

Percolation Theory

Homework 8

BIKRAM HALDER
MM2408

For a nonnegative function $f: [0, \infty) \rightarrow [0, \infty)$, we define

$$G_f := \{(x, y) \in \mathbb{Z}^2 : 0 \leq y \leq f(x)\},$$

and the critical probability for G_f as

$$p_c := \sup \{p \in [0, 1] : \mathbb{P}_p(G_f \text{ admits an unbounded open component}) = 0\}.$$

Problem 1. Using 0–1 law show that, if $p > p_c(G_f)$, then there exists an unbounded open component with probability 1.

Solution. We will mostly imitate the solution of Problem 2 from Homework 2. Let e_1, e_2, \dots be an enumeration of the edges $E(G_f)$ (countable as G_f is a subgraph of \mathbb{L}^d). Let A_n be the event that $C = \{e_n \text{ is open}\} = \{\omega \in \Omega : \omega(e_n) = 1\}$. Then $\{A_n\}_{n \geq 1}$ is a sequence of independent events which is inherited from the independence of $\{A_e\}_{e \in E(\mathbb{Z}^2)}$. Let

$$\tau = \bigcap_{n \geq 1} \bigcup_{k \geq n} \sigma(A_1, \dots, A_k)$$

be the tail σ -field. Call the event $E := \{\exists u \in V(G_f) \text{ such that } \#C(u) = \infty\}$. Let F be a finite subset of edges. For a cluster to be infinite, it must intersect $\cap_{e \in F^c} A_e$. And changing the state of any edge within or near F can only affect the cluster within or near F . It cannot affect whether an infinite cluster exists entirely in F^c . Thus E remains unchanged if the states within F are altered, so E is independent of $\sigma(A_e : e \in F)$. Since the choice of F is arbitrary, and configuration of any finite F does not affect the occurrence of E , we take $F_k := \{e_1, \dots, e_k\}$. This gives that, $E \in \tau$. By Kolmogorov's 0–1 law, $\mathbb{P}(E) = 0$ or 1. Since $p > p_c(G_f)$, we get $\Theta_{G_f}(p) > 0$. Also $\{\#C_{G_f}(0) = \infty\} \subseteq E$. So we must have $\mathbb{P}(E) = 1$. \square