

INDIAN STATISTICAL INSTITUTE, KOLKATA

Assignment 2 , Second Semester 2022-23

Algebra , M. Math I

Date :

1. Show that an isometry $h : \mathbb{R}^n \rightarrow \mathbb{R}^n$ can be uniquely written as $h = t_u \circ k$ for some $u \in \mathbb{R}^n$ and k is a linear transformation $\mathbb{R}^n \rightarrow \mathbb{R}^n$ such that the matrix of k , say A , with respect to the standard basis satisfies $A^T A = Id$. Using this or otherwise, show that the set of isometries $Isom(\mathbb{R}^2)$ is a group with composition of isometries being the group operations.
2. Show that $Isom(\mathbb{R}^2)$ is isomorphic to a subgroup H of $Gl_3(\mathbb{R})$ such that the natural action of $Isom(\mathbb{R}^2)$ on \mathbb{R}^2 corresponds to, via the isomorphism, an action of the subgroup H on the subset $\{(v, 1) \in \mathbb{R}^3 | v \in \mathbb{R}^2\}$. (hint :

$$H := \left\{ \begin{bmatrix} A & w \\ 0 & 1 \end{bmatrix} | A \in Gl_2(\mathbb{R}), A \cdot A^t = Id, w \in \mathbb{R}^2 \right\}$$

)

3. Let $f \in Isom(\mathbb{R}^2)$ such that $f(v) = Av + w$, with $A \in Gl_2(\mathbb{R})$ with $A \cdot A^t = Id$ and $w \in \mathbb{R}^2$. Take the natural action of $Isom(\mathbb{R}^2)$ on $X = \mathbb{R}^2$. Describe X^f in each of the following cases :
 - (a) (Identity) $A = Id, w = 0$.
 - (b) (non zero translation) $A = Id, w \neq 0$.
 - (c) (nonzero rotation) $det(A) = 1$ and $A \neq Id$.
 - (d) (reflection) $det(A) = -1, Aw = -w$.
 - (e) (glide reflection) $det(A) = -1, Aw \neq -w$.
4. Consider the terminology of the previous problem. Show that composition of two reflections is a translation or a rotation. Show that every rotation is a composition of two reflections.
5. Show that the glide reflections are composition of 3 and no fewer reflections. (Hint : Show that every translation is a composition of two reflections. Then use the previous problem).
6. A group G is said to be acting freely on a said X if for every $x \in X$, the equation $g \cdot x = x$ implies $g = e$. For an action of a group G on X , show that the following are equivalent
 - (a) G acts freely on X .
 - (b) For any two elements $x, y \in X$ there is at most one $g \in G$ such that $g \cdot x = y$.

(c) The map $G \times X \rightarrow X \times X$ defined as $(g, x) \mapsto (x, g \cdot x)$ is injective.

7. An action of a group G on a set X is called transitive if for any two elements $x, y \in X$, there exists at least one $g \in G$ such that $g \cdot x = y$. Show that the following are equivalent for an action of a group G on X .

- (a) The action of G on X is transitive.
- (b) $|X/G| = 1$.
- (c) The map $G \times X \rightarrow X \times X$ defined as $(g, x) \mapsto (x, g \cdot x)$ is surjective.

Conclude that for a free and transitive action of G on X and $x \in X$, there exists a group structure on X induced by the action of G on X such that

- (a) x is the identity element and
- (b) there exists a group isomorphism $\phi : G \rightarrow X$ such that $\phi(e_g) = x$.

8. Show that a group of order p^2 is abelian. Give an example of a group of order p^3 which is not abelian.

9. Let G be a finite group such that $p \mid |G|$ for a prime p . Show by induction on the cardinality of G that there exists an element of order p .

10. Let G be a finite group and p be a prime

$$X := \{(x_1, \dots, x_p) \in G^p \mid x_1 \cdot x_2 \dots x_p = e\}.$$

- (a) Show that the cyclic group C_p of order p acts on X as cyclic permutations.
- (b) Give examples of orbits of each possible size.
- (c) Show that there exists at least two trivial orbits, i.e. two orbits of cardinality 1 whenever $p \mid |G|$.
- (d) Conclude that whenever $p \mid |G|$, there exists at least $p - 1$ elements of order p .

11. Let $p : E \rightarrow X$ be a covering space of a topological space X . Let $x \in X$ and let

$$S := p^{-1}(x) := \{y \in E \mid p(y) = x\}.$$

Let $G = \pi_1(X, x)$.

- (a) Using unique path lifting and unique homotopy lifting property construct an action of G on S .
- (b) Let $y \in S$, describe with proof $Stab(y)$.
- (c) Let E be connected. Show that the action of G on S is transitive.

(d) Let E be connected. Show that the action of G on S is free iff $\pi_1(E, y) = \{e\}$ for every $y \in S$.

12. Let

$$Gr(k, n) := \{V \subset \mathbb{R}^n \mid \text{subspace , } \dim(V) = k\}.$$

(a) Let $G = GL_n(\mathbb{R})$. Show that the map given by $(T, V) \mapsto T(V)$ where $T \in GL_n(\mathbb{R})$ and $V \in Gr(k, n)$ gives an action G on $Gr(k, n)$.

(b) Show that the action is transitive.

(c) For $k = 1$, and $l \in Gr(1, n)$, show that

$$Stab(l) = \{T \in GL_n(\mathbb{R}) \mid T(v) = \lambda \cdot v, |v| = 1, \lambda \in \mathbb{R}, v \in l\}.$$

13. Let $|G| = p^n \cdot m$, p is a prime, $(p, m) = 1$. Show that for any $k \leq n$, there exists a subgroup H of G such that $|H| = p^k$. (Hint : Use the first part of the Sylows theorem , may be you can use some technique from the proof).