
Percolation Theory

Homework 5

BIKRAM HALDER

MM2408

For n ≥ 1, define the box Bn := [−n, n]d ∩ Zd, boundary of Bn as ∂Bn := {v ∈ V : ∥v∥∞ = n} and

βn := P(C ∩ ∂Bn ̸= ∅).

Lemma 1. For all m,n ≥ 1, we have

(i) βm+n ≤ #(∂Bm)βmβn,

(ii) βm+n ≥ 1
2d#(∂Bm)βmβn.

Problem 1. Do similar computations as in Lecture 6 by taking the sequence {bk}k≥1 defined by

bk := gk − log βk + (d− 1) log 2

and show for all m,n ≥ 1 that,

(i) (Subadditivity) bm+n ≤ bm + bn,

(ii) gn − log βn + (d− 1) log 2 ≥ nϕ(p),

(iii) log βn ≤ −nϕ(p) + (d− 1) log n+ c2, where c2 is some constant,

(iv) βn ≤ C2e
−nϕ(p)nd−1, where C2 is some constant.

Solution. We have

#(∂Bm) ≤ 2d(2m+ 1)d−1

= 2d

(
2 +

1

m

)d−1

md−1

≤ d 3dmd−1.

Also trivially,

#(∂Bm) ≤ 2d#(∂Bm) ≤ d23d+1md−1.

Then from Lemma 1, taking logarithm on both sides, we get

log βm+n ≤ log βm + log βn + log (d23d+1md−1), (1)

log βm+n ≥ log βm + log βn − log (d23d+1md−1)︸ ︷︷ ︸
Call it gm

. (2)

Without loss of generality, we assume that m ≤ n. Subtracting gn from both sides of (2), and

rearranging,

gn − log βm+n ≤ gn + gm − log βm − log βn

= (gn − log βn) + (gm − log βm) (3)

Note that gn = 2 log d+ (d+ 1) log 3 + (d− 1) log n. So,

gm+n − gn = (d− 1) log
m+ n

n
≤ (d− 1) log 2. (4)
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Now (3) and (4) gives

gm+n − log βm+n = gm+n − gn + gn − log βm+n

≤ (d− 1) log 2 + (gn − log βn) + (gm − log βm). (5)

Adding (d− 1) log 2 on both sides of (5), we get

gm+n − log βm+n + (d− 1) log 2 ≤ (gn − log βn + (d− 1) log 2) + (gm − log βm + (d− 1) log 2).

In other words, bm+n ≤ bm + bn. This proves the subadditivity of bk (part (i)). By Fekete’s lemma,

the following limit exists and is given by

lim
n→∞

bn
n

= inf
k≥1

bk
k
. (6)

Notice that gn + (d− 1) log 2 = o(n). So, from (5), we have

− lim
n→∞

log βn

n︸ ︷︷ ︸
Call it ϕ(p)

= inf
k≥1

bk
k
. (7)

So, ϕ(p) ≤ bn
n for all n ≥ 1. In other words, for all n ≥ 1,

gn − log βn + (d− 1) log 2 ≥ nϕ(p). (8)

This proves part (ii). Rearranging (8),

log βn ≤ −nϕ(p) + gn + (d− 1) log 2

= −nϕ(p) + (2 log d+ (d+ 1) log 3 + (d− 1) log n) + (d− 1) log 2

= −nϕ(p) + (d− 1) log n+ c2, (9)

where c2 = 2 log d + (d + 1) log 3 + (d − 1) log 2 (constant). This proves part (iii). Finally, taking

exponential on both sides of (9), we get

βn ≤ e−nϕ(p)nd−1ec2

≤ C2e
−nϕ(p)nd−1, (10)

where C2 = ec2 (constant). This proves part (iv). □

Problem 2. For x ≥ y ≥ 0 and γ ∈ [1,+∞) show that

xγpγ + yγ(1− pγ) ≤ (xp+ y(1− p))γ .

Solution. For γ = 1 or p = 0 or x = y or one of x or y is zero, the inequality becomes an equality.

So we assume that p ∈ (0, 1], γ > 1 and x ≥ y > 0, so t := x
y ≥ 1, i.e., t − 1 ≥ 0. Thus we are

required to show that

tγpγ + 1− pγ ≤ (tp+ (1− p))γ .

Or equivalently,

((t− 1)p+ 1)γ − (tγ − 1)pγ − 1 ≥ 0.

Let f(t) := ((t− 1)p+ 1)γ − (tγ − 1)pγ − 1 for t ≥ 1. Then f(1) = 0 and

f ′(t) = γ((t− 1)p+ 1)γ−1p− γtγ−1pγ

=

((
(t− 1) +

1

p

)γ−1

− tγ−1

)
γpγ



≥
(
((t− 1) + 1)

γ−1 − tγ−1
)
γpγ = 0,

where the last inequality follows from 1/p ≥ 1. Therefore, f is increasing in [1,+∞). So, for all

t ≥ 1, we have f(t) ≥ f(1) = 0. This proves the inequality. □


