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Binary tree. We consider a rooted binary tree T = (V,E)
with the vertices V = (J,5,{0,1}", where {0,1}° := {¢} is the
root and the edges E = {{x,a(x)} cx € V\{¢}}, where a(z) =
(1, 2p—1) € {0,1}"71 for each x € {0,1}".

We take the same percolation structure as the Bernoulli percolation

on L4, where each edge is open with probability p € [0, 1] indepen-
dently of the others. FIGURE 1. Binary tree T
Denote Cy := {x € T: x +— ¢}. Then {#Cy = oo} is the event

that the root ¢ is contained in an infinite cluster.

Problem 1. Find p.(T).

Solution. To conclude p.(T) = 1/2, we will show that,

0 ifp<1/2
o) =19, .

Let Ag be the event that node 0 is in an infinite component “going forward”, that is, not including
¢. Let Aj be the same for 1. By self-similarity of T, we have

Py(Ao) = P,(A1) = O(p)
Let B;,i = 0,1 be the event that there is an edge from ¢ to 7 and that A; holds. So, B; = {¢ +—
i} N A;,i =0,1. Then,
Pp(Bi) = pO(p).
As By and B; are independent,
©(p) =Pp(Bo U By)
= Py(Bo) + Pp(B1) — Pp(Bo N By)
= 2p0(p) — (PO (p))*. (1)
One solution of this equation is O(p) = 0. If O(p) # 0, we can divide by O(p) to get
2p—1
O(p) = P>
So, for p > 1, 2’; L is a solution. Note that, ©(p) = 0 for all p < 1, as otherwise (1) would require
O(p) < 0, which is absured. When p = 3, (1) has only solution ©(p) = 0. To show that ©(p) = 2};;1

is the only solution for p > %, we turn to the second moment method.
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For each n > 1, define X, := 3, ¢, 1y L[z € Co]. Then,

EX,]= Y P@eCy)=2"p"
ze{0,1}n
as there are exactly 2" vertices at level n (i.e., {0,1}") and each of them is connected to the root ¢

has probability p™. Now,

E[X2] Y PleCoycCy)+ > Plxel)

z,y€{0,1}™ ze{0,1}m
TF#Y

n—1

Z on . 2n—r—1p2n—r + (2p)n
r=0

< (2p)*" (& + (2p)‘"> ,

where the first term in the second equality follows form the following counting argument: since T
is a tree, for x # y in {0,1}", there exists an unique ¢ = ¢(z,y,0) € {0,1}" with » < n such that
c lies on the path from = to 0 and y to x. So there must be precisely 2n — r many open edges for
the occurence of {z € Cy,y € Cp}, which yields, P(z € Cp,y € Cp) = p?"~". To count the number
of such paths, note that, c¢(z,y,0) = a™ "(z) has exactly 2"~ many descendents in {0,1}" among
which 277"~1 are of a®~"~1(z). So, for each x € {0,1}", there are exactly 2n~" — 2n—r=1 = gn-r-1
many choices for y € {0,1}" with ¢(z,y,0) = o™ "(z).

Applying the second moment method,

E[X,]? 1

P(X, >0) > > .
&> 02 g3y 2 T

=

Notice that, {X; > 0} 2 {X2 > 0} 2 --- D {X,, > 0} D --- is a decreasing sequence of events
converging to N,>1{X, > 0} C {#Cy = oco}. Then Monotone convergence theorem yields,

P(#Co = 00) > P(Np>1{X, > 0})
= lim P(X, > 0)

i 1
= lim —————
n—0oo 2pp_1 + (Qp)_n
_2p—1
P
which is strictly positive for p > % This shows our claim and hence completes the proof. O
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FIGURE 2. Plot of O(p)



Problem 2. Using Kolmogorov’s 0 — 1 law, show that if ©(p) > 0, then

P, (3 u € V(L%) such that #C(u) = o) = 1.
Solution. Let ej,eq,... be an enumeration of the edges of L¢. Let A, be the event that C' =
{en is open} = {w € Q: w(e,) = 1}. Then {A,},>1 is a sequence of independent events. Let

T = ﬂ UO'(Al,...,Ak)

n>1k>n

be the tail o-field. Call the event E := {3 u € V(L) such that #C(u) = 0o} = J, ey {#C(u) = oo}
Let F be a finite subset of edges. For a cluster to be infinite, it must intersect Nee pe A.. And changing
the state of any edge within or near F' can only affect the cluster within or near F. It cannot affect
whether an infinite cluster exists entirely in F'¢. Thus F remains unchanged if the states within F' are
altered, so C is independent of o(A. : e € F). Since the choice of F is arbitrary, and configuration
of any finite F' does not affect the occurence of E, we take Fy = {e1,...,ex}. This gives that,
E € 7. By Kolmogorov’s 0 — 1 law, P(E) = 0 or 1. Since O(p) > 0 and {#C(0) = co} C E we have
P(E) =1. O

Problem 3. Fix u,v € V(L%). Show that {u +— v} is an increasing event.

Solution. Since, a new edge being open can only increase the number of paths between two vertices,
the event {u +— v} is increasing. To make it more explicit, let w € {u «— v}, then there exists
an open path v containing edges eq,...,e, from u to v in w, ie., w(e;) =1 for all i =1,...,n. Let
w’ € Q be such that w < w’. Then w'(e;) =1 for all i = 1,...,n. Thus, v is also an open path from

uto v in w', so w’ € {u +— v}. Hence, {u +— v} is an increasing event. O



