

INDIAN STATISTICAL INSTITUTE, KOLKATA

Assignment 9 , Second Semester 2024-25

Algebra , M. Math I

Date :

1. Let K/k be a finite field extension let $K \subset N$ be an extension such that N/k is finite normal. Show that there exists a subfield $N_K \subset N$ containing K , which is the smallest normal extension N_K/k containing K . This N_K will be called the normal closure of K in N over k . Show that N_K is the intersection of all the normal extension N'/k containing K and contained in N .
2. Let K/k be a finite separable extension. Let L/k be subfield of K . Show that K/L is separable, and L/k is separable.
3. Let K be a finite field with p^n elements. Show that every element of K has a unique p -th root in K .
4. Let K/k be a finite extension and let N/K be a finite extension such that N/k is normal. Define

$$[K : k]_{s,N} := |Hom_k(K, N)|.$$

- (a) Show that for any other N'/K finite extension such that N'/k is normal we have $[K : k]_{s,N'} = [K : k]_{s,N}$. So from now on we will denote $[K : k]_s$ to be that number.
- (b) Show that for $k \subset K_1 \subset K$ finite extensions, we have

$$[K : k]_s = [K : K_1]_s [K_1 : k]_s.$$

- (c) Show that K/k finite extension is separable iff $[K : k]_s = [K : k]$.
- (d) Show that $[K : k]_s | [K : k]$ for any finite extension K/k . Show that the quotient is 1 that is $[K : k]/[K : k]_s = 1$ if $char(k) = 0$ else it is a power of some prime p for $p > 0$.
- (e) Let K/k be nontrivial finite extension. Show that $[K : k]_s = 1$ iff for every $\alpha \in K \setminus k$ is inseparable.
- (f) Show that $[k(\alpha) : k]_s = 1$ then the minimal polynomial of f has only one root.
- (g) Let $f \in k[x]$ be an inseparable irreducible polynomial. Let α be a root of f in a splitting field of f over k . Let $[k(\alpha) : k]_s = 1$, then $f(x) = x^{p^n} - a$ for some $n > 0$ and p -prime.
- (h) Let K/k finite normal extension and let $G(K/k)$ be the group of k -automorphism of K . Show that

$$[K^G : k]_s = 1, [K : K^G]_s = [K : K^G].$$