

Percolation Theory

Homework 10

BIKRAM HALDER
MM2408

Problem 1. Fix N . Verify the hypotheses of the Subadditive Theorem for $\{X_{m,n}^N : 0 \leq m \leq n\}$, where

$$X_{m,n}^N := \max \{X_{m,n}, -N(n-m)\}.$$

In addition, show that $\alpha^N := \inf_{n \geq 1} \frac{1}{n} \mathbb{E} \left[(X_{0,n}^N)^+ \right] \geq -N > -\infty$.

Solution. Note that $X_{0,0}^N = \max\{0, -N \cdot 0\} = 0$. Since for all $0 \leq m \leq n$, $X_{0,n} \leq X_{0,m} + X_{m,n}$ holds, so does for the truncated version,

$$\begin{aligned} X_{0,n}^N &\leq \max \{X_{0,m} + X_{m,n}, -Nm - N(n-m)\} \\ &\leq \max \{X_{0,m}, -Nm\} + \max \{X_{m,n}, -N(n-m)\} \\ &= X_{0,m}^N + X_{m,n}^N. \end{aligned}$$

We now show that for all k , $\{X_{(n-1)k,nk}^N : n \geq 1\}$ is a stationary process. Fix k and define $Y_n := X_{(n-1)k,nk}^N$. For x_1, x_2, \dots, x_s ,

$$\begin{aligned} \mathbb{P} \left(X_{0,k}^N \leq x_1, \dots, X_{(s-1)k,sk}^N \leq x_s \right) \\ &= \mathbb{P} \left(-Nk \leq X_{0,k} \leq x_1, \dots, -Nk \leq X_{(s-1)k,sk} \leq x_s \right) \\ &= \mathbb{P} \left(-Nk \leq X_{rk,(r+1)k} \leq x_1, \dots, -Nk \leq X_{(r+s-1)k,(r+s)k} \leq x_s \right) \\ &= \mathbb{P} \left(X_{rk,(r+1)k}^N \leq x_1, \dots, X_{(r+s-1)k,(r+s)k}^N \leq x_s \right), \end{aligned}$$

where the second equality follows from the stationarity of $\{X_{(n-1)k,nk}^N : n \geq 1\}$. Since x_1, x_2, \dots, x_s and s were arbitrary, this shows that $\{X_{(n-1)k,nk}^N : n \geq 1\}$ is a stationary process.

Next we show that for every $m \geq 1$, $\{X_{m,m+k}^N : k \geq 0\} \stackrel{d}{=} \{X_{m+1,m+k+1}^N : k \geq 0\}$. Fix $m \geq 1$. Again for x_1, x_2, \dots, x_s ,

$$\begin{aligned} \mathbb{P} \left(X_{m,m+k}^N \leq x_1, \dots, X_{m+s,m+k+s}^N \leq x_s \right) \\ &= \mathbb{P} \left(-kN \leq X_{m,m+k} \leq x_1, \dots, -kN \leq X_{m+s,m+k+s} \leq x_s \right) \\ &= \mathbb{P} \left(-kN \leq X_{m+1,m+k+1} \leq x_1, \dots, -kN \leq X_{m+s+1,m+k+s+1} \leq x_s \right) \\ &= \mathbb{P} \left(X_{m+1,m+k+1}^N \leq x_1, \dots, X_{m+s+1,m+k+s+1}^N \leq x_s \right), \end{aligned}$$

where the second equality follows from $\{X_{m,m+k}^N : k \geq 0\} \stackrel{d}{=} \{X_{m+1,m+k+1}^N : k \geq 0\}$. Since again x_1, x_2, \dots, x_s and s were arbitrary, this shows our claim.

To show $\mathbb{E} \left[(X_{0,1}^N)^+ \right] < \infty$, observe that $(X_{0,1}^N)^+ = \max \{X_{0,1}, -N\}^+ = \max \{X_{0,1}^+, 0\} = X_{0,1}^+$.

Now as

$$\begin{aligned}\mathbb{E}[X_{0,n}^N] &\leq \mathbb{E}[X_{0,m}^N] + \mathbb{E}[X_{m,n}^N] \\ &= \mathbb{E}[X_{0,m}^N] + \mathbb{E}[X_{0,n-m}^N]\end{aligned}$$

for all $0 \leq m \leq n$. Writing $\alpha_k^N := \mathbb{E}[X_{0,k}^N]$, we get $\alpha_n^N \leq \alpha_m^N + \alpha_{n-m}^N$ for all $0 \leq m \leq n$. Thus by Fekete's Lemma,

$$\alpha^N = \lim_{n \rightarrow \infty} \frac{1}{n} \alpha_n^N = \inf_{n \geq 1} \frac{1}{n} \mathbb{E}[(X_{0,n}^N)^+] \geq -N,$$

where the last inequality follows from

$$\frac{X_{0,n}^N}{n} = \frac{\max\{X_{0,n}, -Nn\}}{n} \geq -N.$$

Hence $\alpha^N \geq -N$. □

Problem 2 (Fatou's Lemma). Show the following version of Fatou's Lemma.

(i) If $\{X_n\}_{n \geq 1}$ is uniformly integrable from above (i.e., $\{X_n^+\}_{n \geq 1}$ is uniformly integrable), then

$$\mathbb{E}\left[\limsup_{n \rightarrow \infty} X_n\right] \geq \limsup_{n \rightarrow \infty} \mathbb{E}[X_n]$$

(ii) If $\{X_n\}_{n \geq 1}$ is uniformly integrable from below (i.e., $\{X_n^-\}_{n \geq 1}$ is uniformly integrable), then

$$\mathbb{E}\left[\liminf_{n \rightarrow \infty} X_n\right] \leq \liminf_{n \rightarrow \infty} \mathbb{E}[X_n]$$

Solution to (ii). Define $X := \liminf_{n \rightarrow \infty} X_n$. Let $\epsilon > 0$. Due to uniform integrability of $\{X_n^-\}_{n \geq 1}$, there exists $c > 0$ such that

$$\mathbb{E}\left[X_n^- \mathbb{1}_{\{X_n^- > c\}}\right] < \epsilon \quad \text{for all } n \geq 1.$$

Since

$$X + c \leq \liminf_{n \rightarrow \infty} (X_n + c)^+,$$

the monotonicity and the standard Fatou's Lemma imply

$$\begin{aligned}\mathbb{E}[X] + c &\leq \mathbb{E}\left[\liminf_{n \rightarrow \infty} (X_n + c)^+\right] \\ &\leq \liminf_{n \rightarrow \infty} \mathbb{E}[(X_n + c)^+].\end{aligned}$$

As

$$(X_n + c)^+ = (X_n + c) + (X_n + c)^- \leq (X_n + c) + X_n^- \mathbb{1}_{\{X_n^- > c\}},$$

we have

$$\mathbb{E}[(X_n + c)^+] \leq \mathbb{E}[X_n + c] + \mathbb{E}\left[X_n^- \mathbb{1}_{\{X_n^- > c\}}\right] \leq \mathbb{E}[X_n] + c + \epsilon,$$

hence

$$\mathbb{E}[X] \leq \liminf_{n \rightarrow \infty} \mathbb{E}[X_n] + \epsilon.$$

This gives the assertion. □

Solution to (i). Taking $Y_n = -X_n$, and applying the result of (ii) to $\{Y_n\}_{n \geq 1}$, we get the desired result. □