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Problem 1. Fix N. Verify the hypotheses of the Subadditive Theorem for {Xﬁ’n: 0<m< n},
where
X,J,\l’)n =max {X,, ,,—N(n—m)}.

In addition, show that av := inf,>; %E [(XéYn)+} > —N > —o0.
Solution. Note that X(I)\fo = max{0,—N -0} = 0. Since for all 0 < m < n, Xo, < Xo.m + Xmn
holds, so does for the truncated version,
Xé\,[n < max {Xom + Ximn, —Nm—N(n—m)}
< max {Xom, —Nm} +max{X,, n,—N(n—m)}
= X + X0

We now show that for all &, {X(Ifl_l)k IR 1} is a stationary process. Fix k and define Y,, =

X(IYz—l)kmk' For xq,29,..., x4,
IP(XéYk <aryee, XN < x)
=P(—Nk < Xop <a1,...,—Nk < X(s_1)p,on < Ts)
=P (-Nk < Xy rpie S 21,0, —NE < X(ops 1)k, (rr)h < Ts)
_Pp (X%(m)k <ty X e et < x3> ,

where the second equality follows from the stationarity of {X(n—l)k,nki n > 1}. Since x1,x2,...,Zs

and s were arbitrary, this shows that {X (Nn Cknk 2 1 is a stationary process.

S8

Next we show that for every m > 1, {Xﬁ)m+k: k> 0} = {X7],\{+1,m+k+1: k> O}. Fix m > 1.

Again for x1, 2o, ..., xs,

P<X7]r\;m+k Sy XN ks < fs)
=P (kN < Xpnmih < 1, ey —kN < Xonssmihss < &)
=P (—kN < Xt tmtks1 < T1,- e, —kN < Xmtstlmiktstl < xs)
=P (Xt msht1 S Tl Xosottmaksst < Ts) s

where the second equality follows from {X,, m+yr: k> 0} 4 {Xm+1,m+k+1: k> 0}. Since again

T1,%2,...,Ts and s were arbitrary, this shows our claim.

To show E [(Xé\fl)q < 00, observe that (Xé\’fl)Jr = max {Xo1, -N}" = max {X(J)fl, 0} = X(fl.
1



Now as

E [X3%] < E[Xgu] +E [Xi]
=E [X{m] +E [X30m]

for all 0 < m < n. Writing aév =F [XéYk], we get aflv < aan + afz\im for all 0 < m < n. Thus by
Fekete’s Lemma,

n—oo n n n>1n

1 1
oy = lim —aY = inf =E [(Xé\,]n>+} > —N,
where the last inequality follows from
X(J)Yn ~ max{Xon, —Nn}
no n
Hence oV > —N. O

> —N.

Problem 2 (Fatou's Lemma). Show the following version of Fatou’s Lemma.

(i) If {X»}, >, is uniformly integrable from above (i.e., {X,/}, 5, is uniformly integrable), then

E {limsup Xn} > limsup E[X,]

n—oQ n—oo

(i) If {Xn}, >, is uniformly integrable from below (i.e., {X },-, is uniformly integrable), then

E [hm inf Xn} < liminf E[X,,]

n—oo n—oo

Solution to (#). Define X := liminf, ., X,. Let ¢ > 0. Due to uniform integrability of {X;}nZI’
there exists ¢ > 0 such that
E[X (x| <€ forann>1.
Since
X + ¢ < liminf(X,, +¢)*,
n—oo
the monotonicty and the standard Fatou’s Lemma imply

E[X]+c<E [linrggf(Xn + c)+}

< liminfE [(X, +¢)7].

n—00
As

(Xp+o) =Xn+e)+(X,+0)” <(Xp+eo) —i—Xn_]l{X;X},
we have

E[(Xn+0)t] <E[Xn+d+E [X;R{X;>C}} <E[X,]+c+e,
hence

E[X] < linrr_1>i£fE[Xn] + e

This gives the asertion. O
Solution to (i). Taking Y,, = —X,,, and applying the result of (ii) to {Yn}nzl’ we get the desired

result. O



