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Problem 1. Fix N . Verify the hypotheses of the Subadditive Theorem for
{
XN

m,n : 0 ≤ m ≤ n
}
,

where

XN
m,n := max {Xm,n,−N(n−m)}.

In addition, show that αN := infn≥1
1
nE

[(
XN

0,n

)+] ≥ −N > −∞.

Solution. Note that XN
0,0 = max{0,−N · 0} = 0. Since for all 0 ≤ m ≤ n, X0,n ≤ X0,m + Xm,n

holds, so does for the truncated version,

XN
0,n ≤ max {X0,m +Xm,n,−Nm−N(n−m)}

≤ max {X0,m,−Nm}+max {Xm,n,−N(n−m)}

= XN
0,m +XN

m,n.

We now show that for all k,
{
XN

(n−1)k,nk : n ≥ 1
}

is a stationary process. Fix k and define Yn :=

XN
(n−1)k,nk. For x1, x2, . . . , xs,

P
(
XN

0,k ≤ x1, . . . , X
N
(s−1)k,sk ≤ xs

)
= P

(
−Nk ≤ X0,k ≤ x1, . . . ,−Nk ≤ X(s−1)k,sk ≤ xs

)
= P

(
−Nk ≤ Xrk,(r+1)k ≤ x1, . . . ,−Nk ≤ X(r+s−1)k,(r+s)k ≤ xs

)
= P

(
XN

rk,(r+1)k ≤ x1, . . . , X
N
(r+s−1)k,(r+s)k ≤ xs

)
,

where the second equality follows from the stationarity of
{
X(n−1)k,nk : n ≥ 1

}
. Since x1, x2, . . . , xs

and s were arbitrary, this shows that
{
XN

(n−1)k,nk : n ≥ 1
}

is a stationary process.

Next we show that for every m ≥ 1,
{
XN

m,m+k : k ≥ 0
}

d
=

{
XN

m+1,m+k+1 : k ≥ 0
}
. Fix m ≥ 1.

Again for x1, x2, . . . , xs,

P
(
XN

m,m+k ≤ x1, . . . , X
N
m+s,m+k+s ≤ xs

)
= P (−kN ≤ Xm,m+k ≤ x1, . . . ,−kN ≤ Xm+s,m+k+s ≤ xs)

= P (−kN ≤ Xm+1,m+k+1 ≤ x1, . . . ,−kN ≤ Xm+s+1,m+k+s+1 ≤ xs)

= P
(
XN

m+1,m+k+1 ≤ x1, . . . , X
N
m+s+1,m+k+s+1 ≤ xs

)
,

where the second equality follows from {Xm,m+k : k ≥ 0} d
= {Xm+1,m+k+1 : k ≥ 0}. Since again

x1, x2, . . . , xs and s were arbitrary, this shows our claim.

To show E
[(
XN

0,1

)+]
< ∞, observe that

(
XN

0,1

)+
= max {X0,1,−N}+ = max

{
X+

0,1, 0
}
= X+

0,1.
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Now as

E
[
XN

0,n

]
≤ E

[
XN

0,m

]
+ E

[
XN

m,n

]
= E

[
XN

0,m

]
+ E

[
XN

0,n−m

]
for all 0 ≤ m ≤ n. Writing αN

k := E
[
XN

0,k

]
, we get αN

n ≤ αN
m + αN

n−m for all 0 ≤ m ≤ n. Thus by

Fekete’s Lemma,

αN = lim
n→∞

1

n
αN
n = inf

n≥1

1

n
E
[(
XN

0,n

)+] ≥ −N,

where the last inequality follows from

XN
0,n

n
=

max {X0,n,−Nn}
n

≥ −N.

Hence αN ≥ −N . □

Problem 2 (Fatou’s Lemma). Show the following version of Fatou’s Lemma.

(i) If {Xn}n≥1 is uniformly integrable from above (i.e., {X+
n }n≥1 is uniformly integrable), then

E
[
lim sup
n→∞

Xn

]
≥ lim sup

n→∞
E[Xn]

(ii) If {Xn}n≥1 is uniformly integrable from below (i.e., {X−
n }n≥1 is uniformly integrable), then

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn]

Solution to (ii). Define X := lim infn→∞ Xn. Let ϵ > 0. Due to uniform integrability of {X−
n }n≥1,

there exists c > 0 such that

E
[
X−

n 1{X−
n >c}

]
< ϵ for all n ≥ 1.

Since

X + c ≤ lim inf
n→∞

(Xn + c)+,

the monotonicty and the standard Fatou’s Lemma imply

E [X] + c ≤ E
[
lim inf
n→∞

(Xn + c)+
]

≤ lim inf
n→∞

E
[
(Xn + c)+

]
.

As

(Xn + c)+ = (Xn + c) + (Xn + c)− ≤ (Xn + c) +X−
n 1{X−

n >c},

we have

E
[
(Xn + c)+

]
≤ E [Xn + c] + E

[
X−

n 1{X−
n >c}

]
≤ E [Xn] + c+ ϵ,

hence

E [X] ≤ lim inf
n→∞

E [Xn] + ϵ.

This gives the asertion. □

Solution to (i). Taking Yn = −Xn, and applying the result of (ii) to {Yn}n≥1, we get the desired

result. □


