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UTSAV CHOUDHURY

CONTENTS

Lecture 1 : Introduction

Lecture 2 : Group Theory basics

Lecture 3

Lectures 4-5-6

Lecture 8

lecture 9

Lecture 9

Lecture 10

Lecture 11
Trace, Norm, Discriminant
Galois Correspondence
Solvability by radicals
Algebraic Closure
Absolute Galois groups
Hilbert Theorem 90

1. LECTURE 1 : INTRODUCTION
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Let F be any of the following fields Q, R, C and let f(x) € F[z] be a polynomial.

Sol(f)(F) :={a € F|f(a) = 0}.

We have the following fundamental theorem of algebra.

Theorem 1.1 (Gauss, 1799). Let f(x) be non constant. Then Sol(f)(C) # &. In-
fact, |Sol(f)(C)| =n = deg(f), if we count the roots with multiplicities. Therefore

n

f(z) = an [J (= — ),

i=1

where «;’s are roots of f(x) (not necessarily distinict).

Note that we have a Z/2Z action on C given by z € C — z € C, whose fixed
points are precisely the real numbers R. Note that if z = a 4 b, then Z = a — ib
and 2.z = a® + b%. On the other hand consider the map I, : C — C , given by
l.(a) = z.a.

Exercise 1.2. (1) Show that 1, is R-linear.
(2) Show that det(l,) = z.Z.
(8) Find trace(l,).



2 UTSAV CHOUDHURY

Observe that z.Z is the constant term of the real polynomial f,(z) := 2% — (2 +
Z)x + z.Z , which has z and Z has its roots. If the imaginary part of z is non-zero
then f,(z) can not be factorised over R, therefore f,(z) is irreducible in R[z]. If
F=QorRand f(x) € Flz], then f(o) =0 1iff f(&) =0 for « € C. So, we get a
Z/27 action on Sol(f)(C) for such f such that

(1) The action is trivial on the subset Sol(f)(F).
(2) The fixed points of this action is precisely the subset Sol(f)(R).

Given a polynomial f(z) = Y. ,a;z", with a; € F, we know from Vieta’s

formulae that the coefficients a; can be expressed as symmetric polynomials on the
roots.

Quadratic

f(x) = asx®+a1z+ag = az(r—ay)(x—ao) with as # 0. Putting p = —ay/az,q =
ag/asz, we see that g, ay satisfies the equation 22 + px + ¢ = 0. Completing quares
we get (v +p/2)? + (¢ — p*/4) = 0, then taking square roots we get the roots to be
—p/2+ +/p?/4 — q. Note that the roots can be expressed using the four arithemtic
operations and extrcating roots applied to the coefficients.

The discriminant A := p? — 4q = (a; — a9)? is non zero iff oy, ay are different.

Cubic Let f(z) = Z?:o a;x" = az(z — a1)(z — az)(z — az) such that a3z # 0.
Making it monic and putting X = z + as/3a3 we get X3 + pX + g = 0. Note that
(a + b)® — 3ab(a + b) — (a® + b®) = 0, therefore if p = —3ab, ¢ = —(a® + b3) then
X = (a+1b) is root. Note that —p3/27 = a3b® and —q = (a® + b3). Therefore a3, b3
are roorts of the quadratic g(T) = T2 + qT — p®/27. Therefore taking cube roots
of the roots of g(T') and then adding them will give us a root of f.

Show that A := —(4p3 + 27¢%) = ((c1 — a2)(ae — a3)(az — a1))?.

Quartic Let

with a4 = 1. Then
f(x) = (2* + (a3/2)x +1/2)* — [(a3/4 + t — az)2® + (azt/2 — a1)zx + (1*/4 — ag)] =

= fi(x,t)? — g1 ().
Note that both f; and g7 are quadratic in z. If g; is a square for some ¢, then
we can solve two quadratics to get roots of f(x). Now, g; is a square for those t’s
satisfying
(ast/2 —a1)? — 4(t?/4 — ap)(a3 /4 +t — ag) = 0.
This is a cubic in ¢, therefore we are reduced to the previous case.
What happens for quintic :

Theorem 1.3 (Abel 1823, Ruffini 1799). It is impossible to express solutions of
general quintic equations f(x) € Q|x], using the four arithmetical operations and
extracting roots applied to the coefficients.

Galois theory Let F' be as before.

Definition 1.4. Let o,o/ € C. Then o and o are called conjugates over F (or
F-congugates) if for all non zero polynomials p(x) with coefficients in F, p(a) =0

iff p(a’) = 0.
Remark 1.5. (1) a and o' are C-conjugate iff o = o'.
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(2) @ and o are R conjugate iff « = o' or o = @. Indeed, for conjugates
a#d, p(x) = (z—a)(r—a) has a as root therefore o/ =a. On the other
hand if for non zero p(x) € Rlz], we have p(a) = 0, then p(a) = 0, but as
the coefficients are in R we have p(a) = p(a@) = 0.

(3) If & and o are R-conjugate then they are Q-conjugate too. Therefore for
any f € Rz] such that there exists « € C\ R such that f(a) = 0, then
Sol(f)(C) has a non-trivial Cy action.

(4) Note that o, are R (resp. Q) conjugate such that o € R (resp. o € Q),
then o = o'.

(5) Note that /2 and —V/2 are Q-conjugate. Though they are not R-conjugate.

(6) Let f(z) = 1+ x+ 2%+ 2® + 2* € Q[z]. Using Eisenstein criteria and
P.I.D porperty of Q[z] we know that any polynomial g(x) € Q[x] vanishing
on any root of f(x) is divisible by f(x). The complex roots of f(x) are
w,w?, w3, wt, such that w = €*™/>. Using these observations we see that
Sol(f)(C) has cardinality 4 and all the elements are Q- conjugate to each
other. On the other hand w,w* and w?,w? are R-conjugate. So Q-conjugate
does not imply R-conjugate.

Therefore, we conclude that conjugacy over @ is more subtle than conjugacy
over R.

Definition 1.6. Let k > 1 and let z :== (z1,...,2) € C* and 2/ := (2},...,2}) €
Ck. We say that z and 2’ are F-conjugate if for all non zero polynomials p(ty, . .., tx)
Flt1,...,tx], p(z1,...26) =0 iff p(21,...,2,) =0.
Example 1.7. (1) (z1,...,2x) and (Z1,...,Zk) are Q and R-conjugates.

(2) (z1,-..,2k) is C-conjugate to (wn,...,wg) iff z = w; for alli.

(3) (w,w? w3 w) is Q-conjugate to (wh w3 w? w). It is non trivial to show

that (w,w?, w3, wh) is Q-conjugate to (w?, w*,w,w3). Using the polynomial
to — 12 one can show that (w,w? w3 w*) and (W?,w,w?,w*) are not Q-
conjugate. This shows that (z1,...,z,) and (21,...,z;,) are Q-conjugate

then z; and z;’ are Q-conjugate for every i. The converse is not true.

Definition 1.8. Let f € Q[t] and f # 0. Let vy, ..., be all the distinct roots of
f in C.

Gal(f) := {U € Skl(ar, ..., ar) and (ag(1), ..., Qu(r)) are Q conjugates} .

Remark 1.9. Let f and a; as above. Then for any o € Sy we have an isomorphism
of Q-algebras o : Q[t1,...tx] = Q[t1,...,tx], such that o(t;) = ty;y. Consider the
subfield of C denoted by L := Q(ay,...ax) generated by o;’s and Q. And consider
the Q morphism evy : Q[z1,...x,] — L, given by evy(z;) = ay. One can show that
this map is surjective. Then let m = ker(evy). This m is a mazimal ideal. Then
for o € Gal(f) iff o(m) = m. This shows that Gal(f) is indeed a group.

Remark 1.10. (1) If f has all rational roots then Gal(f) = {e}.
(2) If f is quadratic and non real roots then Gal(f) = Sa. If it has two distinct
real roots non rational roots then also Gal(f) = Ss.

Definition 1.11. A complex number is called radical if it can be obtained from the
rationals using only the four arithmetical operations and extracting n-th roots. A
polynomial f € Q[t] is said to be solvable by radicals if all its roots are radical.
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Theorem 1.12 (Galois). A polynomial f € Qlt] is solvable by radicals if and only
if Gal(f) is a solvable group.

2. LECTURE 2 : GROUP THEORY BASICS

Definition 2.1. A group is a pair (G,.), where G is a set and . : G X G — G is a
map of sets (binary operation) such that

(1) (z.y).z =x.(y.2) Va,y,z € G,

(2) Je € G such that e.x = z.e =z, Vx € G,

(3) For any x € G, Ix~! € G, such that z= 'z =z.27! =e.
A group G is called abelian if a.b = b.a for all a,b € G.

Remark 2.2. (1) e is unique.
(2) For any z, the inverse x~! is unique.
(3) Since x.(y.z) = (z.y).z, therefore for any x1,...,x, € G we can inductively
define x1.29....x,. Therefore for any x € G we can define ™ for n > 0
(x° = e), and using inverse we can define x~" := (z")~! = (x71)".

Definition 2.3. A ring is a triple (R, ¢,v), where R is a set ¢, : Ax A — A
maps (we will denote x +y := ¢(x,y) and x.y := Y (x,y)) such that

(1) (R,+) is an abelian group. The identity element of this abelian group is
denoted by 0.

(2) (associativity of multiplication) x(yz) = (xy)z for all z,y,z € R

(8) (Distributive property of multiplication over addition and vice versa) x(y +
z) =xy+xz and (y + z)x = yx + zx for all z,y,z € R.

A ring is called unital if there exists an element 1 € R such that x.1 = 1.x = x for
allz € R. A ring is called commutative if xy = yx for all x,y € R.

Definition 2.4. A commutative unital ring (R,+,.) is called a field if for any
x # 0, there exists y € R such that yr =xy =1

Example 2.5. (1) Let X be a set. The set Bij(X) :={f: X — X|f bijection}
18 group where composition of functions is the composition law. This group
will be denoted by Sx. If X := {1,2,...,n}, then Sx will be denoted by
Shp-

(2) Let n be a positive integer and Z/nZ denote the set {0,1,...,n—1}. The
operations @+ b := a + b(mod)n, a.b := a.b(mod)n, makes (Z/nZ,+,0) an

abelian group and (Z/nZ,+,.,0,1) a commutative unital ring.

(8) (Ezercise) Show that for a prime p, the commutative unital ring Z/p.Z is
a field.

(4) Let F be a field then F \ {0} is an abelian group under multiplication oper-
ation.

(5) Let A be a ring M be A-module, then Auts_mod(M), the set of A-module
automorphisms of M forms a group, where composition of A-module homo-

morphism is the group operation.

Loop Space Let X be a topological space and let z € X be a point. Let
Q. (X):={f:[0,1] = X|f(0) = f(1) = z, f continuous}.
Let f,g € Q,(X). Then define
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) f@, 0<t<1/2
gofw'_{m%—ly 1/2<t<1

Let e : [0,1] = X be the constant loop, that is e(t) = z,t € [0, 1] and let for any
f € Q.(X) we define f=1(t) := f(1 —t). Show the following

(1)
F(4t), 0<t<1/4
ho(go f)(t):=qg(dt—1), 1/4<t<1/2
h(2t—1), 1/2<t<1
(2)

F21), 0<t<1/2
(hog)o f(t) =< g4t —2), 1/2<t<3/4
h(4t—3), 3/4<t<1

(3) Show that there exists a continous map F' : [0,1] x [0,1] — X, Such that
F(0,t) = F(1,t) =z and F(¢',0) = ho(gof)(t') and F(¢',1) = (hog)o f(¢).

(4) Show that foe # f in general similarly eo f # f in general.

(5) Show that in all of these cases we have equality upto base point preserving
homotopy.

Definition 2.6. A subgroup H of a group G is a non-empty subset H of G such
that if x,y € H then x~ 'y € H.

Note that H C G is a subgroup iff
(1) ee H
(2) z,y € H implies z.y € H
(3) x € H implies 27! € H.

Definition 2.7. Let G and G’ be groups. A map f : G — G is called a group
homomorphism if f(x.y) = f(x).f(y) for all x,y € G. For such a homomorphism
f, define
ker(f) :=={g € G|f(9) = ec},
Im(f) = {h € G'3g € G, [(g) = b}

A homomorphism f : G — G’ is called an isomorphism if there evists f:¢ =G
homomorphism, such that fo f =idg and fo f =1idg.

Remark 2.8. (1) Letx € G and let (x) := {z"|n € Z}. Then () is a subgroup

of G. This subgroup is finite iff there exists i # j such that x* = x7.

(2) f is a homomorphism then f(eq) = eqr and f(z~1) = f(x)~L.

(8) Note that Im(f) C G’ is a subgroup of G' and ker(f) C G is a subgroup of
G.

(4) Composition of homomorphism is a homomorphism.

(5) A homomorphism f is an isomorphism iff f is bijective.

(6) If ker(f) = {ey} then f: G — Im(f) is an isomorphism.

(7) Letp: X =Y be a bijection between two sets, then we get an isomorphism
Sy — Sx given by h i+ ohoy™t.
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(8) Let G be any group, definel : G — Sg (resp. r : G — Sg) , by
I(9)(h) := g.h (resp. r(g9)(h) = h.g~'. Then | (resp. ) is an injective
group homomorphism. Therefore, any group is a subgroup of a permuta-
tion group.

(9) Let Aut(G) denote the group whose elements are isomorphisms G — G and
group operation is given by composition of homomorphism. Consider the
map con : G — Aut(G), given by con(g)(h) := ghg=*. Then con is a group
homomorphism and

ker(con) = {g € G|gh = hgVh € G}.
This is called the center of the group G and it is denoted by Z(G).

Definition 2.9. A group G is called finite if |G| < co. For any group G and an
element g € G, ord(g) :=|(g)|. A subgroup N C G is called normal if Vg € G,n €
N we have gng™' € N.

Let H C G be a subgroup. We define a relation on G as follows : ¢g; ~ g9 if
Gy 'g1 € H. This is an equivalence relation on G. Indeed, The following lemma is
an exercise

Lemma 2.10. (1) g1 ~9g2iff g1 € g2.H iff go € 1 H iff g1 H = g H.
(2) For g,¢9" € g1H, we have g ~ ¢'. Therefore equivalence class of g is g.H.
(8) There is a natural bijection H — g.H given by h +— g.h.

Proof. (1) If g1 ~ go, then g1 € goH, also as H is a subgroup (g5 'g1)~" =
gytg2 € H so go € g1H. Now g1.h = go.h'.h for some h' € H. Therefore
g1.-H C goH. Similarly one show that goH C g1 H. Now let goH = g1 H,
then go.e = g9 € g1 H and similarly g; € goH. Then g;lgl € H.

(2) Ifg,¢' € g1H, then g = g1.h1,g = g1.ha. Therefore, (¢')"'g = hy ' (g1) ‘g1h1 =
hy'hy € H. Therefore g ~ ¢'. If ¢’ ~ g, then by part 1, we get ¢’ € g.H and
every element of g. H are equavalent to g. Therefore, g.H is the equivalence
class of g.

1

(3) The given map has an inverse given by o — ¢~ '.a.
U

The set of equivalence classes under this equivalence relation is denoted by G/H.

Corollary 2.11. Let G be a finite group, then |G| = |H||G/H|. Therefore, for any
g € G, ord(9)[|G|.

Proof. Let G be any group and H subgroup. Then G = H[g.H]GG/H g.H. Now H
is bijective to g.H for all g € G. Therefore if G is finite then |G| = |G/H||H|. Now

if g € G is an element. Then o(g) = |(g)|- Then the assertion follows.
O

Lemma 2.12. Let p be a prime number and let a € Z, then a? = a mod p

Proof. Let

(Z/pZ)* :={a € Z/pZ|3b € Z/pZ,ab =1 mod p}.
Note that for any 1 < r < p integer there exists a,b € Z such that a.r + b.p = 1.
Therefore, for any 1 < r < p integer there exists a € Z/pZ, such that ar = 1 mod p.
Therefore,(Z/pZ)* is a group ( under multiplication mod p) of order p — 1. So for
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any a # 0 mod p, we have order of a mod p divides p— 1, therefore a?~! = 1 mod p,
on the other hand a = 0 mod p, implies a? = a mod p.
O

3. LECTURE 3

Theorem 3.1. Let N C G be a normal subgroup, then there is a well defined
operation on G/N, given by g1 N.gaN := g1gaN, making G/N a group and w :
G — G/N given by w(g) = gN a surjective group homomorphism. Moreove, G/N
and ™ : G — G/N satisfies the following universal property : Let f : g — G’
be any group homomorphism such that N C ker(f), thene there exists a unique

homomorphism f : G/N — G’ such that for = f.

Proof. It 1N = gyN and gaN = g4 N then there exists ny,ny € N, such that
g1 = g1n1 and g5 = gamo.As N is normal we get

gigé = ginigsnaz = 919292_1n192n2 = 91927,

for some n € N. This shows the binary operation on G/N is well defined. The map
7 is a surjective group homomorphism with ker(m) = N is left as an exercise. For
the second part, it is clear that if f exists satisfying f o w = £, then it is unique.
The existence of f will follow if we can show for g1, g2 € G such that ;N = g2 N,
then f(g1) = f(g2). But this is true beacuse, g; ‘g2 € N, and N C Ker(f), so
Flg1) 7 f(g2) = g

|

Definition 3.2. Let G be a group and X be a set. An action of G on X is a map
GxX — X ((g,x) — g.x) such that

(1) ex =z for allz € X
(2) (g192).x = g1-(g2.x) for all g1,g2 € G.

Example 3.3. (1) Let G be a group and X = G. Then there are two actions
corresponding to l,r : G — Sg. The actiion corresponding l is (g, ) — g.x.
(corresponding to r the action is (g,x) — x.g~ ).

(2) Again G acts on itself via conjugation, i.e (g,x) — grg~*.
(3) G =S,, then G acts on X ={1,...,n}, such that (o,7) — o(i).

Let G be a group and let X be a set. Let
Hom(G,Sx) ={¢: G — Sx

¢ homomorphism },
and
A(G, X) :={a: G x X — Xlais an action}.

Let a € A(G, X), then for any g € G, the map a(g, —) : X — X given by  — a(g,x)
is a bijection where the inverse is given by = + a(g~*, z). This way we get a map
¢a : G — Sx, given by ¢4(g9) = a(g, —). Now

¢a(g-h)(x) = alg.h, x) = a(g, a(h, )0 = da(g) © da(h)(z),
for all x € X. Therefore, ¢, is a group homomorphism.

Proposition 3.4. Let G be a group and X be a set. Then a € A(G,X) — ¢, €
Hom(G, Sx), induces a bijection

A(G,X) - Hom(G, Sx).
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Proof. Let ¢ : G — Sx be a homomorphism, define ay : G X X — X as ay(g, ) :

#(g)(x). Verify that ay € A(G,X). Moreover, it is easy to verify that a €
A(G,X) = ¢, € Hom(G, Sx) has an inverse the map ¢ € Hom(G,Sx) — a4 €
A(G, X).

([l

Isometry

Definition 3.5. An isometry or rigid motion of R™ is a function h : R" — R"
such that ||h(u) — h(V)]| = ||lu — v||, Yu,v € R™. The set of isometries of R™ is
denoted by Isom(R™).

The identity map Id : R™ — R™ is an isometry. composition of isometries is an
isometry. For any vector v € R™, the map ¢, : R — R” defined as t,(v) = v + u.
Then t, is an isometry.

Proposition 3.6. The following are equivalent conditions on a n X n matriz A.
(1) A is orthogonal.
(2) For all v,w € R™ we have A(v).A(w) = v.w
(8) Columns of A are mutually orthogonal unit vectors.

Proof. (1) 1 = 2v'w=0v'A"Aw = (Av)'Aw as A'A = Id.
(2) 2 = 1. if ' A"Aw = vtw for all v,w € R", then v'(A'A — Id)w = 0
for all v,w € R™. Therefore B = (A*A — Id) = 0 by choosing v = e; and
w = €.
(3) Let A; be the i-th column of A. Then A'A = Id, iff A;.A; = &;;. This
shows that 3 is euiqvalent to 1.
O

Proposition 3.7. Let T : R™ — R" be a map. Then the following are equivalent
(1) T is an isometry such that T(0) = 0 ( fizing the origin).
(2) T preserves dot products.
(8) T is left multiplication by an orthogonal matriz.

Proof. (1) 1 = 2. Indeed (T'(v) — T(w)).(T(v) = T(w)) = (v —w).(v —w).
This will imply that (v.v) = T'(v).T(v). 3 = 1 is obvious.
(2) 2 = 3. We just have to show that 7" is a linear operator. Let u,v € R"
and let w = T(u) + T'(v) and w’' := T'(u + v). To show w' = T(u) + T(v).
Note that w'.w’ = (u + v).(u+ v) as T preserves dot product.
Now
wow=w.(T(u)+T)) =w"T(u)+w' . T(v) =
=(T(u+v)T(w)+ T(u+v)Tw) =(u+v)u+ (u+v)v=(u+v)(u+v).
Similarly we have
w0 = w.(T(w) + T(v)) = (T(w) + T)(T(w) + T(w)) =
=T(u).T(u) + 2T (u).T(v) + T(v).T(v) = v.u + 2u.v +v.v = (u+v).(u + v).
Then (w — w').(w —w') = waw — 2waw' + w'.w" = 0. Therefore w = w'.
O

Definition 3.8. Let R,, be a fixed reqular n-gon. Then D, is the set of isometries
of R? which maps R, to itself.
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Lemma 3.9. Let R, be a regular polygon and let x;,x;+1 be two meighbouring
vertices of R,. If P,Q two points on R, such that ||P — x;|| = ||Q — x;]| and
[P = ziy1|| = [|Q — isa], then P = Q.

Proof. If P and @ satisfies the the condition of the lemma, then there exists circles
Cy centered at z; with radius ||P — z;|| and C5 centered at x;11 with radius ||P —
Zi+1]], such that Cy and Cy intersects at P, Q. If P # @, then P and @ lie on the
opposite sides of the line joining x; and x;41, which is absurd as R,, is convex.

O

Theorem 3.10. The group D,, has 2n elements. In particular these are given by
r,0 < i < n—1, where r is rotation by angle 2w /n and reflections. If n is odd
the n many reflections are given by reflections wrt to the lines joining a vertex with
the midpoint of the opposite side. If n is even, there are n/2 reflections wrt the
lines joining opposite vertices ( diagonals) and n/2 relections wrt the lines joining
midpoints of the opposite edges.

Proof. Since rotations does not fix anything on R,,, therefore, no reflection is a
rotation and no rotation is a reflection. The reflections listed above have different
fixed points , therefore, the n reflections we get are distinct. Therefore |D,| >
2n. Let f € D,,. Then f maps vertices to vertices as f preserves distance and
the vertices are the only points with a fixed distance with the origin. Moreover
neighboring vertices gets mapped to neighbouring vertices. Now let 21 and x5, two
neighbouring vertex and let f(x1) = y; and f(x2) = yo. Then P € R, is uniquely
determined by its distance with x1,x9. As f preserves distance, f(P) is completely
determined by y; and yo. So therefore there are n choices for f(x1) and after fixing
f(x1) there are only two choices for f(x2). This shows that |D,| < 2n.

O

Corollary 3.11. Let r € D,, be the counterclockwise rotation by angle 27 /n and

let s be any reflection. Then srs = r~'. Therefore, the n reflections are given by

s,rs=sr~1 . pnTlg = gp L,

Proof. Hint : To show srs = r~! it is enough to show what RHS and LHS does
to any neighbouring vertices. Let [ be the line of reflection of s. Then s intersects
the midpoint of a side (irrespective of parity of n). Choose the vertices of that side

and see what happens.
|

Reflections and rotations
Example 3.12. Let f € Isom(R?) such that f(0) = 0. Then f is given by one of
the following matrices

(1) (Rotation) Counter clockwise rotation by angle 6.

[cosd —sind]
sinf  cosb

(2) (Reflection) Reflection across the line through the origin at angle 6/2.

[cos®  sind ]
sinf —cost
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Definition 3.13. Let G be a group acting on a set X and let x € X.
O, :={y € X|g.x =y for some g € G}.

Stab(z) .= {g € Glg.x = z}.

Remark 3.14. Let G be a group acting on X. Define a relation on X by x ~ y iff
dg € G such that y = g.x. This is an equivalence relation and the equivalence class
of © is precisely O,. We will denote by X/G the set of equivalences classes.

Theorem 3.15. Let G be a group acting on a set X, and let x € X. Then
¥ : O(x) — G/Stab(z) such that y = g.x — g.Stab(x), is a well defined bijection.
Therefore when G is finite, we get

0,].|Stab(z)| = |GI.

Proof. If y = g1.x = go.x, then gy 'g;.x = =, therefore g, '.g; € Stab(z). This
implies g1.Stab(z) = g2.Stab(x). Therefore ¢ is well defined. Surjective of v is
obvious. If ¥(y1) = ¥(y2) and y1 = g1z and y2 = gox, then g;lgl € Stab(x), so
Y2 = g2.95 1T = 1T = Y1,

O

4. LECTURES 4-5-6

Example 4.1. (1) Let p : E — X be a covering space of a topological space
X. Letx € X and let

S:=p~!(z) = {y € Elp(y) = z}.
Let G = m(X,x). Then f € G, there exists a continuous map f :[0,1] —
X, such that f(0) = f(1) = x. Lety € S. Then there exists a unique
g : 10,1 = E continuous such that g(0) = y and po g = f. Therefore,
g(1) € S. If f and [’ are (base point preserving) homotopic and let ¢
be alift of f' such that ¢'(0) = y, then g(1) = ¢'(1) by unique homotopy
lifting. This gives an action G x S — S. Let p, : m(E,y) — m (X, z) be
the induced homomorphism for y € S. Then Stab(y) = Image(p.). If E is
connected then Oy = S
(2) Let
Gr(k,n) .= {V C R"|subspace ,dim(V') =k} .

The group G = GL,(R) acts on Gr(k,n) in the following way (T,V) —
T(V) where T € GL,(R) and V € Gr(k,n). For k=1, andl € Gr(1,n),

Stab(l) = {T € GL,(R)|T(v) = Av,|v] =1, e R,v € l}.
Definition 4.2. Let G be a group acting on a set X and let g € G.
X9 :={zr e X|gz =z}.
X .= {z € X|gx = z,Yg € G}.

Lemma 4.3. Let G be a group acting on a set X and let x,y € O, forz,y,z € X,
then Stab(x) = Stab(y) = Stab(z).

Proof. As x,y is in same orbit, therefore there exist g € G such that g.x = y. Let
¢ : Stab(x) — Stab(y) given by ¢(h) = ghg~'. Note that ghg~1(y) = gh(x) = gx =
y. So we get the required homomorphism, whose inverse is given by t — g~1tg.

O
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Theorem 4.4. Let G be a finite group acting on a finite set X. Then

1
IX/G1 = 17 2 1)

geG

Proof. Let A C X x G such that A= {(z,9)[g.z =2}. Then A=[] ;X9 xg=
[I,ex « x Stab(z). Note that X = [];,)c x/g Oz- Then

A=) |1X9 =Y ax Stab(x) =

geG zeX
= Y D IStably)l = > [OlIStab([z]))| = > |G| =|X/G| x |G].
[z]€X/G y€O,) [z]ex/G [z]eX/G

O

Definition 4.5. Let G be a finite group acting on a finite set X and let Oy, , ..., Oy,
be the distinct non-trivial orbits.
Then

X = X+ 10s,
i=1

If G acts on X = G by conjugation action and let Oy, ,...,0O4, be the distinct
non-trivial orbits. Then the above equation becomes

Gl =1Z(G)[+ Y 10g,].
i=1

Lemma 4.6. Let G be a group of order p™, then the center Z(G) is non-trivial.

Proof. If G is abelian then we are done. If not then Z(G) # G. Consider the class
equation

Gl =12(G)| + )10,
i=1

Now the orbits O, are non trivial as Z(G) # G. Therefore Stab(g;) # G and this
shows that p||Oy,| for all i. Therefore p||Z(G)|.

O

Theorem 4.7 (Cauchy’s theorem). Let G be a finite group and p be a prime number
such that p||G|. Then G has an element of order p.

Proof. Let
X ={(g1,---,9p) € GPlg1.92 ... gpe}.

Then | X| = |GP~| ( as the first p — 1 elements uniquely determines the last). So
| X| is divisible by p. Now ¢1.92...¢gp, = e implies g,.91.92 . .. gp—1 = €. Therefore
Cp acts on X via cylic permutation. So, the size of the orbits are p or 1. Now,
(e,e,...,e) has orbit size 1. Therefore, there has to be another elemnt (g1, ..., gp)
whose orbit size is 1 as p||X|. An elemnt (g1,...gy) has orbit size oneiff g; = g; = g
for all i # j and ¢? = 1.

Another proof By induction on |G|. If |G| = p, then nothing to show. If G
is abelian let g € G an elment of order not divisible by p, then G/(g) is a smaller
group which is divisible by p and therefore has an elemnt of order p say x(g). Then
2P € H and if x has order m then z™ = e implies (z(g))™ = (g) or p|m and
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therefore there exists an element of order p. The claim for p divides order of g is
same.

If G is not abelian, and if |Z(G)| is divisible by p then we are done by previous
steps. Else, there exists as non central element whose cardinaly of conjugacy class
is not divisible by p. Threfore, there exists a non trivial subgroup (namely the
stablizer of non central element) whose cardinality is divisible by p. Now induction
applies.

O

Example 4.8. (1) Let G be a group and let n||G| and let X be the set of all
order n subgroups of G. Then G acts on X by conjugation, i.e. (g,H) —
gHg™t. Then

Stab(H) = {g € G|lgHg™"' = H} := N¢(H),

it is called the normaliser of H in G. Note that H is a normal subgroup of
N¢(H). Note that orbit of a subgroup H under this action is trivial iff H
s normal.

(2) Let G be a finite group and

X :={(z1,...,2,) € G"|z1.72... 75 = €} .

The cyclic group C, of order n acts on G™ as cyclic premutation. Let
x:=(g1,-.-,9n) € X. Then |O,| =1, iff all the g;’s are equal to say g and
g" =e.

Definition 4.9. Let G be a group and p-prime.

(1) A group of order p* for some k > 1 is called a p-group. A subgroup of order
p* for some k > 1 is called a p-subgroup.

(2) Let |G| = p™.m such that (p,m) =1, then a subgroup of order p™ is called
a Sylow p-subgroup of G.

Syl,(G) :== the set of Sylow p — subgroups of G.
Theorem 4.10 (Sylows Theorem). |G| = p".m and (p,m) = 1.
(1) Syly(G) # .
(2) Let Py,P, € Syl,(G), then 3g € G such that P, = gPyg~'. Therefore
n,(G) = |G|/|Na(P)| , where P € Syl,(G).
(8) Every p-subgroup of G is contained inside a Sylow p-subgroup.
(4) np(G) =1 mod p.

Proof. (1) By induction on |G|. The case |G| =1 is trivially true. Suppose we
know that for all groups of cardinality k& < n and any prime p such that
k = p®.b such that (p,b) = 1, we have a Sylow p-subgroup. Let |G| = n
and p be a prime mentioned in the statement of the theorem.

Case 1: pt|Z(G)]
Then using the class equation, we see that there exists a non trivial con-
jugacy class ( i.e. non trivial orbit) not divisible by p. By orbit stabiliser
theorem, this implies there exists an element g € G such that C(g) # G
and p™ | |C(g)]. Then we are done using induction.

Case 2:
p1Z(G)|
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Cauchy’s theorem tells us that there is an element h € Z(G) of order p.
Therefore, the cyclic subgroup generated by h, say H, is of order p. As every
element of H commute with every element of GG, H is a normal subgroup of
G. The group G/H has cardinality p"~!.m and by induction there exists
Sylow p-subgroup P of G/H, such that P = 7(P) for a subgroup P of G
containing H ( infact P := 7~ !(P)), where 7 : G — G/H is the canonical
quotient homomorphism. Therefore, P is a Sylos p- subgroup of G.

(2) We have to show that the conjugation action of G on Syl,(G) is transitive.
Let P1,Q € Syl,(G), and let Op, = {Py,..., P} be the disntinct elements
of the conjugacy classes of P;. We want to that () C N,(Py) for some k.
For that we note the following.
pfl:

Indeed, if p | I, then | = |Op,| = % implies that p | %. This contra-
dicts the fact that P; is a Sylow p-subgroup.

Note that @ acts on Op, and as p { I, there exists atleast one orbit of
this action of size not divisible by p. Assume that this happens for Py,
iept %. As |Q)| is p-group, this implies @ = Ng(Px) = Ng(Py) N
Q. This implies @ C Ng(P;). Now H := Ng(P;)/Py is a group (P is
normal subgroup of N¢(Py)) whose order is not divisible by p as Py is a
Sylow p-subgroup, and therefore @ C ker(w) = Py, where m : Ng(Py) —
N¢(Py)/ Py is the canonical group homomorphism. Therefore, @ = Pj.

(3) First note the following claim :
Let P be a Sylow p-subgroup and () be a any p-subgroup, then
QﬂP:QﬁNg(P).
It is clear that Q N P C @ N Ng(P) =: H, and H is a either trivial or
a p-subgroup again. Again Ng(P)/P is not a p-group as P is a Sylow p-
subgroup. Therefore like the previous proof H C P. It is clear that H C Q,
so H C PN Q. This settles the claim.

Let H be any p-subgroup of G and let it act on Syl,(G) via conjugation.
Then , we know by the previus part that p t n,(G). Therefore, there exists
atleast one orbit of size not divisible by p. This implies p ¢t % for
some P; € Syl,(G). As the groups in question are all p-groups, therefore
% =1lor H= Ng(P,))=HNNg(P,) =HnNP; and we are done.
(4) Let P € Syl,(G) act on Syl,(G) by conjugation. Thne the orbit of P is
the Sylow-p subgroup P;. If P; € Syl,(G) and P; # Pi, then orbit of P;
under this action is of the size

[Pl : ]\/vp1 (Pj)] = [P1 PN Ng(PJ)] = [Pl Py ﬂPj],

and the size of the orbit is a non trivial power of p. Therefore n,(G) =
1+ k.p for some positive integer k.

(Il
Definition 4.11. A permutation o € S, is called a k cycle for k < n, if there
exists k distinct elements ay,ag, ..., ar € [n], such that 0(a;) = @i+1 mod  for all i
and o(x) = x for allx € [n]\{a1,...,ar}. In this case we write 0 = (a1 az ... a).

The set {a1,...,ax} is called the underlying set of o and is denoted by Sy.
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Lemma 4.12. If o = (a1 ay ... ag), then k is the least positive integer such that
goco...0c:=0F=e.
Proof. We claim that 0(a;) = @j4i mod k and o'(z) = x for all z € [n]\{a1,...,ax}

. We prove this by induction. For ¢ = 1 this is the definiton. Let the claim hold for
j < i. Now
Ui(aj) = U(Ui_l(aj)) = 0(@j4i—1 mod k) = @j+i mod k-

This shows that o!(a1) = a; then | > k, and 0% (a;) = a; for all j. Therefore the
lemma follows.

O

Example 4.13. (1) Let o = (12)(34) € Sy be the permutation such that
o(l)=2,0(2) =1,0(3) =4,0(4) = 3.

Then o is not a k-cycle.
(2) Let o = (13)(12), then o = (123).

Lemma 4.14. Let 0 € S, be a k cycle given by o = (a1 ag ... ag), then
o= (a1 ar)(a1 ax—1)...(a1 a3)(a1 az).
Proof. Let x ¢ {a1,...,a;}, then
x=o0(z) = (a1 ar)(a1 ax—1)...(a1 az)(ar az)(x).
Now for ¢ < k, we have o(a;) = a;11 and o(ax)a;. But
((a1 ar)(ar ax—1) ... (a1 as)(ar a2))(ar) = ((a1 ax))(ar) = a1,
and for ¢ < k we have
((a1 ax)(ayr ag-1) ... (a1 az)(a1 az))(ai) = ((a1 ax)(a1 ak—1) - .. (a1 ait1)(a1 ai))(a;) =
= ((ar ar)(ar ag-1) ... (a1 aiy1))(a1) = ((a1 ax)(ar ap-1) - .- (a1 ait2))(@iv1) = @it

O

Definition 4.15. A permutation ¢ = 01 0 g3 0 --- 0 g; such that o; is a k;-cycle
and Sy, NSy, = @ is called a composition of dsijoint cycles. Such a permutation is
called a permutation of type (ki,..., k).

Proposition 4.16. FEvery o € S, is a unique composition of disjoint cycles.

Proof. Indunction on n. The case n = 2 is obvious. Let o € S,,. Consider the set
Ay = {o'(1)}. If Ay = [n], then o = (1 o(1)... ¢"7(1)). Otherwise |4;| < n
and 0 = 0’ o (1 o(1)... 07(1)). Sucha that ¢’ only premutes A§. Therefore by
induction ¢’ can be decomposed.

O

Lemma 4.17. Let (G,.,e) be a group and let g,h € G, such that g.h = h.g and
both g and h has finite order. Then g.h has finite order and o(g.h)|lem(o(g),o(h)).
Moreover, if gcd(o(g),0(h)) =1, then o(g.h) = o(g).o(h).

Proof. First we claim that h'.g = gh’, whenever g.h = h.g. We prove this by
induction on ¢ . the case ¢ = 1 is the relation g.h = h.g. Now

hig=h"'hg=h"tgh=gh"th=gh'
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Therefore, whenever g.h = h.g, we have g'.h? = h7.g*. We claim that (g.h)" = g*.h'
for any ¢ € N. We prove it by induction on ¢. The case i = 1 follows trivially. Now
(g.h)" = (g.h) " Lgh=g "t h  hg =g gh" =g" R

Let k = lem(o(g),0(h)), then o(g), o(h)|k. This implies
(g.n)F = gF.hk =ee=e.
Therefore o(g.h) < k, infact o(g.h)|k. Since (g.h)" = e, then
e = (g.h)"°@ = (g.h)"o"),

Therefore, h*°9) = g=o(h) = ¢, This implies o(h)|i.o(g) and o(g)|i.o(h). Now let,
ged(o(g),0(h)) = 1. Then o(h)|i and o(g)|i. Therefore, o(h).o(g)|i. This gives the
result.

O

Definition 4.18. Let 0 € S,, be a premutation. The fized set of o is defined as

follows
F,:={i€n)|lo(@) =i}.
Two premutations o,7 € S, is called disjoint permutations if
(Fo)¢N (F )¢ =o.

Remark 4.19. If o and T are disjoint permutations, then o' and 79 are disjoint
too.

Lemma 4.20. Let o,7 € S,, be disjoint permutations. Then c oT = T o 0.
Moreover, o(o o 1) = lem(o(o), o(T)).

Proof. Let i € [n], then i is fixed by atleast one of o or 7. WLOG, i € F,, then
7(i) € F, too. Therefore, (1 0 0)(i) = 7(i) = (0 o 7)(i). Therefore, we get our
first claim. Note that for o, 7 disjoint cycles, such that 0 o 7 = e, then o = e and
7 =e. Indeed, let i ¢ F,, theni € F,, i = 0co7(i) = o(¢), which is a contradiction.
Therefore [n] = F,, similarly [n] = F.

Now , as 0 o7 = 7 o 0, therefore o(c o 7)|lem(o(c),0(7)). Let i be a positive
integer such that (0 o7)? = e, then 0’ o 7" = e. As ¢* and 7! are disjoint, therefore
o' = e = 7%, Therefore, o(c)|i and o(7)|i. Therefore, lem(o(c),o(7))]i. This shows
that lem(o(0), o(T))|o(o o T).

(]

Remark 4.21. g.h = h.g in a finite group G does not imply o(g.h) = lem(o(g), o(h))
in general.

Lemma 4.22. Following are true in S,
(1) (a b)(a b) =e.
(2) (a b)(c d) = (c d)(ab).
(3) (ab)(bc)=(bc)ac).
(4) (ab)(a c) = (bc))(ab).

Proof. First two is obvious.
(ab)(bc)a) =b= ( )(a ¢)(a),
(@ b)(be)(b) = ¢ a
(@b)(bc)(c) =a= (b C)(a c)(©).

Similarly the last one can be checked. ([l
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Proposition 4.23. Ife =1, ...7, such that 7; are transpositions. Then n is even.

Proof. We will prove this by induction.For n = 1, e canot be a transposition.
For n = 2, we get the result. Now let n > 2 and e = 77...7, such that 7; are
transpositions. Let 7, = (a1, b1).

Step 1 :

If ,_17; = e for some i, then we get e as a length n — 2 composition of transpo-
sitions. By induction, this implies that n — 2 is even therefore n is even.

Step 2 : Otherwise , choose the first transposition from right having b, say 7;
and use lemma 4.22 to get e =0y ... 0p_10p, such that o; =7; for j <i—1,5 >4
and 0;_1 is a transposition premuting b; and o; is a transposition fixing b;.

If after applying Step 2, the condition of Step 1 is not satisfied then we apply
Step 2 again until we satisfy Step 1 condition otherwise we reach a stage such that
e =01 ...0p, such that ¢;’s are trasnpositions and only o1 permutes b;. This is not
possible as e fixes by, but o7 ...0,, such that ¢;’s are trasnpositions and only o4
permutes by, does not fix b;. So Step 1 condition is verified at some intermediate
stage and therefore we get the result from Step 1.

O

Theorem 4.24. Letc =01...0, =Ty ...Tn, such that o;,7;’s are transpositions.
Then either m,n are both even or m,n are both odd.

Proof. Note that in any group (g.h)~! = h~!.g71. Also note that if 7 is a transpo-
sition then 77! = 7. Therefore, ¢ =01 ...0,, =71 ... 7T, implies that

€ =TnTn—-1..-7T101...0m.

By previous proposition, this implies m+n is even. Therefore, the theorem follows.
O

Definition 4.25. A permutation is called even if it can be written as composition of
even number of permutations otherwise it is called odd. The set of even permutation
in S, is denoted by A,. Let Odd,, denote the set of odd premutations.

Remark 4.26. The cardinality of A, is n!/2.

Definition 4.27. A subgroup G C S,, is called transitive if the induced action of
G on {1,2,...,n} is transitive.
Lemma 4.28. (1) Letp € S,, and o = (123), then pop~! = (p(1)p(2)p(3)). If
o = (123)(47) then pop~' = (p(1)p(2)p(3))(p(4)p(7)).
(2) Show that two premutations o, 7 € S, are conjugate to each other iff they
have the same cycle type.

Proof. Exercise. O

Lemma 4.29. Let p bea prime and let G be a trnasitive subgroup of S,. Then any
normal subgroup H # {e} of G is again a transitive subgroup.

Proof. Let H act on [p]. Let ¢, j € [p] and let O; and O; be orbits under this action.
Now there exists ¢ € G such that o(j) = i. Let x € Oy, then = h.j for some
h € H. Then o(x) = o0 o h(j) . As H is normal therefore there exists ' € H such
that coh =h"oo. So o(x) = h oa(j) =1 (i), so cO; C O;. Similarly O; C ¢O;.
So O; is in bijection with O; for all 4, j. This implies p = m.|O;| for any i. Note
that if all h € H fixes all ¢ € [p]. Then H = {e}. Therefore |O;| > 1. This implies
|O;| = p. Therefore H is a transitive subgroup. a
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Proposition 4.30. Any transitive subgroup G of Sy, containing a transposition is
the whole group S,.

Proof. Let H C G be the subgroup generated by transpositions in G. Then H #
{e}.Note that for any 7 € H, 7 = 71 0 ... 7T, 7; transpositions in G. Then for any
g € G we have grg™! = grig ' o...gmg” " and grig~! is again a transposition
in G. Therefore, H is normal subgroup of G. Previous lemma implies that H
is a therefore a transitive subgroup of G. Assume, WLOG, that (1,2) € H and
suppose all (1,5) € H, where 2 < j < q. Note that (1,4)(1,7)(1,4) = (i,7) and
transpositions generate S,. Therefore, it is enough to show p = ¢. Let 0 € H
such that o(1) = p and 0 = 71 o...7;. It is not possible that all 7; keeps the

set [¢] := {1,...q} invariant as their somposition is o which does not keep [q],
invariant. Therefore, one of the 7 is 7, = (i,7), such that i < g and ¢ < j. Then
(1,4)(4,4)(1,4) = (1,) € H. Therefore p = q. O

Remark 4.31. (1) Find out the class equations of Ss and Sy.

(2) Let o € A,,. Let C4(0) and Cg(o) denote the conjugacy classes of o in Ay,
and S,, respectively. Let Staba(c) and Stabg(o) be the stabilizer of o in A,
and S,, respectively. Then |Cs(0)||Stabs(o)| = |Sn| and |Ca(c)|.|Staba(o)| =
|An|. Therefore, |Ca(o)|.|Staba(o)| = 1/2|Cs(0)||Stabs(o)|. Note that
Staba(c) C Stabg(o). If Staba(c) = Stabg(o), then Ca(o) = 1/2Cs(0)
(in A, conjugacy class of o splits into halves). So if Cs(o) is odd then
it this is not possible. If Staba(o) # Stabs(o) then the conjugacy classes
remain same as |Staba(o)| = 1/2|Stabg(o)].

(8) Class equation of Ss is 120 =1+ 104 15+ 20 + 20 4+ 30 + 24. The 10 and
30 belongs to odd permutation, therefore they do not contribute to the class
equation of As. The number of permutations of cycle type (2,2,1) is 15,
which is odd number so they can not split in halves. As 24, the number of
premutation of cycle type (5) does not divide the cardinality of As, it must
split into halves. The conjugacy classes of cycle type (3,1,1) contains the 3
cycle (123) and they give 20 many elements of Ss. But the odd premutation
(45) € Stabs((123)), therefore Ca(123) = Cg(123). Therefore, the class
equation of As is 60 =1+ 15420+ 12 4 12.

Definition 4.32. A group G with no non trivial normal subgroup is called a simple
group.

Remark 4.33. (1) Simple abelian groups are precisely the groups Z/pZ for p
a prime. Indeed, Let G be an abelian group and let g # e. If (g) # G, thene
this is a non trivial normal subgroup so G is not simple. If G = (g), and
o(g) is not prime or infinite. In both cases we will get non trivial normal
subgroups.

(2) The group As is simple. The class equation of As gives us that there are
1 conjugacy class of size 1 (type (1,1,1,1)), size 20 (type (3,1,1)), size
15 ( type (2,2,1)), and 2 conjugacy classes each having size 12 (type (5),
classes [(12345)] and [(13524)]. Any normal subgroup of As contains the
conjugacy class of size 1, plus whole conjugacy classes for some of the non
trivial conjugacy classes. Also the cardinality of the normal subgroup must
divide 60. This is not possible unless the normal subgroup is one of the
trivial normal subgroups.
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Let G be a group
G':=[G,G] =< {ghg 'h '|g,h € G} >,

is the commutator subgroup of G. It is normal in G, and G* := G/G*
is an abelian group such that any homormorphism ¢ : G — A, with A an
abelian group uniquely factors through G — G®. If G is simple non abelian
then G = G, if G is abelian then G* = {1}.

Remark 4.34. (1) We see that for any prime p | |G|, np(G) = % for

(2)

(3)
(4)
(5)

(6)

any P € Syl,(G). As P C Np(Q), therefore ny(G) can not have a power
of p divisor but it divides |G|. Threfore ny(GQ)||G|/p", where |G| = p™.m
with (p,m) = 1.

A Sylow p-subgroup P is normal iff it is the unique Sylow p-subgroup iff
ny(G) =1 as all the Sylow p-subgroup are conjugate to each other and all
conjugates of a Sylow p-subgroup is again a Sylow p-subgroup.

If G is abelian and p be a prime dividing |G|, then n,(G) = 1.

Sylow p subgroup and Sylow q-subgroup for p # q have trivial intersection.
Let |G| = p.q where p, q primes and p < q. Then G has exactly one subgroup
of order q, which is therefore normal. Indeed, ng|p, and ng =1 mod q.
Therefore ng = 1.

Let |G| = 12. Then either G has normal Sylow 3-subgroup or else it is
isomorphic to Ay.

Proof. We know ng|4 and ng = 1 mod 3. So ng = lord.ng = 1 gives the
first condition. If ng = 4. Then [Syl3(G)| = 4 and the conjugation action
of G on Syl3(@G) is transitive. This action gives a group homomorphism
¢ : G — S4. Note that

ker(¢) = {g € Glg € Ni_ Na(P)} -

Alos note that |[Ng(FP;)| = 12/ng = 3. Therefore Ng(P;) = P,. But
P,NP; = {e} as they are disctinct subgroups of prime cardinality. Therefore
¢ is injective. So im(¢) as a subrgoup of Sy is of order 12. The generator
of P;’s give order 3 elements in the imgae of ¢ in S;. There are eight such
order 3 elements. The order 3 elements of Sy are 3-cycles, which are even
premutation. Therefore, |[A4 NIm(¢)| cardinality is atleast 8.Lagrange tells
us that therefore |[A4 N Im(¢)| = 12 and we get our claim. O

Definition 4.35. Given a group G, a sequence of subgroups

G=Gy>G1 DGy ={1},

is called a solvable series of G if , Giy1 is normal in G; and G;/G;y1 is abelian
for all0 < i <n. A group G is called solvable if it has a solvable series.

Examples of Solvable groups Abelian groups are solvable. Simple non abelian
groups are not solvable. Therefore, A5 is not solvable. S; and S are obviosuly
solvable. The series

S3 D A3 D {6}

is a solvable series of S3. Let

Vy = {6, (1’ 2)(374)a (1’3)(274)3 (1,4)(27 3)} :
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Then Vj is a normal subgroup of A4 and A4/V} is group of order 3 so cyclic and
Vy is abelian. Therefore
S4DA4:)V4:){6}

is a solvable series of Sy.

Lemma 4.36. Let G be a group. Define G := [G,G] and G = [GI~!, G 1.
Then G is solvable iff there exists a natural number n such that G™ = {1}.

Proof. If G staisfies that G,, = {1}, then G is solvable is obvious as commuta-
tor subgroups are normal and quotienting by commutator subgroup gives abelian
groups. Now suppose G is solvable and

G:G()DGlD"'DGnZ{l},

be a solvable series of G. Now for any K C H C G, such that H is normal in
G and K is normal in H and such that G/H and H/K are abelian then G! is a
subgroup of H and G'/K N G' is abelian as G/H is abelian and H/K is abelian.
As G'/K N G* is abelian, we get that G2 C K. So inductively one can prove that
G™ C G,, and we are done.

O

5. LECTURE 8

Definition 5.1. Given a group G, a sequence of subgroups
G=GyDG D--DG, ={1},

is called a solvable series of G if , Giy1 is normal in G; and G;/Giy1 is abelian
for all 0 < i <n. A group G is called solvable if it has a solvable series.

Examples of Solvable groups Abelian groups are solvable. Simple non abelian
groups are not solvable. Therefore, A5 is not solvable. S; and Sy are obviosuly
solvable. The series

S3 D Az D {e}
is a solvable series of S3. Let
Vi:={e,(1,2)(3,4),(1,3)(2,4), (1,4)(2,3)} .

Then Vj is a normal subgroup of A4 and A4/Vj is group of order 3 so cyclic and
V4 is abelian. Therefore
Sy D A4 DVuD {6}

is a solvable series of 9.

Theorem 5.2. (Second Isomorphism Theorem) Let H be a subgroup of a group G
and N a normal subgroup of G. Then HN s a subgroup of G , HN N is a normal
subgroup of H, and H/HNN = HN/N.

Proof. As N is normal hy.nq.ho.ng = hlhghz_lnlhgng = hihan/ny for some n’ € N.
In particular we get that HN = NH. Therefore, H.N is a subgroup of G. The
subgroup N C HN is normal and H C HN is a subgroup. The homomorphism
H — HN/N sending h — h.N has kernel H N N. For all h € H,n € N, we have
h.n.N = h.N. Therefore the map H — HN/N is surjective. Now apply theorem
?7

O
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Theorem 5.3. (Correspondence Theorem) Let N be a normal subgroup of G and
let m: G — G/N be the canonical quotient group homomorphism. Then H — mw(H)
is a one to one correspondence between the set of subgroups H conatining N and
the set of subgroups of G/N. Moreover, the normal subgroups of G containing N
correspond to normal subgroups of G/N.

Proof. First of all w(H) is subgrioup of G/N and for any subgroup H' C G/N,
7 1(H’) is a subgroup of G. Since m(N) = e.N € H’, therefore 7~1(H’) contains
N. We will verify that for any subgroup H containing N, we have 7 ~!(r(H)) = H.
It is clear that H C 7= Y(w(H)). Let g € 7~ (mw(H)), therefore we have 7(g) = 7(h)
for some h € H. This implies g.h~ € N, therefore g.h~* € H. This implies g € H.
Next we show that for any subgroup H' C G/N, we have n(r~'(H')) = H'. Again
m(r~Y(H')) C H' is obvious. Let i/ € H’. Then there exists g € G such that
m(g) = I’ as 7 is surjective. Then g € 7~ (H’), therefore 7(g) = h € n(7~1(H')).
Now for any normal subgroup N’ C G/N, we have 7=1(N’) is a normal subgroup
of G containing N (see exercise). Let H C G be a normal subgroup of G containing
N. Then 7(g)m(H)w(g9)"t = n(g.Hg™!) = n(H) for all g € G. As 7 is surjective,
this shows that 7 (H) is normal. Note that 7(H) = H/N.

(]

Theorem 5.4. (Third isomorphism theorem) Let G be a group and N,H C G
normal subgroups of G such that N C H, then G/H =2 G/N/(H/N).

Proof. See exercise.
O

Lemma 5.5. Let G be a group. Define G' := [G,G] and G := [G*1,G*"]. Then
G is solvable iff there exists a natural number n such that G = {1}.

Proof. If G staisfies that G, = {1}, then G is solvable is obvious as commuta-
tor subgroups are normal and quotienting by commutator subgroup gives abelian
groups. Now suppose G is solvable and

G=Gy>G D DGy ={1},

be a solvable series of G. Now for any G C H D K, such that H is normal in
G and K is normal in H and such that G/H and H/K are abelian then G' is a
subgroup of H and G'/K N G' is abelian as G/H is abelian and H/K is abelian.
As G'/K N G! is abelian, we get that G?> C K. So inductively one can prove that
G™ C GG, and we are done.

O

Lemma 5.6. Let
1-N—->G—H-—>1,

be an exact sequence of groups. Then G is solvable iff H and N are both solvable.

Proof. Let p: G — H be the quotient map and N — G we think it as an inclusion.
Ket G be solvable with solvable series

G=Gy>G1DDGy={1},

then
N:N():)GlmND"':)GnmN:{l},
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is a solvable series of N as subgroups of abelian groups are abelian and intersection
H N N of normal subgroup N with a subgroup H is a normal subgroup of H. On
the other hand as quotients of abelian groups are abelian and quotient of a normal
subgroup is normal we get

is a solvable series of H.
On the other hand if

N=NyD>DN;D---DN, ={1},
be a solvable series of N and
H=Hy>H, D> -DH,={1},
a solvable series of H, then
G=p '(Ho) Dp "(H1) D Dp '(Hn)(N =Nog) DN; D...N, = {1},

is a solvable series of G.
O

Proposition 5.7. Every group of order p™ for some prime p is solvable. Moreiver
a finite group G is solvable iff there exists a sequence of sub groups

G=Gy>G DGy ={1},

such that Giy1 is a normal subgroup of G; and G;/Gi11 is cyclic of prime order
for all0 <i<n.

Proof. We prove the first part of induction on n. If a group G is of order p' then
there is nothing to prove. Suppose we know the statement for all 1 < r < n. Let
|G| = p" and G is non abelian then the |Z(G)| = p* where 1 < k < n. Then Z(G)
and G/Z(@G) are solvable by induction hypothesis and therefore we are done. For
the second part suppose

G=GyD>GD--DG, ={1},

such that G;41 is a normal subgroup of G; and G;/G;+1 is cyclic of prime order for
all 0 < ¢ < n, then offcourse G is solvable. On the other hand suppose the finite
group G is solvable and

G:G()DGlD"'DGnZ{l},

be a solvable series. Let H be a finite group and let N be a normal subgroup such
that H/N is abelian. Let K be a maximal proper normal subgroup containing N.
Then H/K is simple and it is a quotient subgroup of an abelian group H/N, there-
fore H/K is of order p for some prime p. Therefore, inductively we can construct
subgroups H; ; of G; containing G4 such that H; o = G; and H; , = Gij1, H; j11
is normal subgroup H; ; and H, ;/H; j+1 is or prime order for 0 < j < m.

O

Theorem 5.8. The group S, is not solvable for n > 4.

Proof. We know that As is non abelian simple therefore non solvable. This implies
S5 is not solvable as subgroups of solvable groups are solvable. For every n >
4, there exists n injective group homomorphism S5 — S, by premuting just the
first 5 letters. Then S, for n > 4 solvable will imply S5 is solvable. Which is a
contradiction.
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Direct Product

Let H and K be groups H x K has group structure given by (hi, k1).(he, k2) =
(h1.ha, k1.ke) with identity (1,1) and inverse of (h,k) given by (A= k~!). Note
that ¢y : H — Hx K given by h — (h,1) and ¢ : K — H x K given by k — (1, k)
are injective group homomorphism, making ¢ (K) = K and ¢x(H) = H normal
subgroups of G with ¢ (H) N ¢(K) = {(1,1)} and ¢u(H).¢x(K) = H x K and
every element of ¢ (H) commutes with every element ¢ (K).

Theorem 5.9 (Detection of direct product). Let G be a group and H and K be
subgroups such that

(1) G = HK,
(2) HNK = {1},
(3) hk = kh for all h € H,k € K.

Then the natural map f: H x K — G given by f(h,k) = hk is an isomorphism of
groups.

Proof.
f((h1,k1).(ha, k2)) = hihokika = hikihoka = f(h1, k1) f(ha, k2).

If hk = e, then h,k € HN K. So f is injective. The homomorphism f is surjective
as G = HK.
O

Semi direct product

(1) Let
G:{¢p:R—>R|p(z) =ax+b,a€Randb € R}.
Then
b
G { {8 J € GZQ(R}.
Let
1 b
m={l )

and

< )

Then HN K = {Id} and G = HK. Also note that H is normal in G,
G/H = K and G is not abelian. Therefore G 2 H x K.
(2) Let G = Glx(R), H = Sl3(R) and

ko {[2 Tuer).

Then G = HK, HN K = {Id} and H is normal in G, but elements of H
does not commute with elements of K.
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6. LECTURE 9

Note that if H is a normal subgroup of G and let K be a subgroup of G such
that H N K = {1}. Then we have the following obeservations
(1) We get a homomorphism ¢ : K — Aut(H), given by ¢(k)(h) = khk!.
This is a group homomorphism.
(2) (hikihoks = hikihoky Y kike = hyp(ky)(ho)kiko
(3) (hk)™' =k 'h = (k' lk)k ' = (k1) (1)L

Proposition 6.1. Let H and K be two groups and let ¢ : K — Aut(H) homomor-
phism. The set H x K has a group structure ( the group is denoted by H x4 K ),
such that
(1) (ha,k1)(h2, k2) == (h1¢(k1)(hz), k1k2).
(2) The subset Hx1 (resp. 1x K ) is a subgroup with the obvious group structure
on H x 1 (resp. 1 x K) coming from the group structure of H (resp. K ).
(3) (Hx1)(I1xK)=Hxy K and (Hx1)N(1xK)={(1,1)}.
(4) (H x 1) is a normal subgroup and the conjugation action of 1 x K on H x 1
can be identified with homomorphism ¢.
(5) Every element of H x 1 commutes with every elemnt of 1 x K iff ¢ is the
trivial homomorphism.

Proof. (h,1)(1,k) = (h.¢(1)(1),1.k) = (h, k). Therefore (H x1)(1x K) = H x4 K.
Note that

(R k) (B, 1) (hay k) ~h = (hag(ka) (R), k) (@R ) (R ™Y k).
Therefore normality of H x 1 follows. Note that

(LK) (R, 1) (1, k)7 = (16(k) (h), k) (1, k1) = (¢(k) (h), 1).

Theorem 6.2. Let G be a group and let H, K subgroups of G such that

(1) G=HK,

(2) HN K = {1}.

(3) H is normal in G.
Then ¢ : K — Aut(H) given by ¢(k)(h) = khk~' is group homomorphism such
that f : H x4 K — G gievn by f(h, k) = hk is an isomorphism of groups.

Proof. O

Example 6.3. (1) If ¢(k) is the identity automorphism of H, then H x 4 K =
H x K.
(2) H=R and K =R*, ¢ : R* = Aut(R) such that ¢(x)(a) = x.a. Then

Hmd)K%{[g ﬂ eGlg(R},

a b

0 1

(8) If H=17/m and K = (Z/m)*. Then Aut(Z/m) = (Z/m)*, and we view
this isomorphism by mapping a unit a € Z/m to the group automorphism of
Z/m defined by multiplication by a. This identification gives a non trivial
homomorphism (infact isomorphism) ¢ : K — Aut(H) and we get the
semidirect product H x4 K.

where (b,a) —
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(4) A group which is direct product of H X K can also be non trivial semidirect
product H x4 K. Indeed, Let n be odd take G = Gl,(R), H = S[,,(R) and

a 0 o | o
ke {ft 0 Joew)awe

We have already seen that the conjugation action of K on H gives a non
trivial homomorphism ¢ : K — Aut(H). Therefore G = H x4 R*.

Now the center of G is Z(G) = {c.Idy|c € R*} Z R*. Let K' = Z(G).
Asn is odd HK' = G, HN K' = {Id,}, note that both H and K' are
normal in G therefore G =2 H x K' = H x R*.

Theorem 6.4. Let Hi, Hy, K1, K5 be groups and f, : Hi — Hy and fo : K1 —
K5 be group isomorphisms. Then F : Hy x K1 — Hs x Ko given by F(h,k) =
(f1(h), f2(k) is an isomorphism of groups.

Proof. |

Theorem 6.5. Let Hy, Hy, K1, K5 be groups and f1 : Hi — Hy and fo : K1 — Ko
be group isomorphisms and let ¢1 : K1 — Aut(Hy) be group homomorphism. Then
there exists ¢’ : Ko — Aut(Hz) homomorphism such that Hy X4, K1 = Hy X4, Ko.

Proof. Using fo we get an isomorphism f; : Aut(H;) — Aut(Hs), given by fi(o) =
fiooo fi . Using this and fo get ¢/ := ffog¢yo fo .
O

Theorem 6.6 (Chinese Remainder Theorem). Let G = Z/mnZ with (m,n) = 1.
Then thre exists unique copy of H = Z/mZ and K = Z/nZ such that HNK = {1}
and H+ K = G, G/H 2 K and G/K = H. Inparticular, the map K x H — G
given by (k,h) — k + h gives an isomorphism.

Same method of the proof can be used to prove the following

Theorem 6.7. Let G be an abelian group |G| = Hle p;'* be the prime factorisation
of |G| and let P; be the Sylow p;-subgroup. Then G = Hle P;.

Proof. Let us consider the map 6 : Hle P, — G giben by 0((aq,...ax)) = Zle a;.
This is a group homomorphism. If Zle a; = 0 with a; € P;, then a; which has
order a power of p; is equal to — > i @j which has order dividing 11 it p?j. This
is only possible if the order of a; is 1, in that case a; = 0. Therefore, 6 is injective.

Now compare cardinality.
O

Definition 6.8. A commutative ring F' is a field if every non zero element is a
unit.

Remark 6.9. Let ¢ : F — A be a ring homomorphism and let F be a field then ¢
is injective. Moreover, ¢(F) is a field isomorphic to F.

Definition 6.10. A field E containing a field F is called an extension field of F.
In this situation E can be regarded as an F vector space. The dimension of E as an
F wvector space is called the degree of the extension E/F and is denoted by [E : F).
Given two extension E1/F and E2/F an F homomorphsm is a homomorphism ¢ :
Ey — E5 such that ¢|p = idp. An F-isomorphism is a bijective F-homomorphism.
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Proposition 6.11 (Substitution principle). Let A be a ring and let B be an A
algebra (assume A C B). Then an A algebra homomorphism ¢ : Alxq,...,x,] = B
is completely determined by ¢(x;)’s. Let I be an ideal of Alxy,...,x,] such that
ANIT =0, then an A-algebra homomorphism ¢ : Alxy,...,z,]/I — B is natural
bijection with the set of points (by,...b,) € B™ such that f(b1,...,b,) = 0 for all

fel.

Proof. Given ¢(z;) € B, the natural map ¢(>; arz!) :=a; Y, ¢p(a!) gives a well
defined A-algebra homomorphism where I = (iy,...,i,) and ! = z%.. . zin,
d(x!) := ¢p(z1). ..., ¢(x,)". This gives the first part. An A algebra homomor-
phism A[z1,x,]/I — B is determined by A-algebra homomorphism ¢ : A[zq, ..., x,)
B such that ¢(I) = 0. Now the second claim follows.

O

Example 6.12. (1) Let A be an integral domain then
K(A) = {(a,b)|a cAbeA \ O}/((al,bl) ~ (az,bg) <= aijby = blag)

is the fraction field. There is a natural map l : A — K(A) which is injective
and l(a) = [(a,1]) It has the universal property, that any ring homomor-
phism ¢ : A — B such that the nonzero elements of A maps to units in B,
then ¢ can be uniquely extended to a ring homomorphism i : K(A) — B
such that ol = ¢. Let F be a field and let A = F[z], then K(A) is denoted
by F(x). It is an infinite dimensional vector space over F.

(2) Characteristic of a field : Given any integral domain A, consider the
unique homomorphism ¢ : Z — A , which is completely determined by
o(1) = 1. As A is an integral domain, we see that Im($) is an integral
domain, therefore ker(¢) is a prime ideal of Z. When ker(¢) is trivial then
we say that the characteristic of A is 0. Else ker(¢) = (p) for some prime
p, which is called the characteristic of A. The field Fp,, the ring Fp[x], the
field F,(z) are all characteristic p field.

(3) Let F be a field and f(z) = >, a;x’ € Flz| be an irreducible polynomial.
Then the ideal generated by f(x) is a prime ideal as Fx] is an U.F.D and
it is infact maximal because F[x] is a P.I.D. Let E := F[z]/(f(x)). This
a field. As F sits as a subring in F[z] as constant polynomials, the map
F — Flz] — Flz]/(f(z)) is injective, and therefore E is an extension of F
and it has a distinguised element the imga eof x denoted by T . The element
f(t) =31 yait' € E[t] has T as the root. The degree [E : F| =n = deg(f).
Indeed, the set (1,%,...,2" 1) is basis because of division algorithm and
irreducibility of f(x).

(4) Any finite field is of characteristic p for some prime p and it has p"™ el-
ements. It is also the case that there exists innfinitely many irreducible
polynomials in Fplx] of degree greater than 1, so there exists finite fileds
whose elements are greater than p.

(5) Extension of finite fields are simple. Let F' be a field of cardinality p™ = q.
Then |F*| = q— 1. Let t be the mazimum of the orders of the elements of
F* and let o be an element of order t. Since the group is abelian, order of
every element is a divisor of t. This show that the ¢ — 1 many elements
of F* satusfies f(x) = 2t — 1 equation. As f can have atmost ¢ — 1 roots
and t|qg — L,we have t = ¢ — 1, or F* is cyclic with generator a. So F is a
simple extension of Fy,.
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(6) Let E/F be an extension, let ay, . . ., ap be elements in E. Then F(aq, ..., an)
denote the subfield of E generated by F and aq,...,a,. First of all such a
field exists because Flay, ..., a,] C E exists by substitution principle and it
is an integral domain. F(ay,...,ap) is the fraction field of Flaa,. .., ap].
We can describe the elements in F(aq,...,q,) as rational functions eval-
uated on (a1,...,ap). The field F(«) is called a simple extension. Let
a € E, then we have an F algebra homomorphism ev, : Flx] — E such
that evy () = a. The image is Fla]. If ev, injective then « is not a root of
any non zero polynomial in F[z] therefore « is called transcendental over
F. In this case F(a) = F(x). Infact the degree in this case is infinite.

(7) C is an extension of R of degree 2 as (1,4) is a basis. Note that the R
extension R[z]/(x? + 1) is R-isomorphic to C. Note that for any degree 2
real polynomial f(x) with non real roots we have the R extension R[z]/ f(x)
1s isomorphic to C.

(8) The Q-extension Q(i) is a field extension of degree 2, so is the Q-extension
Q(v/2). But this two fields are not isomorphic as Q extensions.

Lemma 6.13 (Degrees in tower). Let F C E C L be fields. Then L/F is of finite
degree iff L/E and E/F are of finite degree. In this case [L: F] = [L: E][E : F]

Proof. Let L/FE have E basis (ly,...l,) and E/F has F basis (e,...,e,). Then
(eifj)’s generates L as an F' vector space is obvious. So L/F is of finite degree.
Note that Z” a;je; f; = 0 and let b; = ). a; je;, then Zj bjf; = 0s0 b =0 for
all j and this implies a; ; = 0 for all ¢, j. Therefore, (e;f;) is a basis of L/F. So
[L:F)=|[L:FE]E:F| If L/Fis of finite degree, then any F generating set L
will be an E' generating set of L as F' C E. On the other hand F is a sub F vector
space of L, therefore E/F will have finite degree.

(Il

7. LECTURE 9

Definition 7.1. Let L/k be a field extension. An element o € L is called algeraic
over k if there exists a non zero polynomial f(x) € klz], such that f(a) =0. An «
is called trascendental over k if it is not algebraic over k.

Remark 7.2. Let L/k be a field extension and let « € L. The smallest subring of
L containing k and « is denoted by k[a] and the smallest subfield of L containing k
and « is denoted by k(). Given such an o € L, we define a ring homomorphism
evy : klx] = L such that ev,(x) = a and ev, |k is just the inclusion k — L. Note
that Im(evy) is a subring of L containing k and a. It is also an integral domain,
being a subring of a field. Therefore the fraction field K(Im(evy)) can be throught
of as a sufield of L containing o and k using universal property of the fraction field.

Lemma 7.3. Let L/k be any extension and let o € L. Then k[a] = Im(ev,) and
k(a) = K(Im(evy)) (rather the image using universal property)

Proof. Let R C L be a subring containg «, k, then any polynomial expression in
o with coefficients in k is in R. Therefore ev, : k[z] — L factors through R and
this shows that k[a] = Im(ev,). Let F' C L be a subfield of L containing k and «,
then k[a] C F and ev,, factors through F'. Now k[a] — F is an injection such that
every non zero element of k[a] is a unit in F, therefore the unique homomorphism



GALOIS THEORY , ARITHMETIC AND GEOMETRY 27

K(Im(evy)) — L preserving the inclusion ko] C L factors through F. Therefore,
k(o) C F.
]

Lemma 7.4. Let L/k be an extension and o € L. Then « is algebraic over k iff
kla] = k(a), iff k(a)/k is a finite extension.

Proof. Note that k(«) is the fraction field of k[a] , therefore ko] = k() iff k[o] is
already a field. Consider the homomorphism ev,, : k[z] — L, whose image is k[«].
Since the image is an integral domain, the ker(ev,) is a prime ideal in k[z]. Now
the kernel is the set of all polynomial in k[z] which has a as a root. Therefore it
is non zero iff there exists a non zero polynomial with « as a root iff « is algebraic
over k. The kernel is non zero iff it is a non zero prime ideal iff it is a maximal
ideal (k[z] is a P.ID) iff there exists irreducible polynomiakl f(z) € k[x], such
that ker(ev,) = (f) and this happens iff k[a] is a field. Now k[a] is a field iff
k(o) = k[a). Now k[a] is field implies it is a finite extension of k, therefore k()
is a finite extension over k. Now if k(«)/k is a finite extension and k[c] is a not
field, then ker(ev,) = 0, therefore the k subvector space of k(a) denote by k[a] is
infinite dimensional k-vector space. This absurd. So k(«)/k is a finite extension iff
kla] = k().

]

Definition 7.5. Let L/k is an extension. Then L/k is called an algebraic extension
if all « € L are algebraic over k. An extension L/k is called a purely transcendental
extension if a € k are the only algberaic elements in L.

Lemma 7.6. (1) Let L/k be a finite extension t hen L/k is an algebraic ex-

tension.

(2) Let k(t) be the fraction field of the polynomial ring k[t], then k(t)/k is a
purely transcendental extension.

(8) Let k C F C L be field extensions and o« € L. Then « is algebraic over k
implies a is algebraic over F.

(4) If L/k be an algebraic extension and «, 8 € L algebraic over k. Then a+ 3,
a.8 and o~ t.8 are algebraic over k.

Proof. (1) As L/k is a finite extension, therefore for any subfield k C F C L,
we have F/k is also a finite extension over k. Let o € L. Then k(a)/k is
a finite extension. This implies « is algebraic over k. Therefore L/k is an
algebraic extension.

(2) Let o = f(t)/g(t) € k(t) such that (g(¢), f(t)) = 1, g(t) # 0 and o ¢

k. Let h(z) = Y. a;a’ such that a, # 0 and h(a) = 0. Then 0 =
S ai(f(t)/g(t))". Multiplying both sides by g(t)" we get a,, f(£)" = g(t).1(t)
for some polynomial I(t) € k[t]. This implies g(t) is a non zero constant in
k (ged(f,g) = 1). In this case degree of g(t).l(t) is atmost (n — 1).deg(f),
on the other hand degree of f(¢)" is n.deg(f). This implies f(¢) € k.

As there exists a non zero f(z) € k[z] such that f(a) = 0, therefore there exists

f(z) € Flx] such that f(a)=0.

Let a, 8 be algebraic over k. Let k(«, 8) C L smalles subfield of L containing «, §.

Therefore k(a, 8) = k(a)(8). As a € k(«) is algebraic over k, we get k(«) is a finite

extension of k. On the other hand f is algebraic over k, implies 3 is algebraic over

k(). therefore k(«)(p) is finite extension of k(«). Therefore, the tower formula
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gives us k(«)(B) is a finite extension of k. Therefore, it is an algebraic extension of
k.
]

The field extension Q(2'/3) is subfield of R and the equation x* — 2 has two non
real roots, therefore in Q(2'/3) the polynomial ° — 2 = (2 — 2'/3)g(x) where g()
is a irreducible polynomial in Q(2'/3)[x]. On the other hand the field Q(2'/3,w) is
a field where x3 — 2 splits in linear factor and the field is genrated by the roots of
23 — 2 over Q. Note that the degree of the extension [Q(2'/3,w) : Q] = 6 using the
degrees in tower formula.

Definition 7.7. Let f(x) € k[z] be a non constant polynomial. A splitting field K
of f overk is a field extension K/k such that
(1) f(z) splits into linear factors in K|xz|, equivalently f(z) = c.[[;_,(z — a;)
with c € k, a; € K and deg(f) = n,
(2) k(ag,...,an) =K.

Lemma 7.8. Let f € k[z] be a non constant polynomial. Then there exists a
splitting field K of f over k.

Proof. We will prove this theorem using induction on degree of f. If deg(f) = 1.
Then K = k[z]/f = k, where f(x) = az + b and a # 0, so root is —b/a € k. If
we know the result upto degree k < n. Let f(x) be of degree n. Let fi(z) be
an irreducible component of degree d < n. Then, let K’ := k[x]/f1 . Therefore,
K' = k(a) where a = (z), and f(a) = fi(a) = 0. So in K’ the polynomial f(t) has
a linear factor (t—a), or f(t) = (t—a)g(t) with g(¢) € K'[t] and degree g(t) = n—1.
By induction, There exists K /K’ splitting field of g(¢). It is clear that K/k is a
splitting field of f.

O

Lemma 7.9. Let F be a field with ¢ = p™ elements, then F is a splitting field of
the polynomial x? — x over IF),.

Proof. We know that F'* = () and therefore every element of F'* satisfies 29711 =

0, which implies the g elements of F' satisfies ¢ — .
O

Lemma 7.10. Let ¢ = p™. Then there ezists a field F/F, of cardinality q.

Proof. Take a splitting field F/F, of the polynomial z9 — z. Let S C F be the
set of elements of F' satisfying the equation x? — x = 0. This set is closed under
multiplication and conatins 0 and 1. Since (a + b)? = a? + b7 in char p, infact the
set S is subfield of F' containig I, therefore F' = S. Note that if « is a root of
29—z, then 29—z — (a?—a) = (z—a).g(x), where g(z) = (r — )9~ — 1. Therefore
g(a) # 0. this implies the roots of 27 — x are distinct, so |F| = g.

O

8. LECTURE 10

Let o : k — k' be an isomorphism. Let f(x) € k[x] be an irreducible polyno-
mial. The isomorphism o can be extended to give an isomorphism of rings ¢’ : k[z] —
k'[x], such that o/(z) = z and ¢’|, = 0. Note that o’(f(z)) is irreducible. Therefore
o’ induces an isomorphism o : k[z]/(f) — k'[z]/(c’(f)) such that ¢'|x = 0.



GALOIS THEORY , ARITHMETIC AND GEOMETRY 29

Assume, moreover, k, k' C K such that « € K is a root of f(z) and o/ € K
is a root of ¢’(f). Then previous isomorphism o’ : k[z]/(f) — k'[z]/(o'(f)) can
be used together with the k (resp. k') isomorphisms ev,, : k[z]/(f) — k(a) (resp.
evy : K'[x]/(0'(f)) — k' (a')) to construct an isomorphism 7 : k(a) = k'(¢’) such
that 7|, = o and 7(«) = . Inparticular if o = id : k — k&, then any two roots a, o’
of f(x) gives an isomorphism 7 : k(a) = k(o) such that 7| = id and 7(a) = .

Definition 8.1. Let K/k be an algebrai extension. Two elements a, o’ € K are
called k-conjugates if there exists a k-isomorphism 7 : k(a) — k(') such that
(o) = o

Lemma 8.2. Let K/k be an algebraic extension and a,o’ € K. Then a,a’ are
k-conjugates iff a and o have the same minimal polynomial over k.

Proof. Consider the map ev, : k[z] = K and ev, : k[z] — K. The images of this
to maps are k(«) and k(') respectively. The kernel of this maps are generated
by the minimal polynomials p, and po and ev, : k[z]/(pa) = k(a) and evy :
klz]/(par) — k(') are k- isomorphisms . If the minmimal polynomials are same
then the k-automorpohism ¢ : k(a) — k(a') is given by ev, o ev;t. On the
other hand if 7 : k(o) — k(&) is a k-isomorphism such that 7(a) = o/, then the
k-homomorphism sends 7 o ev, : k[z] = k(') sends © — o’. We see that

70 eVa(pa(r)) = 7(pa(a)) = pala’) = 0.

Therefore, o’ is a root of p,, which is monic and irreducible of py = pq. (]

Proposition 8.3 (Uniqueness of splitting fields). Let o : k — k' be a field isomor-
phism. Let f(x) € k[x] be a nonconstant polynomial and let K and K’ be splitting
fields of f over k and o(f) over k' respectively. Then there exists an isomorphism
7: K — K’ such that 7|, = 0.

Proof. We will prove it using induction on degree of f. If deg(f) = 1, then this is
obvious as the the splitting filed are k and k' respectively. If deg(f) = n and let f;
be an irreudicble component of f. Then o(f1) is an irreducible component of o(f).
Let o € K be a root of f; and let 8 € K’ be a root of o(f1). Then there exists a
isomorphism o : k(«) = k’(8) such that 01| = ¢ and o1(a) = 8. Over k(a) we
have f(z) = (z — a)g(z) with g(z) € k(a)[z] and K is a splitting field of g(x) over
k(«). On the other hand o1(g(z)).(x — 8) = o(f(x)) and K'/K'(B) is a splitting
field of o1(g(x)). Now by induction we get the desired result.

O

Corollary 8.4. For every q = p™, there exists a unique field (unique upto F,-
isomorphism) F/FF,, of cardinality q.

Proof. O

Lemma 8.5. Let K/k be a splitting field of some non constant f(x) € k[z]. Let
K C L be any extension. Then for any k-homomorphism o : K — L, we have
o(K)=K.

Proof. O

Proposition 8.6. Let K be the splitting field of f over k and let g be an irreducible
polynomial over k. If g has a root in K then g splits in K. Conversely, if K/k is
a finite extension such that irreducible polynomial over k having a root in K splits
in K, then K is the splitting field of some polynomial over k.
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Proof. O

Definition 8.7. An algebraic extension K/k is called normal if any irreducible
polynomial over k having a root in K splits in K.

Proposition 8.8. (1) Every finite extension K/k is subfield of a finite normal

extension L/k. Infact for finite extensions K;/k with i = 1,2...,n, there
exists a finite normal extension L/k and k-homomorpshim o; : K; — L.

(2) Let k C K C L finite extensions, let N/k normal extension containinig L.
Let m be the numbere of distinct k homomorphism K — N and let n be the
number of distinct K-homomorphism L — N. Then the number of distinct
k-homomorphism L — N is mn.

(8) Let K/k be an extension of degree n and let N/k be a finite normal ex-
tension such that K C N subfield. Then, there are at most n distinct
k-homomorphism o : K — N.

Proof. O

9. LECTURE 11

Remark 9.1. (1) Let f(x) € k[z] irreducible of degree n. Let N be a splitting

field of g(x) € klx] and let f(x) have a root in L, say a. Then the degree
n extension k() C N. Then f splits in N and the splitting field L of f is
contained in N.

(2) Let f(x) = 2>—2 € Q[z]. Let N be the splitting field of f. The three district
roots of f, then there are 3 distinct Q-homomorphism o : Q(1/3) — N.

(3) Let f(z) = aP —t € F,(t)[z]. Morever f(x) has no root in Fy(t) and it
istrreducible. Indeed, infact let F' be char p field then f(z) = aP — a, for
a € F, either has root in F or it is irreducible in F[z]. Suppose L/F
be a splitting field of f(x) over F, let o, are roots. Then of = [P,
then (a« — B)P = 0. Therefore « = . So all the roots of aP — a are
equal in L. If a ¢ F, let g(x) be an irreducible factor of f(x) of degree
m > 1. If m < p, then as g(x) has all roots equal to «, therefore o™ € F
and (p,m) = 1. As o? € F, we get a®®t*™ ¢ F for all integers a,b.
Therefore a € F. Contraiction. Therefore m = p and f(x) is irreduicble.
Note that t'/? € F,(t), implies, there exists f(t),g(t) € F,t], such that
ged(f(t),9(t)) =1 and g(t)?.t = f(t)P. Comparing the , highest powers ( or
factorisation), we see that this is not possible. So x? —t does not have a root
inFy(t). The number of Fy(t)-homomorphism ¢ : Fy(t)(t/P) — F,(t)(t1/P)
15 1.

Definition 9.2. Let k be a field. An irreducible polynomial f(x) € k[x] is called
separable if all its roots (in a splitting field) are simple. Otherwise, f is called
inseparable. Let L/k be an algebraic extension. Let o« € L. The element a is
called separable over k if the minimal polynomial is separable, otherwise it is called
inseprable over k. The extension L/k is called seprable if every element o € L is
separable. If there exists an o € L such that « is inseprable over k, then L/k is
called inseparable.

Proposition 9.3. (1) A polynomial f(x) € k[x] has multiple roots o iff f(a) =
f(@) =0
(2) An irredducible polynomial f(x) € k[z] has multiple roots iff f' = 0.
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(3) An irreducible polynomial f(x) € k[x] is inseperable iff char(k) = p and
f(x) = g(zP) for some irreducible g(x) € k|x].

Proof. (1) f(z) = (# — a)?g(x), then f'(z) = 2(z — a)g(z
Therefore if f(x) has multiple root «, then f(a) = f
other hand if f(a) = f'(a) = 0, then f(z) = (x — «).
g(z) + (x — a)¢’(z). Since f'(a) = 0, therefore g(«)
multiple root of f(z).

(2) Consider the homomorphism ev,, : k[z] — L, where L is a splitting field
of f. Then f(z) generate the kernel and « is a multiple root iff f'(x) €
(f(x)). As f'(z) has degree less than f(z) and f(z) irreducible, therefore
7'(@) € (f(2)) ift f(z) = 0.

(3) f(x) is inseperable iff f/'(x) = 0. So if f(z) = g(«P) and char(k) = p and
g(z) is irreducible, then f’(z) = p.2?~'¢’(zP) = 0. On the other hand
suppose f'(z) =0, then f(z) =, _ja;z’ and f'(z) = ,_, a;.i.x'"1 = 0.
Therefore, a;.i = 0. Therefore, 7 has to be a multiple of p where char(k) =
p,so f(z) =3, a;jziP. Let g(x) = > ajz?. Then f(z) = g(aP). As f(z)
is irreducible, therefore g(z) is irreducible too.

]

Example 9.4. F,(¢)(t'/?) is an inseprable extension over F,(t).

Proposition 9.5. Let K/k be a finite field extension of degree n. K/k is seperable
if and only if for any finite normal extension N/k such that K C N is a subfield,
there are n-distinct k-homomorphism K — N.

Proof. Suppose there are n-distinct k-homomorphism K — N. Let o € K. Then
by Proposition 8.8, the number of k(a) embedding of K — N is atmost [K : k()]
and number of k-embedding of k(o) — N is atmost [k(«) : k]. As the number of
k-embedding K — N is n = [K : k(a)][k(«) : k] and it is equal to the product of
number of k(«) embedding K — N and the number of k-embedding k(o) — N,
we get [k(a) : k] = deg(fs) is equal to the number of k embedding of k(a) — N.
Now the number of k -embedding k(a) — N is the number of distinct roots of f,
therefore all the roots of f, is distinct and we get « is separable over k.

Now let K/k be a finite separable extension of degree n. We want to show that
there are n-distinct k-homomorphism K — N. We will do it by induction on n. If
n = 1, then it is trivial as K = k. If n > 1, let « € K \ k. Then note that K/k(«)
is a finite seprable extnesion and has degree less than n and N/k(a) is normal.
Therefore, the number of k(a) homomorphism K — N is equal to [K : k(«)]. Now
the number of £ homomorphism k(a) — N is equal to the number of distinct roots
of f, which is equal to the degree of f, as « is seperable. Therefore the number of
k homomorphism k(a) — N is equal to [k(«) : k]. Now again using Proposition 8.8
we get the number k& homomorphism K — N is equal to [K : k(a)][k(«) : k] = n.

O

Corollary 9.6. Let k C K C L. Let L/K and K/k are finite seprable, then L/k
is finite seprable.

Theorem 9.7. Let K/k be a finite seprable extension. Then there exists « € K
such that k(o) = K.

Proof. Let F be a finite field K/F be a finite extension. Then F is a finite extension
of F,, and K/F,, is finite seprable as K is a splitting field of a separable polynomial
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over F),. Therefore K/F is seprable and morover K = F, () so K = F(«). Let
F be an infinite field and Let K/F be a finite seprable extension of degree n.Let
N/F be a normal extension such that X C N. Then the number of distinct F-
homomorphism o; : K — N is n. Let for ¢ # j,

Vij = A{z € Kloi(z) = 0;(2)} .

Then V;; are prooper F vector subspaces of K. As F is infinite , therefore U;; V;; #
K. This implies, there exists a € K such that o;(a) # o;(a) for all ¢ # j. Therefore,
the number of F' homomorpshim F(«) — N is atleast n and by separability it is
n < [F(a) : F]. But F(a) C K. Therefore [F(«) : F] < n. This implies F(a) = K.

(Il

Lemma 9.8. Any non trivial vector space V' over an infinite field K is not finite
union of proper K-subspaces.

Proof. We do it by induction of number of proper subspaces n. If n = 1, then
properness implies the claim. Let Vi,...,V,, be proper subspaces. Let v ¢ U?;llVi.
If v ¢ V,,, we are done. If v € V,,, and choose w ¢ V;,. Then v + cw ¢ V,,, for all
c e K*. If v+ cw belongs to some V; for all ¢ € K* and i < n — 1, then by pigeon
hole, there exists ¢; # co € K* such that v 4+ cyw, v 4+ cow € V; for some i < n — 1.
This will imply w € V; and therefore v € V;, which is a contradiction. So there
exists ¢ € K* such that v+ cw ¢ V; for all i < n.

|

10. TRACE, NORM, DISCRIMINANT

Definition 10.1. Let E/k be a finite extension and let o € E. Then the trace
is defined as trg(a) = trace(my) and the norm is defined as Normpg (o) =
det(me), where my, : E — E is the k-linear transformation mq(8) = a.f.

Definition 10.2. Let f € k[t] and let L be a splitting field of f such that f =
[[iz, alt — i) for a,en,...,an € L. Define Ay := [[;_;(ei — aj). Then the
discriminant of f is defined as

Dy =A% = (-1)"" V2 ](e — ay).
i#]
Remark 10.3. (1) E/k as before such that [E : k] = n and let x € k. then
Normpg,(z) = 2™ and trg,(z) = n.x.
(2) Let k = Q, E = Q(i). For any a + bi € Q(i), the matric of matp; with
respect to the basis 1,1 of Q(i)/Q is

a —b
b
Therefore, trgi(a + bi) = 2a and Normg i (a + bi) = a’ + b2,
(3) Let f(z) = Y1 yaix’ € k[z], with a, = 1 irreducible, a a root in some
extension. Then k(a) has a k basis given by {1,04,@2,...,04"_1}. The
matriz of my with respect to this basis has the charateristic polynomial

same as minimal polynomial = f(x). The matriz is the following n X n
companion matrixc
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_0 0 —ap i

1 0 ‘e —ai

0 1 0 —as
My =

0 ... 1 0 —Aan—2

_0 PN ‘e 1 7an_1_

Normy(a)/i(a) = det(ma) = (=1)"ao, tria) k(@) = tr(ma) = —an-1.
(4) Note that Dy # 0 if and only if f has no multiple roots.
Lemma 10.4. Let L/k be finite k-extension, let V' be a ffinite dimensional L-vector
space and let T : V — V be a L-linear transformation. Then
dety(T) = Normp i (det,T), tri(T) = trp (troT).

Proof. Let {e;} be an L basis with respect to which T is in rational canonical form,
that is T is block diagonal where each diagonal block looks like

0 0 ce e ap
1 0 NN [N aq
0 1 0 e a9
0 ... 1 0 Ap—2
_0 ‘e NN 1 an_l_
As norm is multiplcative and trace is additive and

det([‘g g])zdet(A).det(B),tr({‘g g}):tr(A)—i—tr(B),

So we can assume T is one of the diagonal block. Then dety(T) = (—1)""1ao,
trp(T) = an—1. Let {I;} be the k-basis of L. Then {l;e;} is a k-basis for V. With
respect to this basis, we get the matrix

mo Mo ... . Magy
my Moy ... SN Ma,
mog M1 Mo ... May

)
mo ... mip Mo Mg, _,
mo ... . mi Mq,_,

where for any element a € L, m, : V — V is the L-linear ( thus k-linear) map
given by multiplication by a. Let r = [L : k|, then

tri(T) = trp(mg,_,) = tTL/k(an_l).
Therefore try,(T') = trp i (trT). Similarly,
det,(T) = (—1)"" Vdety(ma,) = Normp, . ((—1)"'ag) = Normyp, j(det,T).
[l
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Corollary 10.5. Let k C L C K be finite extensions and let « € K. Then
Normg (o) = Normp,(Normg,p(a)), trgp(a) = trp i (trg o(a)).

Corollary 10.6. Let L/k be finite extension, « € L and r = [L : k(«)]. Let
="+ >0 01 a;t' be the minimal polynomial of o over k. Then

trp k() = —ran_1, Normg /(o) = (=1)""ag.
Proof. For the k-linear transformation m,, : k() — k(a), the minimal polynomial
is same as the characteristic polynomial, which is equal to P,. Then

NormL/k(a) = Normk(a)/k(NormL/k(a)(a)) =

= Normy(a) k(") = (Normya) k()" = (=1)"" ag.
The formula for trace follows similarly.
O

Theorem 10.7. Let L/k be finite inseperable extension. Then try (o) = 0 for
every o« € L

Proof. Let 8 € L inseparable over k. Then Pz = ¢(t*), where Ps is the minimal
polynomial of 8 over k and g(t) € k[t] is an irreducible polynomial. Note that [k(3) :
k] = deg(Pgs), and g is the minimal polynomial of Pgr of P over k. Therefore,
[k(B) : k(BP)] = p. Therefore, 1,3,5%,...,5P~! gives a basis of k(3)/k(BP) and
note that the minimal polynomial Pg: of B¢ over k(/P) is nothing byt xP — 3, for
0 < i < p. Therefore, trk(g)/k(gp)(ﬂi) = 0. This implies

tro k(@) = triaey ik (triesy ) (o ees) (@) =0,
for all o € L.
O

Proposition 10.8. Let L/k be a separable extension and let L C N subfield such
that N/k be normal. Let {¢1,...,¢n}t = Homy(L,N). Then

trok(a Z¢z s Normp, i (a H@

Proof. For a € L let P, denote the minimal polynomial of « over k. Then the set
Homy(k(«), N) is in bijection with the set of roots of P,, given by (aq,...,aq).
As « is separable we get

|Homy (k(er), N)| = [k(a) : k] = deg(Pa) = d.
Consider the map r : Homg(L, N) — Homy(k(a), N), where r(¢) = @|i(a). This
map is surjective (prove it) and r~1(6) has size [L : k()] for every @ ( prove it).
Therefore

n

Y (9ila) = [L: k()] > (@)

i=1 YeHomy, (k(a),N)

Zaz = (@)]triaye(a) = tri ().

Similarly we get the formula for norm.
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Lemma 10.9. (Independence of characters) Let L, N are field extensions of k,
M,y A\ € N and ¢1,...,¢n, € Homy(L, N) distinct such that for all a € L, we
have Y1 Nidi(a) = 0. Then \; =0 all i.

Proof. Induction on n. The case n = 1 is stratight forward as ¢(1) = 1 for any
¢ € Homyi(L,N). Let n > 1, then there exists 8 € L such that ¢1(8) # ¢,(8) and
> Aigi(aubeta) = 0 for a € L. Therefore, we get following two equations

Z Aigi(a).9i(B) = 0;
ZAi¢i(a)¢n(6) =0.

Subtracting, we get

S A3) = n(B)es(a) = 0

for all @ € L. This gives by induction, A\;(¢;(8) — ¢»(8)) = 0 for all 0 < i < n,
which gives A\; = 0. Then again by induction A\; =0 for all 1 < i < n. O

Corollary 10.10. Let L/k be a finite separable extension. Then there exists soem
a € L such that try,,(a) # 0.

Proof. Let k C L C N extensions such that N/k normal. And let {¢1,...,¢,} =
Homy(L,N). Now trp,(a) = >, ¢i(a). Using, the previous lemma we get our
result.

[

Theorem 10.11. Let k be a field and let f € k[t], be monic irreducible separable
of degree n and let L/k be the splitting field of f over k and let « € L be any root
of f.Then

Dy = (=1)"" V2 Normy /i (f' ().

Proof. There is a bijection between the set Homy(k(«), L) and the roots of f.
There are n disntinct roots of f, say ai,...,a,. Then f =[[,(r—«;) and f'(a;) =

[1;z;(a; — ;). Then
[](ei = ay) Hf ai) = [[ 6:(f'(e)) = Normy(ai(F' (@),
i#£] i

where ¢; (@) = a.

11. GALOIS CORRESPONDENCE

Definition 11.1. (1) Let K/k be an extension. Let G(K/k) denote the set of
k-isomorphism of K — K. It is a subgroup of the group of automorphisms
of K, denoted by Aut(K).

(2) Let G C Aut(K) be a subgroup,

¢.={a€Klo(a) =a,Vo € G}
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Remark 11.2. K€ is a subfield of K. Indeed, o,3 € K¢ and 0 € G, then
ola+p) = o(a) +0(B) = a + B, similarly o(a.B) = .3, 0,1 € K&, o(a™!) =
ola)"t=a L

Proposition 11.3. Let E be a splitting field of a seprable irreducible polynomial
f € klx], then G(E/k) has order [E : k.

Proof. By Proposition 9.5 (using F as K and N in the proposition), we get the
number of distinct k¥ homomorphism E — F is equal to [E : k]. As E a finite
dimension k-vector space, we get that injective linear transformations are bijective.
Therefore, we get the result.

O

Example 11.4. (1) Let E = k(«), [ be the minimal polynomial of a over k
and « is the only root of f in E. Then G(E/k) = {1}, even if f is separable.
(2) Let E = TF,(t)(t'/?), and k = F,(t). Then G(E/k) = {1} even though E/k

s normal.

Theorem 11.5. Let E be a field and let G be a finite subgroup of Aut(E). Then
[E: B¢ <|G|.

Proof. Let k := E% and let G = {01,...,0,,} and let {a1,...,a,} C E such that
n > m. We want to show «a;’s are linearly dependent over k. We get the following
m equations with n unknowns z;’s.

Zaj(ai)xi = 07]. S ] S m.
i=1

Therefore there exists non trivial solution in E. Let {c1,...,¢,} C E anon trivial
solution with minimum number of non -zeroes and assume after a premutation of
a;’s that ¢; = 1. If all the other ¢;’s are in k we are done by just taking j = 1
in the above system of equations, as o1 = id. If there is a ¢; for i # 1 such that
¢ ¢ k, then there exists j # 1 such that o;(¢;) # ¢;. Applying this o; to the
above equation and using the fact that composing with o; gives a bijection G — G,
we get {c1,0j(c2),...,05(ci),...,0;(cn)} is also a solution of the above system of
equation. Therefore,

{Oa C2 — Uj(02)7 <y G O'j(Ci), <oy Cn — U](Cn)}
is also a system of non trivial solution with more zeroes than {cy,...,c,}. Contra-

diction.
O

Corollary 11.6. Let G be a finite subgroup of Aut(E). Then G = G(E/E%).

Proof. By previous proposition [E : E¢] < |G|. As G C G(E/E%), we get |G| <
|G(E/E®)|. AS E/EY is a finite extension, there exists a smallest normal extension
N/E® (splitting field of the minimal polynomials of the generators E/E®) such
that £ C N. Then |G(E/E®)| is less than or equal to the number of distinct E“
homomorphism E — N, say m. Note that N/E® is separable if and only if £/E“
is separable. The number of distinct E® homomorphism E — N is less than or
equal to [E : EY]. Therefore

[E: E% < |G| < |G(B/EC)| < m < [E: E®).
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Therefore,
[E: E€] = |G| = |G(E/E®)| = m.
O

Definition 11.7. Let L/k be a finite extension. We say that L/k is Galois if L/k
is normal and separable.

Corollary 11.8. Let G be a finite subgroup of Aut(E) , then E/ES is Galois.

Proof. By the similar argument as corollary 11.6we get E/E® is separable. Also
we get |G(E/EY)| = |Hompgc(E,N)|. This says that the map G(E/E%) —
Hompga(E, N) composing by the inclusion E C N is a bijection. Therefore every
0 € Hompga(E,N) comes from an a € G(E/E®) by composing with the inclu-
sion £ C N, equivalently for any such 6, the image is F. Let @ € E such that
f(x) € E€[z] is the minimal polynomial of a. Then any other root o # 3 of f(x)
can be used to construct an E¢ isomorphism ¢ : E¢(a) — EY(8), which can be
extended to an E¢ auto morphism ¢ : N — N. Now this ¢|p € Hompe(E, N)
and ¢(E) = E so 8 € E. So E/E® is normal. O

Proposition 11.9. Let K/k Galois extension. Then G(K/k) is a finite group of
order [K : k] and k = KGE/F),

Proof. By proposition 11.3 |G(K/k)| = [K : k]. If K # k and « € K \ k, then for
« # (B another k conjugate we have a k-isomorphism ¢ : k(«) — k(5) mapping «
to 8. This by normality of K/k can be extended to o : K — K a k-automorphism.
Therefore, for any o € K \ k, there exists o € G(K/k) such that o(a) # .

([l

Corollary 11.10. Let K/k be finite. Then K/k is Galois iff [K : k] = |G(K/k)|
iff KGR = |

Proof. K/k Galois implies both conditions. Using corollary 11.8 we get K&K/k) =
k implies K/(K%&/k) = k) is Galois and corllary 11.6 gives us that |G(K/k)| =
[K : k]. On the other hand [K : k] = |G(K/k) := G|, then we get a tower of
extension k C K¢ C K. Since K/K% is Galois and by 11.6 G = G(K/K%) and
|G| = [K : KY), therefore [K : K¢ = [K : k], therefore k = K. and K/k is
Galois.

O

Lemma 11.11. Let K/k be a finite normal extension and let k C F C K be a tower
of extensions. Then F/k is normal if and only if for all c € G(K/k), o(F) = F.

Proof. If F/k is nnormal then we have proved before that o(F) = F. Let a €
F\ k, then any conjugate of « is in K. Let 8 be one such conjugate. Then the k
isomorphism 7 : k(o) — k(8) can be extended to a k-automorphism 6 : K — K,
then §(F) = F, implies 0(o) = 7(a) = p € F'.
O
Let K/k be a Galois extension and let G := G(K/k) be the Galois group. Denote
by
S(G) := {H C G| subgroup},
S(K/k) :={k C K; C K| subfield of K containing k} .
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Let ® : S(K/k) — S(G) be the map given by
kCcKiCK~—GK/K;) CG
and ¥ : S(G) — S(K/k) be the map given by
HcGwkc K" CK.

Theorem 11.12 (Fundamental theorem of Galois theory). The maps ® o ¥ and
U o & are identity maps. Therefore, ® and U induces bijections between S(G)
and S(K/k). Moreover, under this bijection a normal subgroup N C G corre-
sponds to the Galois extension K /k with Galois group G(KY /k) = G/N. Con-
versely, given k C L C K extension such that L/k Galois, we have G(K/L) and
G(K/k)/G(K/L) =2 G(L/k).

Proof. Let k C K1 C K € S(K/k) , then K/K; is finite separable, therefore Galois,
then KGK/K1) = K| by proposition 11.9. This shows ¥ o ® = id. Let H C G be
a subgroup and let K be the fixed field, then K/K* is Galois by corollary 11.8.
Note that H C G(K/K™) and [K : K¥] = |G(K/K™)|. So [K : K] > |H|. On,
the other hand by theorem 11.5, [K : K] < |H|. Therefore, G(K/K) = H. This
shows ® o ¥ = id.

For the second part we first show that K;/k is Galois iff G(K/K;) is normal in

1

G. Let 0 € G. Then K°C(K/K)o™" — 5(K).
(]

Proposition 11.13. Let k be a finite field and let K/k be a finite extension, then
K/k is Galois and G(K/k) is cyclic.

Proof. O

12. SOLVABILITY BY RADICALS

Proposition 12.1. Let k be a field L/k be the splitting field fo x™ —1 over k, such
that (m, char(k)) = 1. Then,
(1) L/k is Galois.
(2) The roots of the equation ™ —1 forms a cyclic subgroup (,, of L*, therefore
L =k(p). Here p is a generator (called the primitive m-th root of unity) of
the group (p,.
(3) The map o € G(L/k) ~ i(mod)m, where o(p) = p' is well defined ( does
not depend on the choice of the primitive root p ) injective homomorphism
into (Z/mZ)*.

Proof. (1) L/k is finite normal being splitting field. Ther dervative of ™™ —1 is

m.x™ 1 and (m, char(k)) = 1, it is non zero with a signle root 0. Therefore
, it is separable.

(2) Let ¢m = {p1,-.-,pm} be the roots. They are distinct. It is clear that
(m forms a group under multiplication. It is a finite abelian group. Let
p € (m be an element such that it has maximum order [. Then any element
of ¢, satisfies 2! = 1. As it has atmost [ solution therefore [ = m and (,,
is cyclic.

(3) Any o € G(L/k) only permutes the root so o(p) = p’ for some i which only
depends on ¢ and (i,m) = 1. For the last one we know that

a(p") =p=p"
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aso is surjective. Therefore in = 1(mod m. Note that If § be another
generator, then 6 = p/ with (j,m) = 1. Then o(f) = o(p’) = p". So
ij = i(mod m). So the map G(L/k) — (Z/mZ)*, is a well defined injective
group homomorphism.

(I

Remark 12.2. Note that in the previous proposition, we have G(K/k) is finite
abelian. Therefore it is solvable.

Definition 12.3. Let K /k and K3/k be two finite extensions such that Ky, Ko C
N for some finite extension N/k. Then K1. Ko C N, is smallest subfield of N such
that K1, Ko is both contained in KiK.

Remark 12.4. Let ay,...,apm,B1,...,0n € N, such that K1 = k(aa, ..., ) and
Ky = k(B1,...,Bn). Then it is easy (using the smallest subfield description) to
verify that K1.Ko = k(aq, ..., 0m, B, Bn)-

Proposition 12.5. Let Ki/k be a Galois extension, then Ki1Ko/Ks is a ga-
lois extension. Moreover, there is a matural injective group homomorphism 6 :

Proof. As K /k is a splitting field of some seprable polynomial f(x) € k[z], there-
fore K1 K5/ K> is the splitting field of the same seprable f(z) over K5. So K1.Ks /K>
is Galois. Let ¢ € G(K1K2/K>), then ¢ fixes k. Moreover, K7 /k is normal implies,
that ¢(K;1) = Ky. So we get a homomorphism 6 : G(K; Ko /Ky) — G(K;/k) such
that 0(c) = o|k,. If (o) = idk,, as 0|k, = idk,, we get o = id, so 0 is injective.
(Il

Remark 12.6. If Ky/k is Galois, then K1Ky/k is Galois. Any g € G(K1/k)
can be extented to g € G(K1Ka/k) and G(K1K2/Ks) C G(K1K3/k) is normal
subgroup. So gog—! € G(K1K2/K>) for all 0 € G(K1Ka/K>). This implies im(0)
is normal subgroup. Blah blah.......

Definition 12.7. An extension K/k is called cyclic if it is Galois and G(K/k) is
cyclic.

Proposition 12.8. Let k be a field containing all m-th roots of unity for (m, char(k)) =
1 and let L/k be a splitting field of f(x) = 2™ —a,a € k. Let o € L be a root of
f(x). then L = k(«) and L/k is cyclic. If m is prime then L =k or [L : k] = m.

Proof. We have in L], f(z) = H;T:Ol(x — a.p?), where « is any root of f(z) and p
is a primitive m-th root of unity., Moreover L = k(«) as k contains all m-th roots
of unity . since f is seprable we get L/k is Galois extension. Let o € G(L/k),
then o(a) = a.p’. Therefore we get a well defined (!) group homomorphism
0 : G(L/k) — Z/mZ with 0(a) = imod m. Kernel of this map is trivial . This
implies G(L/k) is cyclic. If m is prime thsn G(L/k) = Z/mZ or the trivial subgroup,
therefore, the second assertion follows.

(]

Proposition 12.9. Let k be a field containing all m-th roots of unity for m a prime
with (m, char(k) = 1. Let L/k be a cyclic extension of degree m. Then there exists
«a € k such that L is a splitting field of x™ — « over k.
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Proof. Let p be a primitive m-root of unity and « is an integer. Let m|a, then
p'® = 1, therefore sz:_ol p'® = m. If m does not divide a, then § = p® is again a
primitive m-th root of 1. Therefore 270" pi* = S 191 = 0 as it is the m — 1-th
coefficient of ™ — 1.

It is enough to show that there exists a € L\ k such that o™ € k. Then K(«)/k
is a nontrivial extension whose degree divides m, therefore it has to be equal to
m. So L = k(a). Since L/k is separable we have L = k() for some S € L, then
the minimal polynomial of of Ps(x) = [[;~,(x — ), with 81 = 8. Since Galois
group is cyclic and acts transitively on {81,...,8m}, therefore the action is by
cyclic permutation. So we can assume that there exists a generator o € G(L/k),
such that o(8;) = Bix1,1 <i<m—1and o(8,) = 51 = B.

Define for 1 < j < m,

m—1
. 1
aj = E P Bt
=0

Note the following

m

m m—1
Zaj = Z 5i+1(z Pji) =mpfy,
j=1 i=0

Jj=1

and o, just the sum of the roots so Z;nzl a; ¢ k and ., € k.So there exists a
1 <j <m—1such that a; ¢ k. Then

m—1 m—2 m—1
ala) =Y p"o(Bir1) = Y P Bira+ /"B =p T Y po(Bira) = p 0y
i=0 i=0 i=0

So o(aj') = af'. This implies o € k. Thus we get the result.
O

Definition 12.10. Let k be a field. An extension K/k is calles simple radical
extension if there exists o € K such that ™ = a € k,(m,char(k)) = 1 and
K =k(a).

An extension K/k is called a radical extension if there exists subfields k C K; C
K, such that K — 1 =k, K,, = K, K; C K;11 and K;11/K; are simple radical
extensions.

Remark 12.11. (1) If k C K C L and L/K and K/k both radical then L/k
1s radical.indeed, let k C K; C K, such that K_1 =k, K,, = K, K; C K; 1
and K;11/K; are simple radical extension and let K C L; C K, such that
L 1=K,Ly,=L, L; C Liy1 and L;11/L; are simple radical extensions.
Then the putting this towers together we get L/k is a radical extension.

(2) Any simple radical extension is finite separable. Therefore, radical extension
is finite separable.

(3) Let K/k be a simple radical extension with K = k(«), let N/K be the
splitting field of ™ — o™ over k, then N/k is a radical extension.

(4) L/k radical and N/L be any extension such that F C N be a subfield. Then
LF/F is radical. Therefore L1, Lo/k radical then Ly Lo/k is radical.

Proposition 12.12. Let L/k be a radical extension. Then there exists an extension

M/L such that M/k is Galois radical.
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Proof. We will prove this by induction on [L : k]. If [L : k] =1, then M = L = k.
Now suppose, for any radical extension L;/Ly such that [Lq : Lo] < n, then there
exists My /Ly Galois radical such that Ly C M;. Now suppose [L : k] =n and L/k
be radical. If it is simple radical then we are done by one of the remark. If it is
not, then there exists k C L' C L , such that L'/k is radical L/L’ simple radical
and [L : L'],[L’ : k] < n. Then, by induction there exists Galois radical M /k such
that Ly C M; and there exists o € L such that o™ € Ly, (mchar(k)) = 1 and
L = Ly(«). Therefore o™ € M; and if o € M; we are done. Else, let M/M; be
a splitting field of ™ — o™ over M;. Thus M/M; is Galois radical and mapping
a to any root of ™ — o in M lifts the inclusion Ly C M; to give an injective
homomorphism L;(«) — M. Now M/M; is Galois radical and M;/k is Galois
radical therefore M/k is Galois radical.

O

Proposition 12.13. Let L/k be a Galois radical extension. Then G(L/k) is solv-
able.

Proof. Let L1 = k C Ly--- C L, = L such that there exists a; € L;y1,m; € N|
such that L;11 = L;(ay), )" € L;, (my,char(k)) = 1. Let m =m — 1.mg - -_1,
then (m, char(k)) = 1. Let N/L be the splitting field of 2™ —1 over L and let ¥ C N
be the smallest subfield of N containing k£ and the roots of ™ — 1. Then LF = N,
F/k Galois radical extension with G(F/k) solvable, L,F contains all m;-th roots
of unity, (define LoF = k), L;11F = L;F(«;) and they are Galois radical extnesion
with G(L;41F/L;F) abelian group. Let G,,_; := G(LF/L;F), then G; C G(LF/k)
, G; C G,41 normal subgroup and G;4+1/G; = G(Lj41F/L;F). This implies
G(LF/k) = G(N/k) is solvable. But L/k is Galois, therefore G(L/k) is a quotient
of G(N/k) and we are done.

([

Proposition 12.14. Let L/k be Galois such that ([L : k], char(k)) = 1 and G(L/k)
is solvable. Then there exists M /L such that M/k is a radical extension.

Proof. Let G := G(L/k) and let Gy = {e} C G; C ...G, = G be a solvable
series such that G; is normal in G;11 and G;y1/G; = Z/p;,Z, with p — s are
prime. Note that [L : k] = |G| ( as L/k is Galois), therefore (p;,char(k)) = 1.
Let m = po.pa...pn—1. Then (m,char(k)) = 1. Consider the splitting field N of
™ — 1 over L. Then N/L is Galois, so N/k is Galois. We will show that N/k
is radical extension. Let F' C N be the smalles subfield containing £ and roots of
2™ — 1. Then F/k is Galois radical and LF = N and F' contains all p;-th roots of
unity for all p;. Let L; := L% . Then L;11/L; is Galois extension with Galois
group Gp—i/Gn—i—1 2 Z/pp—i—1. Now L;11F/L;F is Galois and the Galois group
is either trivial or Z/p,,_;—1 and since L; F' contains all p,,_;_1-th roots of unity we
get L; 11 F/L;F is Galois radical ( infact simple radical). Therefore LF/F is Galois
radical which implies LF/k is Galois radical.

O

Definition 12.15. Let f € k[x], f is said to be solvable by radicals over k if the
splitting filed L of f over k is a subfield of a radical extension of k.

Theorem 12.16. Let f € k[z], L splitting filed of f over k, such that ([L :
k], char(k)) = 1. Then L/k is Galois and moreover f is solvable by radicals over k
iff G(L/E) is solvable.
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Proof. Let 8 € L and let Pg be its minimal polynomial over k. Then deg(Pg)|[L : k],
therefore deg(Pgs)) is not divisible by char(k). This shows that Py is separbale,
hence L/k is Galois. Now if f is solvable by radicals then L C N, such that
N/k is Radical. Infact we can choose N/k to be Galois radical. Then G(N/L) C
G(N/k) is a normal subgroup as L/k is Galois and G(N/k)/G(N/L) = G(L/k).
As N/k is Galois radical, therefore G(N/k) is solvable. Quotient of solvable group
is solvable. Therfore, we get G(L/k) is solvable. The only if part follows from
previous proposition.

O

Theorem 12.17. Let p be a prime. Then there exists an irreducible polynomial
f(z) € Q[z] of degree p such that the Galois group G(L/Q) of the splitting field L/Q
of f is isomorphic to S,. Therefore, for p > 5, there exists irreducible polynomial
f of degree p > 5 such that f is not solvable by radicals.

Proof. Claim 1 : For each prime p > 3, there exists f(z) € Q[z], irreducible, with
exactly p — 2 real roots. Threfore the Galois group of the splitting field of f is a
trnasitive subgroup of S, containing a transposition.

Proof. O
O

13. ALGEBRAIC CLOSURE

Definition 13.1. A field k is algebraically closed if any non constant f € k[x] has
root in k. A field extension k/k is called an algebraic closure of k if k/k is algebraic
and k is algebraically closed.

Proposition 13.2. Let k/k be an extension. Then the following are equivalent.
(1) k/k is an algebraic closure.
(2) k/k is an algebraic extension and any f € k[x] irreducible splits over k.
(3) k/k is an algebraic extension and k does not have any non trivial algebraic
extension.
Proof. (1) 1 implies 2 is trivial.
(2) 2 implies 3 : If  algebraic over k, then « is algbraic over k. Then the
minimal polynomial of o over k has all the roots in k by 2, so o € k.
(3) 3 implies 1 : Let f € k[x] non constant, then the splitting field of f over k
is k by 3, therefore f splits in k.
O

Corollary 13.3. Let L/k extension such that L is algebrically closed. Let k=
{a € L|a algebraic over k}. Then k/k is an algebraic closure of k.

Theorem 13.4. Let k be a field , then there exists k/k which is an algebraic closure
of k.

Proof. New variables : Let
S :={(f,?)|f € k[z] monic non constant ,1 < i < deg(f)}

Xs = A{xi(NI(f,7) € S}
Let f(z) € k[z], then

f =" — al(f)iﬂnil —+ -+ (71)nan(f)aa1(f) € k.
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Here a;(f)’s r i-th symmetric polynomial on the roots of f(z). Let
oi(f) =D wip(f) 2, () 6(F) = 0i(f) — a(f)-

J1<-<gi

Consider the ideal I := (¢;(f));.r C k[Xs]. Then I # (1). If not then there exists
r1,.... N € K[Xs], and ti, (f1), .., tiy (fn) such that SN vty (f;) =1 in k[Xs].
Let L/k be the splitting field of fi,...fn. Then consider the homomorphism
ev : k[Xg] — L given by ev|; = id, ev(x;(fi)) the j-th root of f; and all the other
variables goes to 0. Then ev((t;(f;)) = 0 for approriate i’s and 1 <1 < N. Which
is a contradiction as it gives ev(1) = 0.

Therefore there exists a maximal ideal m C k[Xs] containing I. Define k :=
Xgs]/m and let q : k[Xs] — k be the canonical quotient map and let j : k —
Xs] — k. Then k/k is an algebraic closure. Indeed, k is generated over k by

K
K
alas (f > Let £ =5~ o) o (1) () thes
(

3(f) = 2" —glar (H)a" 4 (D) "q(an(f)) = 2" gl (F))e" "+ (1) q(on(f)) =
= o[~ () = [[(@ - alai().
i=1 i=1

so f splits in k and and q(z;(f)) are algebraic over k.
U

Theorem 13.5. Leti: k — k and i : k — k' be two algebraic closures of k, then
there exists j : k = k' isomorphism such that joi =1'.

Proof. Claim : Let L/k be an algebraic extension and K be algebraically closed
then any ¢ : K — K can be extended to j : L — K.
Proof of claim Let

P:={(L'/k,0)|L' C L,6: L' — K extension of i}.

Usual inclusion of subfields and extension of homomorphism gives P a non empty
poset structure. Let C' be a chain then N := Uz 9yec L’ is subfield of L con-
taining k& and using 6’ we can construct an extension S : N — K of i. Therefore
there exists a maximal element (L”/k,0) in P. If L” # L, then there exists an
«a € L algebraic over L, therefore algebraic over k. As K is algebraically closed,
the minimal polynomial of a has all the roots in K, so fixing a root we can extend
0 to L"(a)) — K. This contradicts the maximality.

Proof of the theorem There exists an extension of i’ given by j : k — k’. This
is injective. Let a € &/, then the minimal polynomial of o over k has all the roots
in k, so j is surjective.

|

14. ABSOLUTE GALOIS GROUPS

Definition 14.1. Let k be a field. k is called sperabely closed if every separable
polynomial splits in klx]. A separable closure of k is an algebraic extension K/k
such that such that every element of K is seperable over k and K is separably closed

Exercise 14.2. Show that the following are equivalent for a extension K/k.

(1) K/k is a seperable closure.
(2) K/k is a separable extension and any irreducible separable polynomial f(x) €

klz] splits in K.
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(8) K/k is a separable extension and there does mot exists any non trivial
seprable extension of K.

Theorem 14.3. Given any field k, there exists a unique ( upto a k-isomorphism)
a seprable closure k5P [k.

Proof. Let k/k be an algebraic closure. Then k*? := {x € k|z separable over k}.
Then k°°P is seprable closure of k. Let L/k be a seprable extension an let K’ be
a separably closed field. Then any homomorphism & — K’ can be extended to a
homomorphism L — K’ (Exercise). Using this we get the uniqueness.(Exercise).
O

Let k*¢P/k be a separable closure of k. The absolute Galois group Gy of k is
defined as

Gy := {0 : k*? — k°°P|k isomorphism} .

Let 0 € G, and « € k*P. Let L/k be the splitting field of the minimal polynomial
of a. Then L/k is Galois and o|r, : L — L an k automorphism. Therefore given
any L/k normal extension such that L C k°¢?. We get a homomorphism ry, :
Gr — G(L/k). These homomorphisms are surjective indeed, we can extend any
o € G(L/k) to a k homomorphism to a k-embedding o : L — k*P. By Zorn’s
lemma this can be extended to a k-homomorphism o : k*P — k*P  which is
surjective (exercise).

Definition 14.4. Let I be a set with a partial order <. An inverse system (also
called a projective system) indexed by I is a collection of sets ( or groups or topo-
logical spaces) (A;)icr together with maps ( of sets, groups, rings, or topological
spaces)

¢ij : Ai — Aj
for all j < i such that ¢s; = ide=a, and for k < j <1 we have @i © ¢i; = @ik

Example 14.5. (1) Let p be a prime and A; := Z/p'Z for i € N and ¢;; :
7.)p'7 — 7.]p 7 be the mod p? map for j <i

(2) Let R be any ring A; := R[z]/z" for i € N. Similar transition maps.

(8) k*°P [k seprable closure. Let I be the set of L/k finite Galois extension
such that L C k*°P. The partial order is given by inclusion. By Galois
correspondence we have, whenever L C L' such that L, L' € I, there exists
a surjective groups homomorphism G(L'/k) — G(L/k), whose kernel is
the normal subrgoup G(L'/L). This groups are finite , so it has a discrete
topology with respect to which these groups are topological groups. This can
be done for any extension K/k such that it is separable and normal but not
necessarily finite.

Definition 14.6. The inverse limit of the system (A;, ¢i;) is the set/group/ring/topological
space

lim 4; := {(ai)ia € HAi|¢ij(ai) =a;,j < Z}
1

If A;’s are topological space then we give [], A; the product topology ( that is
open sets are product of open sets of each A; such that only finitely many are not
the whole space A;) and lim,; A; subspace topology.
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Exercise 14.7. (1) Let R be any ring A; := Rlx]/x* for i € N. Similar
transition maps. Then show that the map R[[z]] — lim.; A; given by
f(x) = f(x) mod z* is a ring homomorphism.
(2) Let p be a prime and A; := Z/p'Z for i € N and ¢i; : Z/p'Z — Z/p'Z be
the mod p’ map for j <i. Show that lim, ; A; = Z,.

Lemma 14.8. Let K/k be normal seprable. Let I be the set of L/k finite Galois
extension such that L C K. The partial order is given by inclusion. And let L/k € 1
, G(L/k) be the corresponding system of groups. Then the restriction map gives an
isomorphism
G(K/k) = egﬁclel G(L/k).

Proof. Let 0 € G(K/k) and let k¥ ¢ L' C L such that L/k,L'/k € I. Then
ri(o) € G(L/k) and 71 ((0) € G(L'/k). Consider the restriction homomorphism
G(L/k) = G(L'/k) which is surjective. Then r1(c)|r = rr/(0). So the restriction
homomorphism 7 : G(K/k) = lim_p, ke G(L/k) is well defined. Let r(o) = id,
then for any o € K, there exists a finite Galois extension L/k which is a splitting
field of the minimal polynomial of a. Then r(o)|, = id, therefore o(a) = a.
This implies ¢ = id. So r is injective. Fro surjectivity, let o, € G(L/k) for
L/k € I satistfy compatibility confition. Then define o(a) = o|r(a) where L/k is
any splitting field of the minimal polynomial of a contaained in K. Because of
compatiibility of the o|r’s this is well defined. O

Lemma 14.9 (Topological properties). Let K/k be a seprable normal extension.

(1) G(K/k) is compact.

(2) For every k C L C K such that L/k is normal and seperable, the restriction
map G(K/k) — G(L/k) is surjective and continuous with kernel G(K/L).

(8) For every k C L C K such that L/k is finite Galois, the subgroup G(K/L)
normal open and closed.

(4) For the sub extension L/k finite Galois, gives a basis of open sets G(K/L)
at the identity. Therefore G(K/k) is totally disconnected.

Proof. (1) As G(K/k) is a closed subgroups of product of compact groups ,
therefore Tychonoff implies it is compact.

(2) The restriction map G(K/k) — G(L/k) is just projection map ( inverse
limit wise only those finite Galois extension that is inside L is , it is
projected).Therefore, surjective and continuous. The kernel is obviously
G(K/L). It is closed normal subgroup.

(3) it is obvious.

(4)

(I

From now on any normal separable extension (even if infinite) will be called a
Galois extension. Let K/k be a Galois extension. Let S¢ denote the set of closed
subgroups of G := G(K/k) and let Sk denote the set of sub extensions k C L C K.

Theorem 14.10 (Infinite Galois correspondence). Let K/k be Galois extension.
Then there exists an inclusion reversing bijection :

S(;—>SK
Hw— K"
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kCLCKw— G(K/L).

Moreover under this correspondence closed normal subgroups corresponds to k C
L C K such that L/k is Galois. The open subgroups corresponds to k C L C K
such that L/k is finite.

Proof. O

15. HILBERT THEOREM 90

Theorem 15.1. Let K/k be a cyclic extension of degree n with Galois group G =
(o). Then for any a € K, trg () =0 iff a = B — o (B).

Proof. Let a = 8 — o(f). Then tr () = (X1, 0'(8) — S, 0%(8)) = 0. For
the converse, note that as K/k is Galois, therefore separable. The indepnedence of

character result implies that there exists § € K such that trg/,(6) # 0. That is

Z?:_Ol 0'(f) = 0. Now it is given that trg /x(e) = Z?:_Ol o'(a) = 0. Let

f0)=af+ (a+o(a)(c@)+ -+ (a+o(a)+...0"  (a)(c"1(9)).
Then verify (done in class that) o = f(0)/tri /k(0) — o (f(0)/tr K /i(0)).

Theorem 15.2. Let k be a field of characteristic p.

(1) For any a € k, the polynomial xP — x — a is either irreducible over k or
splits into linear factors over k.

(2) Let K/k be a cyclic extension of degree p, then K is a splitting filed of some
P —x —a € k[x].

Proof. (1) Let a € k, and let K be a field containing one root say a of the
polynomial f(x) = 2P —x —a. Then for any i € Z/pZ, we get a+1 is also a
root of f(z). So all the roots of f(z) are a4 1,0 < j < p— 1. Therefore K
contains all the roots of f(x). Now if f(x) have no roots ion k and suppose
f(z) = g(z).h(z), g(x), h(z) € k[z] non constant. Then in the the splitting
field K of f(z) all the roots of f(x) and g(z) is there. Therefore there exists
A C Z/pZ proper non empty subset such that (a + j) for j € A are the
roots of g(x), where n = |A| is the degree of g(z). Therefore the n — 1-th
coefficient of g(z) , which is — . 4(@+j) isin k. So —na—3 ;4 j € k.
This implies na € k and as n is a unit in k£ we get a € k, which is a
contradiction. therefore f(x) is irreducible in k[x].

(2) Note that —1 € k and Trg/,(—1) = 0. Therefore, there exists € K, such
that 8 —o(8) = —1 or o(B8) = 5+ 1. Since K/k is Galois, therefore 8 ¢ k
and o?(8) = B+j forall0 < j < p—1. Now o (8P —3) = (B+1)P—(B+1) =
PP — 8. Thereforea = fP -3 € k. So, f € K isaroot of f(x) =aP —z—a.
This has no root in k as 8 ¢ k. Therefore, f is irreudicble and k(8) C K
is the splitting field whose degree over k is p. But K/k has degree p so
K = k(8).

O

Definition 15.3. Let K/k be a Galois extension with Galois group G.
(1) A map a: G — K* is called a 1-cocycle if a(o o 1) = afo).o(a(T)) for all
o,7€G.
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(2) A map o : G — K* is called a 1-coboundary if there exists a 8 € K* such
that a(o)) = o(B)/B for all o € G. (In this case dff := «.)

Remark 15.4. Let K/k and G be as above. Then for B € K*, dS is a 1-cocycle.
Indeed,
dB(or) = o(1(8))/8 = a(B)/B-0(8) or(B) =
=0(B)/Bo(r(B))/o(B) = dB(c)o(dB(T))
Definition 15.5. Let K/k be a Galois extension with Galois group G. Then
HY(G,K*) := __1—cocycle

1—coboundary *

Theorem 15.6. Let K /k be a Galois extension with Galois group G. Then H' (G, K*) =
e, i.e. every l-cocycle is a 1-coboundary.

Proof. Let G := G(K/k). Let a : G — K* such that a(o7) = a(o).c(a(r)). We
consider the the following function K — K given by z — > __,a(o)o(z). By

independence of characters and as «(c)’s are non zero we get there exists a § € K
such that 0 # 6 = > ., a(o)o (). Then for any o € G we get

o(8) = (Y a(r)r(0)) = Y a(a(r)o(r(8)) =

TEG TEG

Let B =0"!. Then a(c) = o(B)/B.

Corollary 15.7. Let K/k be a cyclic Galois extension with G(K/k) = (o) and
[K : k] =n. Then for any o € K, Ng () =1 iff a« = o(B)/B for some B € K*.
Proof. If @« = o(8)/B. Then

n—1

Ni k(o H o’ H(Ui(0(5>/0i(5) =

=0
On the other hand let a eK such that Ng /(o) = 1. Then the map o : G — K*

defined by a(c?) = Hk 00" (a) gives a 1 cocyle. But then it is a coboundary, that
is there exists 8 € K, such that o = a(o) = o(8)/5.
g

Theorem 15.8 (Kummer extension). Let k be a field and let n > 1 such that
(char(k),n) =1 and assume that k contains a primitive n-th root of unity ¢,. Let
K/k be a cyclic extension of degree n, then Ia € k such that K = k(a/™).

Proof. Let (, be a primitive n-th root. Then

Nic/r(Gn) = Hacn =" =1

Therefore, there exists 8 € K such that ¢n = o(B)/B. Therefore, o(B8) = (,.0.
Then

a'(B) = 0" (¢n-B) = Guoo'THB) = GuC B =GB
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Note that o(8™) = o(8)™ = ™. Therefore 5" € k. Let K/ = k(8) and as 8 ¢ k, we
get k(B)/k is a non-trivial extension contained in K. Now [k(() : k] is the number
of distinct k -homomorphism k(3) — K. As each o' gives a k& homomorphism
k(B8) — K and they are distinct, therefore n < [k(3) : k]. On the other hand
[k(8) : k] < n. Therefore k(8) = K.

U
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