

Percolation Theory

Homework 9

BIKRAM HALDER
MM2408

Let T be a measure preserving transformation on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say that a set $A \in \mathcal{F}$ is *T-invariant* if $T^{-1}(A) = A$. We say that a set $A \in \mathcal{F}$ is *almost surely T-invariant* if $\mathbb{P}(A \Delta T^{-1}(A)) = 0$.

Problem 1. Show that $\mathcal{I} = \{A \in \mathcal{F}: T^{-1}(A) = A\}$ is a σ -algebra. (This is called the *invariant σ -algebra* of T .)

Solution. Obviously $T^{-1}(\Omega) = \Omega$ and $T^{-1}(\emptyset) = \emptyset$. For $A \in \mathcal{I}$, $T^{-1}(A^c) = (T^{-1}(A))^c = A^c$. Let $\{A_n\}_{n \geq 1}$ be a sequence of T -invariant sets. Then $T^{-1}\left(\bigcup_{n \geq 1} A_n\right) = \bigcup_{n \geq 1} T^{-1}(A_n) = \bigcup_{n \geq 1} A_n$. So $\bigcup_{n \geq 1} A_n$ is T -invariant. Thus \mathcal{I} is a σ -algebra. \square

Problem 2. Show that the collection of almost surely T -invariant sets is just a completion of \mathcal{I} .

Solution. Let $\mathcal{I}_0 = \{A \in \mathcal{F}: \mathbb{P}(A \Delta T^{-1}(A)) = 0\}$. Note that $\mathcal{I} \subseteq \mathcal{I}_0$. Let $A \in \mathcal{I}_0$. Then

$$\mathbb{P}(A^c \Delta T^{-1}(A^c)) = \mathbb{P}\left(A^c \Delta (T^{-1}(A))^c\right) = \mathbb{P}(A \Delta T^{-1}(A)) = 0.$$

So $A^c \in \mathcal{I}_0$. Let $\{A_n\}_{n \geq 1}$ be a sequence of almost surely T -invariant sets. Then

$$\begin{aligned} \mathbb{P}\left(\left(\bigcup_{n \geq 1} A_n\right) \Delta T^{-1}\left(\bigcup_{n \geq 1} A_n\right)\right) &= \mathbb{P}\left(\left(\bigcup_{n \geq 1} A_n\right) \Delta \bigcup_{n \geq 1} T^{-1}(A_n)\right) \\ &\leq \sum_{n \geq 1} \mathbb{P}(A_n \Delta T^{-1}(A_n)) \\ &= 0. \end{aligned}$$

So $\bigcup_{n \geq 1} A_n$ is almost surely T -invariant. Thus \mathcal{I}_0 is a σ -algebra. Now let $A \in \mathcal{I}_0$ such that $\mathbb{P}(A) = 0$ and $B \subseteq A$. Then

$$\mathbb{P}(B \Delta T^{-1}(B)) \leq \mathbb{P}(A \Delta T^{-1}(A)) = 0.$$

So $B \in \mathcal{I}_0$. Thus \mathcal{I}_0 is a completion of \mathcal{I} . \square