

Percolation Theory

Homework 12

BIKRAM HALDER
MM2408

Problem 1. For the Poisson Boolean Model $(\mathbf{X}, \lambda, (\rho_i))$ in \mathbb{R}^d , with $\rho_i \stackrel{\text{iid}}{\sim} \rho$ where $\rho > 0$ a.s., show that

$$\mathbb{P}(\mathbf{0} \in C) = 1 - e^{-\lambda \pi_d \mathbb{E}[\rho^d]}$$

Here C denotes the covered volume of the said model.

Solution. **Case 1.** ρ is discrete.

Assume that ρ takes distinct values $\{r_i\}_{i \in I}$ with probabilities $\{p_i\}_{i \in I}$, where the indexing set I is finite or countably infinite, and $\sum_{i \in I} p_i = 1$. Consider the collection of independent Poisson Boolean Models $\{(X_i, \lambda p_i, r_i) \mid i \in I\}$.

Superposing these Poisson Boolean models and using the additivity property, we get back the $(\mathbf{X}, \lambda, \rho)$ model. Let $\{C_i \mid i \in I\}$ denote the covered region in the $(X_i, \lambda p_i, r_i)$ model. Then $C = \bigcup_{i \in I} C_i$ and

$$\begin{aligned} \mathbb{P}_\lambda(\mathbf{0} \notin C) &= \mathbb{P}\left(\bigcap_{i \in I} \{\mathbf{0} \notin C_i\}\right) \\ &= \prod_{i \in I} \mathbb{P}_{\lambda p_i}(\mathbf{0} \notin C_i) \\ &= \prod_{i \in I} \mathbb{P}_{\lambda p_i}(\text{No point of } X_i \text{ lies in } B(\mathbf{0}, r_i)) \\ &= \prod_{i \in I} e^{-\lambda p_i \pi_d r_i^d} \\ &= e^{-\lambda \pi_d \sum_{i \in I} p_i r_i^d} = e^{-\lambda \pi_d \mathbb{E}[\rho^d]} \end{aligned}$$

So,

$$\mathbb{P}_\lambda(\mathbf{0} \in C) = 1 - e^{-\lambda \pi_d \mathbb{E}[\rho^d]}$$

Case 2. ρ is not discrete (measurable).

Let ρ be defined on a measure space $(\Omega, \mathcal{F}, \mathbb{P})$ and $\rho : \Omega \rightarrow \mathbb{R}$ is a measurable function. There exists an increasing sequence of functions $\rho_n : \Omega \rightarrow \mathbb{R}$ (random variables) such that $0 \leq \rho_1 \leq \rho_2 \leq \dots$ and $\rho_n \xrightarrow{\text{a.s.}} \rho$.

Consider a Poisson Point process (\mathbf{X}, λ) in \mathbb{R}^d defined on the space $(\Omega', \mathcal{F}', \mathbb{P}')$ where \mathbf{X} is countable \mathbb{P}' -almost surely for $\lambda > 0$.

Let $(\Omega' \times \Omega^\mathbb{N}, \mathcal{F}' \otimes (\otimes_{\mathbb{N}} \mathcal{F}), \mathbb{P}')$ denote the product of $(\Omega', \mathcal{F}', \mathbb{P}')$ and a countable collection of $(\Omega, \mathcal{F}, \mathbb{P})$, where $\tilde{\mathcal{F}} := \mathcal{F}' \otimes (\otimes_{\mathbb{N}} \mathcal{F})$ is the σ -algebra generated by the cylinder sets.

Then, for all $(\mathbf{x}, (w_i)) \in \tilde{\Omega} := \Omega' \times \Omega^{\mathbb{N}}$, we define covered regions

$$C_j(\mathbf{x}, (w_i)) = \bigcup_{i=1}^{\infty} B(x_i, \rho_j(w_i)) \quad (1)$$

for every $j \in \mathbb{N}$.

Note that here $\Omega' = (\mathbb{R}^d)^{\mathbb{N}}$ and $\mathbf{x} = (x_1, x_2, \dots)$. The random objects C_j are functions $C_j : \tilde{\Omega} \rightarrow \mathcal{B}(\mathbb{R}^d)$ such that the map $\ell \circ C_j : \tilde{\Omega} \rightarrow [0, \infty]$ is measurable (here ℓ is the Lebesgue measure).

Let C be the covered region corresponding to ρ in \mathbb{R}^d , defined as in (1). As $\rho_1 \leq \rho_2 \leq \dots$ on Ω , we have

$$C_j(\mathbf{x}, (w_i)) \subseteq C_{j+1}(\mathbf{x}, (w_i))$$

for all $(w_i) \in \Omega^{\mathbb{N}}$.

Thus, as random objects on $\Omega^{\mathbb{N}}$, $C_j(\mathbf{x}, 0) \subseteq C_{j+1}(\mathbf{x}, \cdot)$ for all $\mathbf{x} \in \Omega'$. Also, as $\lim_{n \rightarrow \infty} \rho_n = \rho$ almost everywhere on Ω , we have

$$\begin{aligned} \bigcup_{j=1}^{\infty} C_j(\mathbf{x}, (w_i)) &= \bigcup_{j=1}^{\infty} \bigcup_{i=1}^{\infty} B(x_i, \rho_j(w_i)) \\ &= \bigcup_{i=1}^{\infty} \left(\bigcup_{j=1}^{\infty} B(x_i, \rho_j(w_i)) \right) \\ &= \bigcup_{i=1}^{\infty} B\left(x_i, \lim_{j \rightarrow \infty} \rho_j(w_i)\right) = C(\mathbf{x}, (w_i))_i \end{aligned}$$

for almost all $(w_i) \in \Omega^{\mathbb{N}}$ and every $\mathbf{x} \in \Omega'$. Therefore, $\bigcup_{j=1}^{\infty} C_j = C$ almost surely on $\tilde{\Omega}$. Now,

$$\begin{aligned} \mathbb{P}_{\lambda}(\mathbf{0} \notin C) &= \mathbb{P}_{\lambda}(\mathbf{0} \notin C) \\ &= \mathbb{P}_{\lambda}\left(\mathbf{0} \notin \bigcup_{j=1}^{\infty} C_j\right) \\ &= \mathbb{P}_{\lambda}\left(\bigcap_{j=1}^{\infty} \{\mathbf{0} \notin C_j\}\right) \\ &= \lim_{n \rightarrow \infty} \mathbb{P}_{\lambda}(\mathbf{0} \notin C_n) \\ &\stackrel{\text{Case 1.}}{=} \lim_{n \rightarrow \infty} e^{-\lambda \pi_d \mathbb{E}[\rho_n^d]} \\ &\stackrel{\text{MCT}}{=} e^{-\lambda \pi_d \lim_{n \rightarrow \infty} \mathbb{E}[\rho_n^d]} = e^{-\lambda \pi_d \mathbb{E}[\rho^d]} \end{aligned}$$

Therefore, $\mathbb{P}_{\lambda}(\mathbf{0} \in C) = 1 - e^{-\lambda \pi_d \mathbb{E}[\rho^d]}$.

Since all random variables ρ_n were positive almost surely, this also works even if $\mathbb{E}[\rho^d] = \infty$. In that case, we have $\mathbb{P}_{\lambda}(\mathbf{0} \in C) = 1$ and due to translation invariance,

$$\mathbb{P}_{\lambda}(\mathbf{u} \in C) = 1$$

for all $\mathbf{u} \in \mathbb{R}^d$.

□