(1A1
+ 1A1

c) ·
(1A2

+0.1A2
c), where in the jth term we take 1Aj

= (1Aj
+0.1Aj

c)
∏
k ̸=j(1Ak

+1Ak
c) to decompose 1Aj

as
sum of indicators of the smallest (disjoint) sets of the algebra, summands sometimes multiplied by zero.
Now collect sums of dj ’s for the indicators of the disjoint parts.
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M. Math. Measure Theory
Problems and Complements 3

1. (Good sets principle) Suppose Ω is a set, C is a class of subsets of Ω and A ⊂ Ω. We denote by C ∩A the
class {B ∩ A : B ∈ C}. If the minimal σ-algebra over C is σ(C) = F , then show that σA(C ∩ A) = F ∩ A,
where σA(C ∩A) is the minimal σ-algebra of subsets of A over C ∩A.
Proof: C ⊂ F , hence C∩A ⊂ F∩A. Prove that F∩A is a σ-algebra of subsets of A, thus σA(C∩A) ⊂ F∩A.
For the other side we have to show B ∩A ∈ σA(C ∩A) for all B ∈ F . Let P be the class of good sets, that
is P consists of those sets B ∈ F such that B ∩ A ∈ σA(C ∩ A). Since F and σA(C ∩ A) are σ-algebras,
can show that P is a σ-algebra. But C ⊂ P, so σ(C) ⊂ P, hence F ⊂ P. Thus F = P and the result
follows. Briefly, every set in C is good and the class of good sets forms a σ-algebra. Consequently, every
set in σ(C) is good.

2. Let f : Ω → Ω′ and let C be a class of subsets of Ω′. Show that σ(f−1(C)) = f−1(σ(C)), where f−1(C) =
{f−1(A) : A ∈ C}. (Use good sets principle.)

3. Now we restrict to functions defined on R. Let f be measurable and B a Borel set. Then show that f−1(B)
is a measurable set. (Hint: The class of sets for which f−1(E) is measurable is a σ-algebra containing the
intervals. )

4. Show that if f is a measurable real valued function and g is a continuous function defined on (−∞,∞),
them g ◦ f is measurable.

A measure on a σ-algebra F is a nonnegative extended real valued function µ on F such that whenever
A1, A2, · · · form a finite or countably infinite collection of disjoint sets in F , we have µ(∪nAn) =

∑
µ(An).

5. Let Ω be a countably infinite set and let F consist of all subsets of Ω. Define µ(A) = 0 if A is finite,
µ(A) = ∞ if A is infinite. (a) Show that µ is finitely additive but not countably additive. (b) Show that
Ω is the limit of an increasing sequence of sets An with µ(An) = 0 for all n, but µ(Ω) = ∞.

6. Let µ be the counting measure on Ω where Ω is an infinite set. Show that there is a sequence of sets
An ↓ ϕ with limµ(An) ̸= 0.

7. Let Ω be a countably infinite set and let F be the algebra consisting of all finite subsets of Ω and their
complements. If A is finite set µ(A) = 0 and if Ac is finite set µ(A) = 1. (a) Show that µ is finitely
additive but not countably additive on F . (b) Show that Ω is the limit of an increasing sequence of sets
An ∈ F with µ(An) = 0 for all n, but µ(Ω) = 1.

Integration

8. In the proof of Fatou’s lemma, page 265 of Royden, one considers the function fk − (1− ϵ)ϕ where fk is a
(possibly extended real valued) nonnegative measurable function and ϕ is a nonnegative simple function.
Why is this function measurable? (Such statements have been proved for real valued measurable functions
only.)

9. Let f be a nonnegative measurable function. Show that
∫
f = 0 implies f = 0 a.e.

10. Let f be a nonnegative measurable function. (a) Show that there is an increasing sequence ϕn of non-
negative simple functions each of which vanishes outside a set of finite measure such that f = limϕn. (b)
Show that

∫
f = sup

∫
ϕ over all nonnegative simple functions ϕ ≤ f .

11. Let f be a nonnegative integrable function. Show that the function F defined by F (x) =
∫ x
−∞ f is

continuous.

12. Let fn be a sequence of nonnegative measurable functions that converge to f , and suppose fn ≤ f for
each n. Then show that

∫
f = lim

∫
fn.

13. (a) Show that we may have strict inequality in Fatou’s lemma. Consider the sequence fn defined by
fn(x) = 1 is n ≤ x < n+ 1, with fn(x) = 0 otherwise. (b) Show that the monotone convergence theorem
need not hold for decreasing sequence of functions. Consider fn(x) = 0 if x < n, fn(x) = 1 if x ≥ n.
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14. Prove the following generalization of Fatou’s lemma (often this is called Fatou’s lemma): If fn is a sequence
of nonnegative functions, then ∫

lim inf fn ≤ lim inf

∫
fn

(Note that the other form follows from the above since if fn converges to f a.e. then lim inf fn = lim fn.

15. Let fn be a sequence of nonnegative measurable functions on (−∞,∞) such that fn → f a.e., and suppose
that

∫
fn →

∫
f < ∞. Then show that for each measurable set E we have

∫
E
fn →

∫
E
f . (Fatou gives∫

E
f ≤ lim inf

∫
E
fn,

∫
Ec f ≤ lim inf

∫
Ec fn. Manipulate the second inequality.)

16. Consider fn = 1{r1,...,rn} where r1, r2, . . . is an enumeration of rationals on Q ∩ [0, 1]. This fn converges
everywhere to 1Q∩[0,1]. (a) Show that gn = 1 − fn defined on [0, 1] is Riemann integrable but lim gn =
1Qc∩[0,1] = g, say, is not Riemann integrable. (b) If you use Lebesgue integrals which theorem will enable
you to interchange limit and integration and what will be

∫
[0,1]

g dm?

17. Proposition 4, Page 81, Royden 3rd ed: Let f be a bounded function on [a, b]. If f is Riemann integrable

then it is measurable and R
∫ b
a
f(x)dx =

∫
[a,b]

f dm.

Proof: Since every step function is also a simple function we have

R

∫ b

a

f(x)dx ≤ supϕ≤f

∫
[a,b]

ϕ dm ≤ inf
ψ≥f

∫
[a,b]

ψ dm ≤ R

∫ b

a

f(x)dx.

As f is Riemann integrable the two extremes are equal. Since f is bounded, C < f < D say, translating
by C or D as needed we’ll later prove that the middle terms are

∫
[a,b]

f dm.

First use part of Proposition 3, page 80-81 to get measurability: Since infψ≥f
∫
[a,b]

ψdm = supϕ≤f
∫
[a,b]

ϕdm

there exist ϕn ≤ f ≤ ψn such that
∫
[a,b]

(ψn − ϕn)dm < 1
n . Denote supnϕn = ϕ⋆ ≤ f ≤ ψ⋆ =

infnψn. Consider the set {ψ⋆ − ϕ⋆ > 1
ν } ⊂ {ψn − ϕn > 1

ν }. Since 1
n >

∫
[a,b]

(ψn − ϕn)dm ≥∫
[a,b]

(ψn − ϕn)1{ψn−ϕn>1/ν} dm ≥
∫
[a,b]

1
ν 1{ψn−ϕn>1/ν} dm = 1

νm({ψn − ϕn > 1/ν}) it follows that

m({ψ⋆−ϕ⋆ > 1
ν }) ≤ ν/n and is actually zero since n is arbitrary. Since {ψ⋆−ϕ⋆ > 0} = ∪ν{ψ⋆−ϕ⋆ > 1

ν },
ψ⋆ − ϕ⋆ is zero almost surely and f equals the measurable function ϕ⋆ or ψ⋆.

Now if f is bounded measurable then one also has
∫
[a,b]

fdm = supϕ≤f
∫
ϕdm = infψ≥f

∫
ψ dm. To prove

this, suppose C < f < D. Notice that supϕ≤f
∫
ϕ dm will occur over supC≤ϕ≤f . Now 0 < f − C, so

sup0≤ϕ−C≤f−C
∫
[a,b]

(ϕ−C)dm =
∫
[a,b]

(f−C)dm, which after cancellingm([a, b]) is supC≤ϕ≤f
∫
[a,b]

ϕ dm =∫
[a,b]

fdm. Similarly try the other one with D− f > 0, but now sup of a negative turning negative of inf.
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M. Math. Measure Theory
Problems and Complements 4

1. Show that if f is integrable over E then so is |f | and |
∫
E
f | ≤

∫
E
|f |. Does the integrability of |f | imply

that of f?

2. If f is nonnegative and
∫
f dm < ∞ then f < ∞ a.e. To do this directly consider the set {f > n} and

using f ≥ n1{f>n} show that m({f > n}) <
∫
f dm
n → 0. However {f > n} ↓ {f = ∞}.

3. (Proposition 15, page 267 of Royden) If f and g are integrable functions and E is a measurable set then
(i)

∫
E
(c1f + c2g) dm = c1

∫
f dm+ c2

∫
g dm, (ii) if h is measurable and |h| ≤ |f | then h is integrable, (iii)

if f ≥ g a.e. then
∫
f dm ≥

∫
g dm.

4. (a) Let g be a nonnegative measurable function on R. Set ν(E) =
∫
E
gdm. Show that ν is a measure on

M. (b) Let f be a nonnegative measurable function on R. Then
∫
E
fdν =

∫
E
fgdm. (First establish this

for the case of f simple and then use the monotone convergence theorem taking ϕn ↑ f . This problem
is a little beyond the development since we have not done integration wrt other measures yet, but such
integration wrt ν replaces m by ν everywhere and reproves Fatou, MCT, DCT.)

5. The improper Riemann integral of a function may exist without the function being integrable (in the sense
of Lebesgue), e.g. if f(x) = sinx/x on [0,∞]. However if f is integrable show that the improper Riemann
integral is equal to the Lebesgue integral whenever the former exists (recall, for bounded intervals the
Riemann integral of a bounded function is equal to its Lebesgue integral).

6. (a) Let g be an integrable function on a set E and suppose that fn is a sequence of measurable functions
such that |fn(x)| ≤ g(x) a.e. on E. Then

∫
E
lim inf fn ≤ lim inf

∫
E
fn ≤ lim sup

∫
E
fn ≤

∫
E
lim sup fn.

(b) Suppose fn : R → [0,∞] is measurable and f1 ≥ f2 ≥ f3 ≥ · · · , fn(x) → f(x)∀x ∈ R and
∫
R f1 < ∞.

Then show that lim
∫
fn =

∫
f . Compare with a previous problem about the invalidity of MCT for

decreasing sequence of functions.

7. Let gn be a sequence of integrable functions which converges a.e. to an integrable function g. Let fn be
a sequence of measurable functions such that |fn| ≤ gn and fn converges to f a.e. If

∫
g = lim

∫
gn then∫

f = lim
∫
fn.

8. Under the same set up show that
∫
|fn − f | → 0.

9. Let fn be a sequence of integrable functions such that fn → f a.e. with f integrable. Then
∫
|fn−f | → 0

iff
∫
|fn| →

∫
|f |. (|

∫
(|fn| − |f |)| ≤

∫
|fn − f |.)

10. (a) Let f be integrable over E. Then given ϵ > 0 there is a simple function ϕ such that
∫
|f − ϕ| < ϵ.

(Deal with the positive and negative parts separately, for each approach through simple functions from
below.) (b) Under the same hypothesis there is a step function ψ suxch that

∫
E
|f − ψ| < ϵ. (Enough to

approximate each indicator function by a step function and then apply triangle inequality.) (c) Under the
same hypothesis, there is a continuous function g vanishing outside a finite interval such that

∫
E
|f−g| < ϵ.

11. Establish the Riemann-Lebesgue lemma: If f is an integrable function on (−∞,∞), then
limn→∞ f(x) cosnx dx = 0. (Hint: First prove for step functions, namely for the indicator of an interval,
then use the previous problem.)

12. (a) Let f be integrable over (−∞,∞). Then
∫
f(x)dx =

∫
f(x+ t)dx. (start with indicators.) (b) Let g

be a bounded measurable function. Then limt→0

∫∞
−∞ |g(x)[f(x)− f(x+ t)]| = 0. (If f is continuous and

vanishes outside a finite interval, then can use uniform continuity.)

13. Let f be a function of two variables (x, t) defined on Q = [0, 1]× [0, 1] and which is a measurable function
of x for each fixed value of t. Suppose that limt→0 f(x, t) = f(x) and that for all t we have |f(x, t)| ≤ g(x),
where g is an integrable function on [0, 1]. Then limt→0

∫
f(x, t)dx =

∫
f(x)dx. Show also that if the

function f(x, t) is continuous in t for each x, then h(t) =
∫
f(x, t)dx is a continuous function of t.
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14. Let f be a function defined and bounded on Q = [0, 1] × [0, 1] and suppose that for each fixed t the
function f is a measurable function of x. For each (x, t) ∈ Q, let the partial derivative ∂f/∂t exist and it
is bounded in Q. Then

d

dt

∫ 1

0

f(x, t)dx =

∫ 1

0

∂f

∂t
dx.

15. Suppose f : R → [0,∞] is measurable and
∫
R f = c, 0 < c <∞ and α is a constant. Show that

lim
n→∞

∫
R
n log[1 + (f/n)α]

equals (a) ∞, if 0 < α < 1, (b) c, if α = 1, (c) 0, if 1 < α < ∞. (Hint: If α ≥ 1, the integrands are
dominated by αf . If α < 1, Fatou’s lemma can be applied.)

16. Show that (a)
∫∞
1
e−t log t = lim

∫ n
1
[1− (t/n)]n log t dt, (b)

∫ 1

0
e−t log t dt = lim

∫ 1

0
[1− (t/n)]n log t dt. (e−t

can be used for domination.)

17. One can prove MCT directly first and then deduce Fatou from it. For this approach see Rudin, Real and
Complex Analysis, page 21-22 and page 23. The proof uses similar ideas.
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M. Math. Measure Theory
Problems and Complements 5

Lp spaces

1. Let f be a bounded measurable function on [0, 1]. Then limp→∞ ||f ||p = ||f ||∞.

2. If f ∈ L1 and g ∈ L∞ then
∫
|fg| ≤ ||f ||1 · ||g||∞.

3. (a) For 1 ≤ p <∞, we denote by lp the space of all sequences ξv, ν = 1, 2, · · · such that
∑∞
ν=1 |ξν |p <∞.

Prove the Minkowski inequality for sequences:

||{ξν + ην}||p ≤ ||{ξν}||p + ||{ην}||p,

where the p-th norm is given by (||{ξν}||p)p =
∑∞
ν=1 |ξν |p and for p = ∞ we take sup |ξν |.

(b) Establish Holder’s inequality for sequences: if {ξν} ∈ lp, {ην} ∈ lq with p, q conjugate, then
∑∞
ν=1 |ξνην | ≤

||{ξν}||p · ||{ην}||q.
When we do measures on more general spaces, the above will appear as a particular case, namely counting
measure on the integers and the Lp spaces for that measure.

4. Let fn be a sequence of functions in L∞. Prove that fn converges to f in L∞ iff there is a set E of measure
zero such that fn converges to f uniformly on Ec.

5. Prove that L∞ is complete (at each point the Cauchy criterion for real numbers applies).

6. Prove that lp is complete (1 ≤ p <∞).

7. Let C = C[0, 1] be the space of all continuous functions on [0, 1] and define ||f || = max |f(x)|. Show that
C is a Banach space (you only have to recall the limit of a uniformly convergent seuqence of continuous
functions).

8. Denote by l∞ the space of all bounded sequences of real numbers and define ||{ξν}||∞ = sup |ξν |. Show
that l∞ is a Banach space.

9. Show that the space c of all convergent sqeuences of real numbers and the space c0 of all sequences which
converge to zero are Banach spaces (with the l∞ norm).

10. Let fn be a sequence of functions in Lp, 1 ≤ p <∞, which converge a.e. to a function f ∈ Lp. Show that
fn converges to f in Lp iff ||fn||p → ||f ||p. (We did this as a problem in DCT for p = 1. Here use Fatou’s
lemma for one side and Minkowski’s inequality to get limsup.)

11. Let fn be a sequence of functions in Lp, 1 < p < ∞, which converge a.e. to a function f ∈ Lp. and
suppose that there is a constant M such that ||fn|| ≤ M for all n. Then for each function g ∈ Lq we
have

∫
fg = lim

∫
fng. (On fn use Minkowski’s inequality as in the previous problem to get limsup. This

problem may need Egorov’s theorem which we haven’t done yet.))

12. Let fn → f in Lp, 1 ≤ p < ∞, and let gn be a sequence of measurable functions such that |gn| ≤ M for
all n, and gn → g a.e. Then gnfn → gf in Lp. (gnfn − gf = gn(fn − f) + (gn − g)f . You know many
inequalities and convergence theorems.)

13. Here we work out the completeness of lp spaces, 1 ≤ p ≤ ∞:

First for p = ∞, consider fm = (fm(1), fm(2), · · · ) under ||fm||∞ = supi |fm(i)|. If {fm} is Cauchy
(under the above norm), then for each i, |fn(i)− fm(i)| ≤ ||fn − fm||∞ < ϵ for n ≥ m ≥ Nϵ. So {fn(i)}
is a Cauchy sequence of reals, hence converges to some f(i) say. Denote f = (f(1), f(2), . . .).

1. TST f ∈ l∞. Since for each i, |f(i)| = limn |fn(i)| ≤ lim supn |fn(i)−fm(i)|+ |fm(i)| ≤ lim supn ||fn−
fm||∞ + ||fm||∞ ≤ ϵ+ ||fm||∞, where m ≥ Nϵ is fixed, we have ||f ||∞ <∞.
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2. TST fm → f in ||.||∞ norm. For each i, |fm(i)−f(i)| = limn |fm(i)−fn(i)| ≤ lim supn ||fm−fn||∞ < ϵ
if m > Nϵ, fixed. Thus m ≥ Nϵ imples ||fm − f ||∞ < ϵ. 2

Next for 1 ≤ p <∞, under ||fm||p = {
∑∞

1 |fm(i)|p}1/p, since |fn(i)− fm(i)| ≤ ||fn − fm||p (check), get
each fn(i) → f(i), giving f as before.

1. TST f ∈ lp. Note that for each fixed k, {
∑k
i=1 |fn(i)|p}1/p ≤ {

∑∞
1 |fn(i)|p}1/p = ||fn||p ≤ ||fn −

fm||p+||fm||p. Fixm ≥ Nϵ, make n ↑ ∞. LHS has a limit, a limsup on the right gives {
∑k
i=1 |f(i)|p}1/p ≤

ϵ+ ||fm||p. Making k ↑ ∞ on the LHS get
∑∞

1 |f(i)|p <∞, i.e. f ∈ lp.

2. As an exercise try ||fm − f ||p < ϵ, if m ≥ Nϵ. First consider the sum upto k ...

For Lp(R), 1 ≤ p < ∞, the Riesz Fischer theorem has been proved. But for L∞(R) one needs some a.e.
considerations. For each x, |fn(x) − fm(x)| ≤ ||fn − fm||∞ outside En,m where m(En,m) = 0. To make
all these inequalities over all n,m work consider E = ∪n,mEn,m, which also has measure zero. Now over
Ec repeat the proof of l∞ but with x instead of i to get |f(x)| ≤ ϵ + ||fm||∞. Take sup over x ∈ Ec, to
get ||f ||∞ <∞. Try the other part over Ec similarly.
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M. Math. Measure Theory
Problems and complements 6

1. Let (X,B, µ) be a measure space and Y ∈ B. Let BY consist of those sets of B that are contained in Y .
Set µY (E) = µ(E) if E ∈ BY . Then (Y,BY , µY ) is a measure space and µY is called the restriction of µ
to Y .

2. If (X,B, µ) is a measure space, then we can find a complete measure space (X,B0, µ0) such that (a)
B ⊂ B0, (b) E ∈ B ⇒ µ(E) = µ0(E), (c) E ∈ B0 ⇔ E = A∪B where B ∈ B and A ⊂ C,C ∈ B, µ(C) = 0.

Hint: 1. First show tht B0 defined by (c) is a σ-algebra. The only problem is complementation, Ac ∩Bc.
Note that Bc = Cc ∪ (C\B), so that Ac ∩ Bc = (Ac ∩ Cc) ∪ (Ac ∩ (C\B)), but the second one is a
subset of C. 2. Now, if E ∈ B0, show that µ(A) is the same for all sets A ∈ B such that E = A ∪ B
with B a subset of a set of measure zero (suppose A1 ∪ B1 = A2 ∪ B2 with sets as defined. Then from
A1∪C1 = A1∪B1∪(C1\B1) = A2∪B2∪(C1\B1) show µ(A1) = µ(A1∪C1) ≤ µ(A2)+µ(C2)+µ(C1) = µ(A2)
and conversely). Use this fact to define µ0(E) = µ(A) and show µ0 is a measure.

3. Given an outer measure µ⋆ on all subsets of X consider the class B of µ⋆ measurable sets. If µ̄ is µ⋆

restricted to B, then show that µ̄ is complete. (Suppose E ⊂ B,B ∈ B with µ⋆(B) = µ̄(B) = 0. Then
for any A, µ⋆(A ∩ E) + µ⋆(A ∩ Ec) ≤ µ⋆(B) + µ⋆(A) = µ⋆(A). The other side follows from properties
of outer measure. So E is measurable.) The point is that later we extend a measure on an algebra A
to the smallest σ-algebra containing A, and not to the class of all measurable sets. In that case it may
not be the case that the extension is complete on the smallest σ-algebra containing A. However, one can
get another measure space that will be complete, from the previous problem. You should also compare
Lebesgue measure on Borel sets and measurable sets.

4. Assume that Ei is a sequence of disjoint measurable sets and E = ∪Ei. Then for any set A we have
µ⋆(A ∩ E) =

∑
µ⋆(A ∩ Ei).

5. A collection C of subsets of X is called a semialgebra if (a) the intersection of any two sets in C is in C
and (b) the complement of any set in C is a finite disjoint union of sets in C (think of intervals of the form
(a, b] and their intersection, complement etc).

(a) Let C be a semialgebra of sets and A be the smalllest algebra of sets containing C. Show that A
consists of sets of the form A = ∪ni=1Ci with Ci ∈ C. Show that Aσ = Cσ.
(b) Let C be a semialgebra of sets containing ϕ and µ a nonnegative set function defined on C with
µ(ϕ) = 0. Then µ has a unique extension to a measure on the algebra A generated by C if the following
conditions are satisfied (1) If a set C ∈ C is the union of a finite disjoint collection {Ci} of sets in C, then
µ(C) =

∑
µ(Ci). (2) If a set C ∈ C is the union of a countable disjoint collection {Ci} of sets in C then

µ(C) ≤
∑
µ(Ci).

Hint: (1) implies that if A is the union of each of two finite disjoint collections {Ci} and {Dj} of sets in C
then

∑
µ(Ci) =

∑
µ(Dj) since µ(Ci) =

∑
j µ(Ci ∩Dj) and the collections are finite. Now, condition (2)

implies µ is countably additive on A, since finite additivity and monotonicity already imply the reverse
inequality.

6. Let µ be a finite measure on an algebra A and µ⋆ the induced outer measure. Show that a set E is
measurable iff for each ϵ > 0 there is a set A ∈ Aσ, A ⊂ E, such that µ⋆(E\A) < ϵ.

7. An outer measure µ⋆ is said to be regular if given any subset E of X and any ϵ > 0, there is a µ⋆-
measurable set A with E ⊂ A and µ⋆(A) ≤ µ⋆(E) + ϵ. Show that every outer measure induced by a
measure on an algebra A is a regular outer measure. (1. Sets in A are measurable. 2. Approximate by
by Aσ sets from above.)

8. Let µ be a measure on an algebra A and µ̄ the extension of it given by the Caratheodory process. Let E
be measurable wrt µ̄ and µ̄(E) <∞. Then given ϵ > 0, there is an A ∈ A with µ̄(A∆E) < ϵ. (We did it
for Lebesgue measure in Problem Set 1, repeat the proof in this case. This construction is then used in
approximating measurable functions by functions constant on rectangles in the Lp sense.)
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9. Let F be the cululative distribution function of the measure ν and assume that F is continuous. Then for
any Borel set contained in the range of F we havem(E) = ν(F−1(E)) wherem denotes Lebesgue measure.
(For any interval in the range of F , ν(F−1(c, d)) = ν(F−1(c), F−1(d)) = F (F−1(d))−F (F−1(c)) = d− c,
now extend by Caratheodory extension theorem.) Generalize to discontinuous cumulative distribution
functions.

10. Let F be a monotone increasing function and define F ⋆(x) = limy→x+ F (y). Then F ⋆ is a monotone
increasing function which is continuous on the right and agrees with F whenever F is continuous on the
right. We have (F ⋆)⋆ = F ⋆ and if F and G are monotone increasing functions which agree whenever they
are both continuous then F ⋆ = G⋆.

11. Let f be a nonnegative measurable function. Then there is a sequence ϕn of simple functions with
ϕn+1 ≥ ϕn such that limϕn = f at each point of X. If f is defined on a σ-finite measure space then we
may choose the functions ϕn so that each vanishes outside a set of finite measure. (For each pair (n, k) of
integers define

En,k = {x : k2−n ≤ f(x) < (k + 1)2−n},

and set ϕn = 2−n
∑22n

k=0 k1En,k
.

12. If µ is a complete measure and f is a measurable function, then f = g a.e. implies g is measurable. (We
did it for Lebesgue measure.)

13. Let fn be a sequence of measurable functions that converge to a function except at the points of a set E
of measure zero. Then f is a measurable function if µ is complete.

14. A sequence of measurable real valued functions fn is said to converge in measure to f if given ϵ > 0, there
is an integer N and a measurable set E with µ(E) < ϵ such that |fn(x)− f(x)| < ϵ for all n ≥ N and all
x /∈ E.

(a) Show that if fn converges to f in measure then there is a subsequence fnk
that converges to f almost

everywhere. (Given ν, there is an integer nν such that for all n ≥ nν we have µ(Eν) = µ(x : |fn(x)−f(x)| ≥
2−ν) < 2−ν . If x /∈ ∪∞

ν=kEν , we must have |fnν
(x) − f(x)| < 2−ν for ν ≥ k, and so fnν

(x) → f(x). and
also for any x /∈ A = ∩∞

k=1 ∪∞
ν=k Eν . But µ(A) ≤ µ(∪∞

ν=kEν) ≤
∑∞
ν=k µ(Eν) = 2−k+1 for any k. Thus

µ(A) = 0.)

(b) Suppose fn is a sequence of measurable functions each of which vanishes outside a fixed measurable
set A with µ(A) <∞. Suppose that fn(x) → f(x) for x a.e. Then fn converges to f in measure.

(c) A sequence of measurable functions fn is said to be Cauchy in measure if given ϵ > 0, there is an
integer N and a measurable set E with µ(E) <∞ such that |fn(x)− fm(x)| < ϵ for all m,n ≥ N and all
x /∈ E. Show that if fn is Cauchy in measure then there is a function f to which fn converges in measure.
(Choose nν+1 > nν so that µ(x : |fnν − fnν+1 | < 2−ν) < 2−ν . Then the series

∑
(fnν+1 − fnν ) converges

a.e. to a function g. Let f = g + fn1
. Then fnν

→ f in measure and consequently one can show fn → f
in measure.
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M. Math. Measure Theory
Problems and complements 7

1. Suppose that µ is not complete but that we define a bounded function f to be integrable over a set E of
finite measure if

sup
ϕ≤f

∫
E

ϕdµ = inf
ψ≥f

∫
E

ψdµ

for all simple functions ϕ and ψ. Show that f is integrable iff it is measurable wrt the completion of µ.
(We did it for Lebesgue measure, see page 79-81 of Royden, third ed.)

2. Let f be an integrable function on the measure space (X,B, µ). Show that given ϵ > 0, there is a δ > 0,
such that for each measurable set E with µ(E) < δ we have |

∫
E
fdµ| < ϵ.

3. Consider Rn with n-dimensional Lebesgue measure. If f ∈ L1(Rn) then there exists bounded continuous
g such that

∫
|f − g| < ϵ. (Enough to do this for 1E of finite measure. Get disjoint (closed) rectangles

Ij , j = 1, 2, · · · , k such that E∆(∪kj=1Ij) has small measure. Using an open cover get a finite cover for

∪kj=1Ij , take complement and use Urysohn’s lemma to get a continuous function.)

4. (a) Show that if f is integrable, then the set {x : f(x) ̸= 0} is of σ-finite measure. (b) Show that if f is
integrable, f ≥ 0, then f = limϕn for some increasing sequence of simple functions each of which vanishes
outside a set of finite measure. (c) Show that if f is integrable wrt µ then given ϵ > 0 there is a simple
function ϕ such that

∫
|f − ϕ|dµ < ϵ.

5. (a) Let (X,B, µ) be a measure space and g a nonnegative measurable function on X. Set ν(E) =
∫
E
gdµ.

Show that ν is a measure on B. (b) Let f be a nonnegative measurable function on X. Then
∫
fdν =∫

fgdµ. (First establish this for the case of f simple and then use the monotone convergence theorem.)

6. Let X = Y = [0, 1], and let µ = ν be the Lebesgue measure. Show that each open set in X × Y is
measurable, and hence each Borel set in X × Y is measurable.

7. Let h and g be integrable functions on X and Y and define f(x, y) = h(x)g(y). Then f is integrable on
X × Y and

∫
X×Y fd(µ × ν) =

∫
X
hdµ

∫
Y
gdν. (Here σ-finiteness of the measures has not been assumed,

thus you cannot apply Tonelli. Try simple functions and convergence theorems.)

8. Show that Tonelli’s theorem is still true if instead of assuming µ and ν to be σ-finite we merely assume
that {(x, y) : f(x, y) ̸= 0} is a set of σ-finite measure.

9. The following example shows that one cannot remove the assumption that f be nonnegative from the
Tonelli theorem or that f be integrable from the Fubini theorem. Let X = Y be the positive integers and
µ = ν be the counting measure. Let

f(x, y) = 2− 2−x if x = y

= −2 + 2−x if x = y + 1

= 0 otherwise.

10. The following example shows that we cannot remove the hypothesis that f be integrable or that µ and
ν are σ-finite from the Tonelli theorem. Let X = Y = [0, 1] with A = B the class of Borel sets. Let µ
be Lebesgue measure and ν the counting measure. Then the diagonal ∆ = {(x, y) : x = y} is measurable
(is an Rσδ in fact), but its indicator function fails to satisfy any of the equalities between iterated and
product integrals.

11. The smallest σ-algebra containing measurable rectangles coming from two σ-algebras A,B is denoted by
A×B. Note that we have not talked about measure here and were there two measures µ, ν this σ-algebra
could be smaller than the σ-algebra on which the completion µ× ν is defined. (a) Show that if E ∈ A×B
then Ex ∈ B for each x. (Fix x, and show that such E’s form a σ-algebra containing the measurable
rectangles.) (b) If f is measurable wrt A× B then fx is measurable wrt B for each x.

12



12. Let X = Y = R and µ = ν = Lebesgue measure, so that µ× ν is the two dimensional Lebesgue measure
on R2 denoted by dxdy. (a) For each measurable subset E of R the set {(x, y) : x−y ∈ E} is a measurable
subset of R2 (what kind of function is (x, y) 7→ x − y? Try E Borel, E of measure zero, etc.) (b) If f is
a measurable function on R then F (x, y) = f(x − y) is a measurable function on R2. (c) If f and g are
integrable functions on R, then for almost all x the function ϕ defined by ϕ(y) = f(x−y)g(y) is integrable.
If we denote its integral by h(x) then h is integrable and

∫
|h| ≤

∫
|f |

∫
|g|.

13. Let f and g be functions in L1(R) and define f ⋆ g to be the function h(y) =
∫
f(y − x)g(x)dx. (a) Show

that f ⋆ g = g ⋆ f . (b) Show that (f ⋆ g) ⋆ ϕ = f ⋆ (g ⋆ ϕ) where ϕ ∈ L1(R). (c) For f ∈ L1(R) define f̂ by

f̂(s) =
∫
eistf(t)dt. Then f̂ is a boundeed complex function and f̂ ⋆ g = f̂ ĝ.

14. Let f be a nonnegative integrable function on R and let m2 be two dimensional Lebesgue measure on R2.
(a) Then m2{(x, y) : 0 ≤ y ≤ f(x)} = m2{(x, y) : 0 < y < f(x)} =

∫
f(x). (b) Let ϕ(t) = m{x : f(x) ≥

t}. Then ϕ is a decreasing function and
∫∞
0
ϕ(t)dt =

∫
f(x)dx.

15. If (Xi,Ai, µi)
n
i=1 is a finite collection of measure spaces we can form the product measure µ1 × · · · × µn

on the space X1 × · · · ×Xn by starting with the semialgebra of rectangles of the form R = A1 × · · · ×An
and µ(R) = Πµi(Ai). and using the Caratheodory extension procedure. Show that if we identify (X1 ×
· · · ×Xp)× (Xp+1 × · · · ×Xn) = X1 × · · · ×Xn then (µ1 × · · · × µp)× (µp+1 × · · · × µn) = µ1 × · · · × µn.

16. Use Fubini’s theorem and the relation 1/x =
∫∞
0
e−xtdt, x > 0, to prove that limA→∞

∫ A
0
(sinx/x)dx =

π/2.
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Problems and complements 8

1. Show that there is only one pair of mutually singular measures ν+ and ν− such that ν = ν+ − ν−.

2. Show that if E is any measurable set then −ν−(E) ≤ ν(E) ≤ ν+(E) and |ν(E)| ≤ |ν|(E).

3. Show that if ν1 and ν2 are any two finite signed measures, then so is αν1+βν2 where α, β are real numbers.
Show that |αν| = |α||ν| and |ν1 + ν2| ≤ |ν1| + |ν2|, where ν ≤ µ means ν(E) ≤ µ(E) for all measurable
set E.

4. We define integration wrt a signed measure by defining
∫
fdν =

∫
fdν+ −

∫
fdν−. If |f | ≤ M then

|
∫
E
fdν| ≤M |ν|(E). Moreover, there is a measurable function f with |f | ≤ 1 such that

∫
E
fdν = |ν|(E).

5. Show that the Radon-Nikodym theorem for a finite measure µ implies the theorem for a σ-finite measure
µ. Show the uniqueness of the function f in the Radon-Nikodym theorem.

6. (a) Let (X,B, µ) be a measure space and g a nonnegative measurable function on X. Set ν(E) =
∫
E
gdµ.

Show that ν is a measure on B. (b) Let f be a nonnegative measurable function on X. Then
∫
fdν =∫

fgdµ. (First establish this for the case of f simple and then use the monotone convergence theorem.)

7. Let µ, ν and λ be σ-finite. Show that the Radon-Nikodym derivative dν/dµ has the following properties:
(a) If ν ≪ µ and f is a nonnegative measurable function then

∫
fdν =

∫
f(dν/dµ)dµ, (b) d(ν1+ν2)/dµ) =

dν1/dµ+ dν2/dµ, (c) if ν ≪ µ≪ λ, then dν/dλ = (dν/dµ)(dµ/dλ), (d) if ν ≪ µ and µ≪ ν, (this is also
referred to as µ and ν are equivalemt measures) then dν/dµ = (dµ/dν)−1.

8. Two signed measures λ1, λ2 are said to be singular wrt each other if |λ1| ⊥ |λ2|. In the following µ is a
measure.

(a) Show that if ν is a signed measure such that ν ⊥ µ and ν ≪ µ, then ν = 0. (b) Show that if ν1, ν2 are
singular wrt µ then so is c1ν1+ c2ν2. (c) Prove the uniqueness assumption in the Lebesgue decomposition
theorem for two measures.

9. Extend the Radon-Nikodym theorem to the case of signed measures.

10. Use the following example to show that the hypothesis in the Radon-Nikodym theorem that µ is σ-finite
cannot be omitted. Let X = [0, 1],B the class of Lebesgue measurable subsets of [0, 1], ν be Lebesgue
measure and µ be the counting measure on B. Then ν is finite and absolutely continuous wrt µ but there
is no function f such that ν(E) =

∫
E
fdµ for all E ∈ B.

11. Complex measures: A set function ν that assigns a complex number ν(E) to each E in a σ-algebra B
is called a complex measure if ν(ϕ) = 0 and for each countable disjoint union ∪Ei of sets in B we have
ν(∪Ei) =

∑
ν(Ei) with absolute convergence on the right.

(a) Show that each complex measure ν can be expressed as ν = µ1 − µ2 + iµ3 − iµ4, where µ1, µ2, µ3, µ4

are finite measures. (b) Show that for each complex measure ν there is a measure µ and a complex valued
measurable function ϕ with |ϕ| = 1 such that for each E in B we have ν(E) =

∫
E
ϕdµ. (Apply the

Radon-Nikodym theorem to the measure µi wrt the measure µ1 + µ2 + µ3 + µ4.)
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