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1. Lecture 1 : Introduction

Let F be any of the following fields Q,R,C and let f(x) ∈ F [x] be a polynomial.

Sol(f)(F ) := {α ∈ F |f(α) = 0} .
We have the following fundamental theorem of algebra.

Theorem 1.1 (Gauss, 1799). Let f(x) be non constant. Then Sol(f)(C) 6= Φ. In-
fact, |Sol(f)(C)| = n = deg(f), if we count the roots with multiplicities. Therefore

f(x) = an

n∏
i=1

(x− αi),

where αi’s are roots of f(x) (not necessarily distinict).

Note that we have a Z/2Z action on C given by z ∈ C 7→ z̄ ∈ C, whose fixed
points are precisely the real numbers R. Note that if z = a + ib, then z̄ = a − ib
and z.z̄ = a2 + b2. On the other hand consider the map lz : C → C , given by
lz(α) := z.α.

Exercise 1.2. (1) Show that lz is R-linear.
(2) Show that det(lz) = z.z̄.
(3) Find trace(lz).
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Observe that z.z̄ is the constant term of the real polynomial fz(x) := x2 − (z +
z̄)x + z.z̄ , which has z and z̄ has its roots. If the imaginary part of z is non-zero
then fz(x) can not be factorised over R, therefore fz(x) is irreducible in R[x]. If
F = Q or R and f(x) ∈ F [x], then f(α) = 0 iff f(ᾱ) = 0 for α ∈ C. So, we get a
Z/2Z action on Sol(f)(C) for such f such that

(1) The action is trivial on the subset Sol(f)(F ).
(2) The fixed points of this action is precisely the subset Sol(f)(R).

Given a polynomial f(x) =
∑n
i=0 aix

i, with ai ∈ F , we know from Vieta’s
formulae that the coefficients ai can be expressed as symmetric polynomials on the
roots.

Quadratic
f(x) = a2x

2+a1x+a0 = a2(x−α1)(x−α2) with a2 6= 0. Putting p = −a1/a2, q =
a0/a2, we see that α1, α2 satisfies the equation x2 + px+ q = 0. Completing quares
we get (x+ p/2)2 + (q− p2/4) = 0, then taking square roots we get the roots to be

−p/2±
√
p2/4− q. Note that the roots can be expressed using the four arithemtic

operations and extrcating roots applied to the coefficients.
The discriminant 4 := p2 − 4q = (α1 − α2)2 is non zero iff α1, α2 are different.

Cubic Let f(x) =
∑3
i=0 aix

i = a3(x − α1)(x − α2)(x − α3) such that a3 6= 0.
Making it monic and putting X = x+ a2/3a3 we get X3 + pX + q = 0. Note that
(a + b)3 − 3ab(a + b) − (a3 + b3) = 0, therefore if p = −3ab, q = −(a3 + b3) then
X = (a+ b) is root. Note that −p3/27 = a3b3 and −q = (a3 + b3). Therefore a3, b3

are roorts of the quadratic g(T ) = T 2 + qT − p3/27. Therefore taking cube roots
of the roots of g(T ) and then adding them will give us a root of f .

Show that 4 := −(4p3 + 27q2) = ((α1 − α2)(α2 − α3)(α2 − α1))2.
Quartic Let

f(x) =

4∑
i=0

aix
i = a4

4∏
i=1

(x− αi),

with a4 = 1. Then

f(x) = (x2 + (a3/2)x+ t/2)2 − [(a23/4 + t− a2)x2 + (a3t/2− a1)x+ (t2/4− a0)] =

= f1(x, t)2 − g1(x, t).

Note that both f1 and g1 are quadratic in x. If g1 is a square for some t, then
we can solve two quadratics to get roots of f(x). Now, g1 is a square for those t’s
satisfying

(a3t/2− a1)2 − 4(t2/4− a0)(a23/4 + t− a2) = 0.

This is a cubic in t, therefore we are reduced to the previous case.
What happens for quintic :

Theorem 1.3 (Abel 1823, Ruffini 1799). It is impossible to express solutions of
general quintic equations f(x) ∈ Q[x], using the four arithmetical operations and
extracting roots applied to the coefficients.

Galois theory Let F be as before.

Definition 1.4. Let α, α′ ∈ C. Then α and α′ are called conjugates over F (or
F -conjugates) if for all non zero polynomials p(x) with coefficients in F , p(α) = 0
iff p(α′) = 0.

Remark 1.5. (1) α and α′ are C-conjugate iff α = α′.
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(2) α and α′ are R conjugate iff α = α′ or α′ = α. Indeed, for conjugates
α 6= α′, p(x) = (x−α)(x−α) has α as root therefore α′ = α. On the other

hand if for non zero p(x) ∈ R[x], we have p(α) = 0, then p(α) = 0, but as

the coefficients are in R we have p(α) = p(α) = 0.
(3) If α and α′ are R-conjugate then they are Q-conjugate too. Therefore for

any f ∈ R[x] such that there exists α ∈ C \ R such that f(α) = 0, then
Sol(f)(C) has a non-trivial C2 action.

(4) Note that α, α′ are R (resp. Q) conjugate such that α ∈ R (resp. α ∈ Q),
then α = α′.

(5) Note that
√

2 and −
√

2 are Q-conjugate. Though they are not R-conjugate.
(6) Let f(x) = 1 + x + x2 + x3 + x4 ∈ Q[x]. Using Eisenstein criteria and

P.I.D porperty of Q[x] we know that any polynomial g(x) ∈ Q[x] vanishing
on any root of f(x) is divisible by f(x). The complex roots of f(x) are
ω, ω2, ω3, ω4, such that ω = e2πi/5. Using these observations we see that
Sol(f)(C) has cardinality 4 and all the elements are Q- conjugate to each
other. On the other hand ω, ω4 and ω2, ω3 are R-conjugate. So Q-conjugate
does not imply R-conjugate.

Therefore, we conclude that conjugacy over Q is more subtle than conjugacy
over R.

Definition 1.6. Let k ≥ 1 and let z := (z1, . . . , zk) ∈ Ck and z′ := (z′1, . . . , z
′
k) ∈

Ck. We say that z and z′ are F -conjugate if for all non zero polynomials p(t1, . . . , tk) ∈
F [t1, . . . , tk], p(z1, . . . zk) = 0 iff p(z′1, . . . , z

′
k) = 0.

Example 1.7. (1) (z1, . . . , zk) and (z1, . . . , zk) are Q and R-conjugates.
(2) (z1, . . . , zk) is C-conjugate to (w1, . . . , wk) iff zi = wi for all i.
(3) (ω, ω2, ω3, ω4) is Q-conjugate to (ω4, ω3, ω2, ω). It is non trivial to show

that (ω, ω2, ω3, ω4) is Q-conjugate to (ω2, ω4, ω, ω3). Using the polynomial
t2 − t21 one can show that (ω, ω2, ω3, ω4) and (ω2, ω, ω3, ω4) are not Q-
conjugate. This shows that (z1, . . . , zk) and (z′1, . . . , z

′
k) are Q-conjugate

then zi and zi’ are Q-conjugate for every i. The converse is not true.

Definition 1.8. Let f ∈ Q[t] and f 6= 0. Let α1, . . . , αk be all the distinct roots of
f in C.

Gal(f) :=
{
σ ∈ Sk|(α1, . . . , αk) and (ασ(1), . . . , ασ(k)) are Q conjugates

}
.

Remark 1.9. Let f and αi as above. Then for any σ ∈ Sk we have an isomorphism
of Q-algebras σ : Q[t1, . . . tk] → Q[t1, . . . , tk], such that σ(ti) = tσ(i). Consider the
subfield of C denoted by L := Q(α1, . . . αk) generated by αi’s and Q. And consider
the Q morphism evf : Q[x1, . . . xk]→ L, given by evf (xi) = αi. One can show that
this map is surjective. Then let m = ker(evf ). This m is a maximal ideal. Then
for σ ∈ Gal(f) iff σ(m) = m. This shows that Gal(f) is indeed a group.

Remark 1.10. (1) If f has all rational roots then Gal(f) = {e}.
(2) If f is quadratic and non real roots then Gal(f) = S2. If it has two distinct

real roots non rational roots then also Gal(f) = S2.

Definition 1.11. A complex number is called radical if it can be obtained from the
rationals using only the four arithmetical operations and extracting n-th roots. A
polynomial f ∈ Q[t] is said to be solvable by radicals if all its roots are radical.
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Theorem 1.12 (Galois). A polynomial f ∈ Q[t] is solvable by radicals if and only
if Gal(f) is a solvable group.

2. Lecture 2 : Group Theory basics

Definition 2.1. A group is a pair (G, .), where G is a set and . : G×G→ G is a
map of sets (binary operation) such that

(1) (x.y).z = x.(y.z) ∀x, y, z ∈ G,
(2) ∃e ∈ G such that e.x = x.e = x, ∀x ∈ G,
(3) For any x ∈ G, ∃x−1 ∈ G, such that x−1.x = x.x−1 = e.

A group G is called abelian if a.b = b.a for all a, b ∈ G.

Remark 2.2. (1) e is unique.
(2) For any x, the inverse x−1 is unique.
(3) Since x.(y.z) = (x.y).z, therefore for any x1, . . . , xn ∈ G we can inductively

define x1.x2 . . . .xn. Therefore for any x ∈ G we can define xn for n ≥ 0
(x0 = e), and using inverse we can define x−n := (xn)−1 = (x−1)n.

Definition 2.3. A ring is a triple (R,φ, ψ), where R is a set φ, ψ : A × A → A
maps (we will denote x+ y := φ(x, y) and x.y := ψ(x, y)) such that

(1) (R,+) is an abelian group. The identity element of this abelian group is
denoted by 0.

(2) (associativity of multiplication) x(yz) = (xy)z for all x, y, z ∈ R
(3) (Distributive property of multiplication over addition and vice versa) x(y+

z) = xy + xz and (y + z)x = yx+ zx for all x, y, z ∈ R.

A ring is called unital if there exists an element 1 ∈ R such that x.1 = 1.x = x for
all x ∈ R. A ring is called commutative if xy = yx for all x, y ∈ R.

Definition 2.4. A commutative unital ring (R,+, .) is called a field if for any
x 6= 0, there exists y ∈ R such that yx = xy = 1

Example 2.5. (1) Let X be a set. The set Bij(X) := {f : X → X|f bijection}
is group where composition of functions is the composition law. This group
will be denoted by SX . If X := {1, 2, . . . , n}, then SX will be denoted by
Sn.

(2) Let n be a positive integer and Z/nZ denote the set
{

0̄, 1̄, . . . , n− 1
}

. The

operations ā + b̄ := a+ b(mod)n, ā.b̄ := a.b(mod)n, makes (Z/nZ,+, 0̄) an
abelian group and (Z/nZ,+, ., 0̄, 1̄) a commutative unital ring.

(3) (Exercise) Show that for a prime p, the commutative unital ring Z/p.Z is
a field.

(4) Let F be a field then F \ {0} is an abelian group under multiplication oper-
ation.

(5) Let A be a ring M be A-module, then AutA−mod(M), the set of A-module
automorphisms of M forms a group, where composition of A-module homo-
morphism is the group operation.

Loop Space Let X be a topological space and let x ∈ X be a point. Let

Ωx(X) := {f : [0, 1]→ X|f(0) = f(1) = x, f continuous} .

Let f, g ∈ Ωx(X). Then define
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g ◦ f(t) :=

{
f(2t), 0 ≤ t ≤ 1/2

g(2t− 1), 1/2 ≤ t ≤ 1

Let e : [0, 1]→ X be the constant loop, that is e(t) = x, t ∈ [0, 1] and let for any
f ∈ Ωx(X) we define f−1(t) := f(1− t). Show the following

(1)

h ◦ (g ◦ f)(t) :=


f(4t), 0 ≤ t ≤ 1/4

g(4t− 1), 1/4 ≤ t ≤ 1/2

h(2t− 1), 1/2 ≤ t ≤ 1

(2)

(h ◦ g) ◦ f(t) :=


f(2t), 0 ≤ t ≤ 1/2

g(4t− 2), 1/2 ≤ t ≤ 3/4

h(4t− 3), 3/4 ≤ t ≤ 1

(3) Show that there exists a continous map F : [0, 1] × [0, 1] → X, Such that
F (0, t) = F (1, t) = x and F (t′, 0) = h◦(g◦f)(t′) and F (t′, 1) = (h◦g)◦f(t′).

(4) Show that f ◦ e 6= f in general similarly e ◦ f 6= f in general.
(5) Show that in all of these cases we have equality upto base point preserving

homotopy.

Definition 2.6. A subgroup H of a group G is a non-empty subset H of G such
that if x, y ∈ H then x−1y ∈ H.

Note that H ⊂ G is a subgroup iff

(1) e ∈ H
(2) x, y ∈ H implies x.y ∈ H
(3) x ∈ H implies x−1 ∈ H.

Definition 2.7. Let G and G′ be groups. A map f : G → G′ is called a group
homomorphism if f(x.y) = f(x).f(y) for all x, y ∈ G. For such a homomorphism
f , define

ker(f) := {g ∈ G|f(g) = eG′} ,

Im(f) := {h ∈ G′|∃g ∈ G, f(g) = h} .

A homomorphism f : G → G′ is called an isomorphism if there exists f̃ : G′ → G
homomorphism, such that f ◦ f̃ = idG′ and f̃ ◦ f = idG.

Remark 2.8. (1) Let x ∈ G and let (x) := {xn|n ∈ Z}. Then (x) is a subgroup
of G. This subgroup is finite iff there exists i 6= j such that xi = xj.

(2) f is a homomorphism then f(eG) = eG′ and f(x−1) = f(x)−1.
(3) Note that Im(f) ⊂ G′ is a subgroup of G′ and ker(f) ⊂ G is a subgroup of

G.
(4) Composition of homomorphism is a homomorphism.
(5) A homomorphism f is an isomorphism iff f is bijective.
(6) If ker(f) = {eg} then f : G→ Im(f) is an isomorphism.
(7) Let ψ : X → Y be a bijection between two sets, then we get an isomorphism

SY → SX given by h 7→ ψ ◦ h ◦ ψ−1.
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(8) Let G be any group, define l : G → SG ( resp. r : G → SG) , by
l(g)(h) := g.h (resp. r(g)(h) = h.g−1. Then l (resp. r) is an injective
group homomorphism. Therefore, any group is a subgroup of a permuta-
tion group.

(9) Let Aut(G) denote the group whose elements are isomorphisms G→ G and
group operation is given by composition of homomorphism. Consider the
map con : G→ Aut(G), given by con(g)(h) := ghg−1. Then con is a group
homomorphism and

ker(con) = {g ∈ G|gh = hg∀h ∈ G} .

This is called the center of the group G and it is denoted by Z(G).

Definition 2.9. A group G is called finite if |G| < ∞. For any group G and an
element g ∈ G, ord(g) := |(g)|. A subgroup N ⊂ G is called normal if ∀g ∈ G,n ∈
N we have gng−1 ∈ N .

Let H ⊂ G be a subgroup. We define a relation on G as follows : g1 ∼ g2 if
g−12 g1 ∈ H. This is an equivalence relation on G. Indeed, The following lemma is
an exercise

Lemma 2.10. (1) g1 ∼ g2 iff g1 ∈ g2.H iff g2 ∈ g1H iff g1H = g2H.
(2) For g, g′ ∈ g1H, we have g ∼ g′. Therefore equivalence class of g is g.H.
(3) There is a natural bijection H → g.H given by h 7→ g.h.

Proof. (1) If g1 ∼ g2, then g1 ∈ g2H, also as H is a subgroup (g−12 g1)−1 =
g−11 g2 ∈ H so g2 ∈ g1H. Now g1.h = g2.h

′.h for some h′ ∈ H. Therefore
g1.H ⊂ g2H. Similarly one show that g2H ⊂ g1H. Now let g2H = g1H,
then g2.e = g2 ∈ g1H and similarly g1 ∈ g2H. Then g−12 g1 ∈ H.

(2) If g, g′ ∈ g1H, then g = g1.h1, g
′ = g1.h2. Therefore, (g′)−1g = h−12 (g1)−1g1h1 =

h−12 h1 ∈ H. Therefore g ∼ g′. If g′ ∼ g, then by part 1, we get g′ ∈ g.H and
every element of g.H are equavalent to g. Therefore, g.H is the equivalence
class of g.

(3) The given map has an inverse given by α 7→ g−1.α.
�

The set of equivalence classes under this equivalence relation is denoted by G/H.

Corollary 2.11. Let G be a finite group, then |G| = |H||G/H|. Therefore, for any
g ∈ G, ord(g)||G|.

Proof. Let G be any group and H subgroup. Then G =
∐

[g.H]∈G/H g.H. Now H

is bijective to g.H for all g ∈ G. Therefore if G is finite then |G| = |G/H||H|. Now
if g ∈ G is an element. Then o(g) = |(g)|. Then the assertion follows.

�

Lemma 2.12. Let p be a prime number and let a ∈ Z, then ap ≡ a mod p

Proof. Let

(Z/pZ)∗ := {a ∈ Z/pZ|∃b ∈ Z/pZ, ab ≡ 1 mod p} .
Note that for any 1 ≤ r < p integer there exists a, b ∈ Z such that a.r + b.p = 1.
Therefore, for any 1 ≤ r < p integer there exists a ∈ Z/pZ, such that ar ≡ 1 mod p.
Therefore,(Z/pZ)∗ is a group ( under multiplication mod p) of order p− 1. So for



GALOIS THEORY , ARITHMETIC AND GEOMETRY 7

any a 6= 0 mod p, we have order of a mod p divides p−1, therefore ap−1 ≡ 1 mod p,
on the other hand a ≡ 0 mod p, implies ap ≡ a mod p.

�

3. Lecture 3

Theorem 3.1. Let N ⊂ G be a normal subgroup, then there is a well defined
operation on G/N , given by g1N.g2N := g1g2N , making G/N a group and π :
G → G/N given by π(g) = gN a surjective group homomorphism. Moreove, G/N
and π : G → G/N satisfies the following universal property : Let f : g → G′

be any group homomorphism such that N ⊂ ker(f), thene there exists a unique
homomorphism f̄ : G/N → G′ such that f̄ ◦ π = f .

Proof. If g1N = g′1N and g2N = g′2N then there exists n1, n2 ∈ N , such that
g′1 = g1n1 and g′2 = g2n2.As N is normal we get

g′1g
′
2 = g1n1g2n2 = g1g2g

−1
2 n1g2n2 = g1g2n,

for some n ∈ N . This shows the binary operation on G/N is well defined. The map
π is a surjective group homomorphism with ker(π) = N is left as an exercise. For
the second part, it is clear that if f̄ exists satisfying f̄ ◦ π = f , then it is unique.
The existence of f̄ will follow if we can show for g1, g2 ∈ G such that g1N = g2N ,
then f(g1) = f(g2). But this is true beacuse, g−11 g2 ∈ N , and N ⊂ Ker(f), so
f(g1)−1f(g2) = e′G.

�

Definition 3.2. Let G be a group and X be a set. An action of G on X is a map
G×X → X ((g, x) 7→ g.x) such that

(1) e.x = x for all x ∈ X
(2) (g1g2).x = g1.(g2.x) for all g1, g2 ∈ G.

Example 3.3. (1) Let G be a group and X = G. Then there are two actions
corresponding to l, r : G→ SG. The actiion corresponding l is (g, x) 7→ g.x.
(corresponding to r the action is (g, x) 7→ x.g−1).

(2) Again G acts on itself via conjugation, i.e (g, x) 7→ gxg−1.
(3) G = Sn, then G acts on X = {1, . . . , n}, such that (σ, i) 7→ σ(i).

Let G be a group and let X be a set. Let

Hom(G,SX) := {φ : G→ SX |φ homomorphism } ,

and

A(G,X) := {a : G×X → X|a is an action} .
Let a ∈ A(G,X), then for any g ∈ G, the map a(g,−) : X → X given by x 7→ a(g, x)
is a bijection where the inverse is given by x 7→ a(g−1, x). This way we get a map
φa : G→ SX , given by φa(g) = a(g,−). Now

φa(g.h)(x) = a(g.h, x) = a(g, a(h, x)0 = φa(g) ◦ φa(h)(x),

for all x ∈ X. Therefore, φa is a group homomorphism.

Proposition 3.4. Let G be a group and X be a set. Then a ∈ A(G,X) 7→ φa ∈
Hom(G,SX), induces a bijection

A(G,X)→ Hom(G,SX).
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Proof. Let φ : G→ SX be a homomorphism, define aφ : G×X → X as aφ(g, x) :=
φ(g)(x). Verify that aφ ∈ A(G,X). Moreover, it is easy to verify that a ∈
A(G,X) 7→ φa ∈ Hom(G,SX) has an inverse the map φ ∈ Hom(G,SX) 7→ aφ ∈
A(G,X).

�

Isometry

Definition 3.5. An isometry or rigid motion of Rn is a function h : Rn → Rn
such that ||h(u) − h(v)|| = ||u − v||, ∀u, v ∈ Rn. The set of isometries of Rn is
denoted by Isom(Rn).

The identity map Id : Rn → Rn is an isometry. composition of isometries is an
isometry. For any vector u ∈ Rn, the map tu : Rn → Rn defined as tu(v) = v + u.
Then tu is an isometry.

Proposition 3.6. The following are equivalent conditions on a n× n matrix A.

(1) A is orthogonal.
(2) For all v, w ∈ Rn we have A(v).A(w) = v.w
(3) Columns of A are mutually orthogonal unit vectors.

Proof. (1) 1 =⇒ 2 vtw = vtAtAw = (Av)tAw as AtA = Id.
(2) 2 =⇒ 1. if vtAtAw = vt.w for all v, w ∈ Rn, then vt(AtA − Id)w = 0

for all v, w ∈ Rn. Therefore B = (AtA − Id) = 0 by choosing v = ei and
w = ej .

(3) Let Ai be the i-th column of A. Then AtA = Id, iff Ai.Aj = δij . This
shows that 3 is euiqvalent to 1.

�

Proposition 3.7. Let T : Rn → Rn be a map. Then the following are equivalent

(1) T is an isometry such that T (0) = 0 ( fixing the origin).
(2) T preserves dot products.
(3) T is left multiplication by an orthogonal matrix.

Proof. (1) 1 =⇒ 2. Indeed (T (v) − T (w)).(T (v) − T (w)) = (v − w).(v − w).
This will imply that (v.v) = T (v).T (v). 3 =⇒ 1 is obvious.

(2) 2 =⇒ 3. We just have to show that T is a linear operator. Let u, v ∈ Rn
and let w = T (u) + T (v) and w′ := T (u + v). To show w′ = T (u) + T (v).
Note that w′.w′ = (u+ v).(u+ v) as T preserves dot product.

Now

w′.w = w′.(T (u) + T (v)) = w′.T (u) + w′.T (v) =

= (T (u+ v)).T (u)) + (T (u+ v).T (v)) = (u+ v).u+ (u+ v).v = (u+ v)(u+ v).

Similarly we have

w.w = w.(T (u) + T (v)) = (T (u) + T (v))(T (u) + T (v)) =

= T (u).T (u) + 2T (u).T (v) + T (v).T (v) = u.u+ 2u.v + v.v = (u+ v).(u+ v).

Then (w − w′).(w − w′) = w.w − 2w.w′ + w′.w′ = 0. Therefore w = w′.
�

Definition 3.8. Let Rn be a fixed regular n-gon. Then Dn is the set of isometries
of R2 which maps Rn to itself.
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Lemma 3.9. Let Rn be a regular polygon and let xi, xi+1 be two neighbouring
vertices of Rn. If P,Q two points on Rn such that ||P − xi|| = ||Q − xi|| and
||P − xi+1|| = ||Q− xi+1||, then P = Q.

Proof. If P and Q satisfies the the condition of the lemma, then there exists circles
C1 centered at xi with radius ||P − xi|| and C2 centered at xi+1 with radius ||P −
xi+1||, such that C1 and C2 intersects at P,Q. If P 6= Q, then P and Q lie on the
opposite sides of the line joining xi and xi+1, which is absurd as Rn is convex.

�

Theorem 3.10. The group Dn has 2n elements. In particular these are given by
ri, 0 ≤ i ≤ n − 1, where r is rotation by angle 2π/n and reflections. If n is odd
the n many reflections are given by reflections wrt to the lines joining a vertex with
the midpoint of the opposite side. If n is even, there are n/2 reflections wrt the
lines joining opposite vertices ( diagonals) and n/2 relections wrt the lines joining
midpoints of the opposite edges.

Proof. Since rotations does not fix anything on Rn, therefore, no reflection is a
rotation and no rotation is a reflection. The reflections listed above have different
fixed points , therefore, the n reflections we get are distinct. Therefore |Dn| ≥
2n. Let f ∈ Dn. Then f maps vertices to vertices as f preserves distance and
the vertices are the only points with a fixed distance with the origin. Moreover
neighboring vertices gets mapped to neighbouring vertices. Now let x1 and x2, two
neighbouring vertex and let f(x1) = y1 and f(x2) = y2. Then P ∈ Rn is uniquely
determined by its distance with x1, x2. As f preserves distance, f(P ) is completely
determined by y1 and y2. So therefore there are n choices for f(x1) and after fixing
f(x1) there are only two choices for f(x2). This shows that |Dn| ≤ 2n.

�

Corollary 3.11. Let r ∈ Dn be the counterclockwise rotation by angle 2π/n and
let s be any reflection. Then srs = r−1. Therefore, the n reflections are given by
s, rs = sr−1, . . . , rn−1s = sr−n+1.

Proof. Hint : To show srs = r−1 it is enough to show what RHS and LHS does
to any neighbouring vertices. Let l be the line of reflection of s. Then s intersects
the midpoint of a side (irrespective of parity of n). Choose the vertices of that side
and see what happens.

�

Reflections and rotations

Example 3.12. Let f ∈ Isom(R2) such that f(0) = 0. Then f is given by one of
the following matrices

(1) (Rotation) Counter clockwise rotation by angle θ.[
cosθ −sinθ
sinθ cosθ

]
(2) (Reflection) Reflection across the line through the origin at angle θ/2.[

cosθ sinθ
sinθ −cosθ

]
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Definition 3.13. Let G be a group acting on a set X and let x ∈ X.

Ox := {y ∈ X|g.x = y for some g ∈ G} .

Stab(x) := {g ∈ G|g.x = x} .

Remark 3.14. Let G be a group acting on X. Define a relation on X by x ∼ y iff
∃g ∈ G such that y = g.x. This is an equivalence relation and the equivalence class
of x is precisely Ox. We will denote by X/G the set of equivalences classes.

Theorem 3.15. Let G be a group acting on a set X, and let x ∈ X. Then
ψ : O(x) → G/Stab(x) such that y = g.x 7→ g.Stab(x), is a well defined bijection.
Therefore when G is finite, we get

|Ox|.|Stab(x)| = |G|.

Proof. If y = g1.x = g2.x, then g−12 g1.x = x, therefore g−12 .g1 ∈ Stab(x). This
implies g1.Stab(x) = g2.Stab(x). Therefore ψ is well defined. Surjective of ψ is
obvious. If ψ(y1) = ψ(y2) and y1 = g1x and y2 = g2x, then g−12 g1 ∈ Stab(x), so
y2 = g2.g

−1
2 g1x = g1x = y1.

�

4. Lectures 4-5-6

Example 4.1. (1) Let p : E → X be a covering space of a topological space
X. Let x ∈ X and let

S := p−1(x) := {y ∈ E|p(y) = x} .
Let G = π1(X,x). Then f ∈ G, there exists a continuous map f : [0, 1] →
X, such that f(0) = f(1) = x. Let y ∈ S. Then there exists a unique
g : [0, 1] → E continuous such that g(0) = y and p ◦ g = f . Therefore,
g(1) ∈ S. If f and f ′ are (base point preserving) homotopic and let g′

be alift of f ′ such that g′(0) = y, then g(1) = g′(1) by unique homotopy
lifting. This gives an action G × S → S. Let p∗ : π1(E, y) → π1(X,x) be
the induced homomorphism for y ∈ S. Then Stab(y) = Image(p∗). If E is
connected then Oy = S

(2) Let
Gr(k, n) := {V ⊂ Rn|subspace , dim(V ) = k} .

The group G = GLn(R) acts on Gr(k, n) in the following way (T, V ) 7→
T (V ) where T ∈ GLn(R) and V ∈ Gr(k, n). For k = 1, and l ∈ Gr(1, n),

Stab(l) = {T ∈ GLn(R)|T (v) = λ.v, |v| = 1, λ ∈ R, v ∈ l} .

Definition 4.2. Let G be a group acting on a set X and let g ∈ G.

Xg := {x ∈ X|gx = x} .
XG := {x ∈ X|gx = x, ∀g ∈ G} .

Lemma 4.3. Let G be a group acting on a set X and let x, y ∈ Oz for x, y, z ∈ X,
then Stab(x) ∼= Stab(y) ∼= Stab(z).

Proof. As x, y is in same orbit, therefore there exist g ∈ G such that g.x = y. Let
φ : Stab(x)→ Stab(y) given by φ(h) = ghg−1. Note that ghg−1(y) = gh(x) = gx =
y. So we get the required homomorphism, whose inverse is given by t 7→ g−1tg.

�
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Theorem 4.4. Let G be a finite group acting on a finite set X. Then

|X/G| = 1

|G|
∑
g∈G
|Xg|.

Proof. Let A ⊂ X ×G such that A := {(x, g)|g.x = x}. Then A =
∐
g∈GX

g × g =∐
x∈X x× Stab(x). Note that X =

∐
[x]∈X/GOx. Then

|A| =
∑
g∈G
|Xg| =

∑
x∈X

x× Stab(x) =

=
∑

[x]∈X/G

∑
y∈O[x]

|Stab(y)| =
∑

[x]∈X/G

|O[x]|.|Stab([x])| =
∑

[x]∈X/G

|G| = |X/G| × |G|.

�

Definition 4.5. Let G be a finite group acting on a finite set X and let Ox1
, . . . , Oxn

be the distinct non-trivial orbits.
Then

|X| = |XG|+
n∑
i=1

|Oxi
|.

If G acts on X = G by conjugation action and let Og1 , . . . , Ogn be the distinct
non-trivial orbits. Then the above equation becomes

|G| = |Z(G)|+
n∑
i=1

|Ogi |.

Lemma 4.6. Let G be a group of order pn, then the center Z(G) is non-trivial.

Proof. If G is abelian then we are done. If not then Z(G) 6= G. Consider the class
equation

|G| = |Z(G)|+
n∑
i=1

|Ogi |.

Now the orbits Ogi are non trivial as Z(G) 6= G. Therefore Stab(gi) 6= G and this
shows that p||Ogi | for all i. Therefore p||Z(G)|.

�

Theorem 4.7 (Cauchy’s theorem). Let G be a finite group and p be a prime number
such that p||G|. Then G has an element of order p.

Proof. Let

X = {(g1, . . . , gp) ∈ Gp|g1.g2 . . . gpe} .
Then |X| = |Gp−1| ( as the first p − 1 elements uniquely determines the last). So
|X| is divisible by p. Now g1.g2 . . . gp = e implies gp.g1.g2 . . . gp−1 = e. Therefore
Cp acts on X via cylic permutation. So, the size of the orbits are p or 1. Now,
(e, e, . . . , e) has orbit size 1. Therefore, there has to be another elemnt (g1, . . . , gp)
whose orbit size is 1 as p||X|. An elemnt (g1, . . . gp) has orbit size one iff gi = gj = g
for all i 6= j and gp = 1.

Another proof By induction on |G|. If |G| = p, then nothing to show. If G
is abelian let g ∈ G an elment of order not divisible by p, then G/(g) is a smaller
group which is divisible by p and therefore has an elemnt of order p say x(g). Then
xp ∈ H and if x has order m then xm = e implies (x(g))m = (g) or p|m and
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therefore there exists an element of order p. The claim for p divides order of g is
same.

If G is not abelian, and if |Z(G)| is divisible by p then we are done by previous
steps. Else, there exists as non central element whose cardinaly of conjugacy class
is not divisible by p. Threfore, there exists a non trivial subgroup (namely the
stablizer of non central element) whose cardinality is divisible by p. Now induction
applies.

�

Example 4.8. (1) Let G be a group and let n||G| and let X be the set of all
order n subgroups of G. Then G acts on X by conjugation, i.e. (g,H) 7→
gHg−1. Then

Stab(H) =
{
g ∈ G|gHg−1 = H

}
:= NG(H),

it is called the normaliser of H in G. Note that H is a normal subgroup of
NG(H). Note that orbit of a subgroup H under this action is trivial iff H
is normal.

(2) Let G be a finite group and

X := {(x1, . . . , xn) ∈ Gn|x1.x2 . . . xn = e} .
The cyclic group Cn of order n acts on Gn as cyclic premutation. Let
x := (g1, . . . , gn) ∈ X. Then |Ox| = 1, iff all the gi’s are equal to say g and
gn = e.

Definition 4.9. Let G be a group and p-prime.

(1) A group of order pk for some k ≥ 1 is called a p-group. A subgroup of order
pk for some k ≥ 1 is called a p-subgroup.

(2) Let |G| = pn.m such that (p,m) = 1, then a subgroup of order pn is called
a Sylow p-subgroup of G.

Sylp(G) := the set of Sylow p− subgroups of G.

Theorem 4.10 (Sylows Theorem). |G| = pn.m and (p,m) = 1.

(1) Sylp(G) 6= Φ.
(2) Let P1, P2 ∈ Sylp(G), then ∃g ∈ G such that P2 = gP1g

−1. Therefore
np(G) = |G|/|NG(P )| , where P ∈ Sylp(G).

(3) Every p-subgroup of G is contained inside a Sylow p-subgroup.
(4) np(G) ≡ 1 mod p.

Proof. (1) By induction on |G|. The case |G| = 1 is trivially true. Suppose we
know that for all groups of cardinality k < n and any prime p such that
k = pa.b such that (p, b) = 1, we have a Sylow p-subgroup. Let |G| = n
and p be a prime mentioned in the statement of the theorem.
Case 1 : p - |Z(G)|
Then using the class equation, we see that there exists a non trivial con-
jugacy class ( i.e. non trivial orbit) not divisible by p. By orbit stabiliser
theorem, this implies there exists an element g ∈ G such that C(g) 6= G
and pn | |C(g)|. Then we are done using induction.

Case 2:
p | |Z(G)|
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Cauchy’s theorem tells us that there is an element h ∈ Z(G) of order p.
Therefore, the cyclic subgroup generated by h, say H, is of order p. As every
element of H commute with every element of G, H is a normal subgroup of
G. The group G/H has cardinality pn−1.m and by induction there exists
Sylow p-subgroup P̄ of G/H, such that P̄ = π(P ) for a subgroup P of G
containing H ( infact P := π−1(P̄ )), where π : G → G/H is the canonical
quotient homomorphism. Therefore, P is a Sylos p- subgroup of G.

(2) We have to show that the conjugation action of G on Sylp(G) is transitive.
Let P1, Q ∈ Sylp(G), and let OP1 = {P1, . . . , Pl} be the disntinct elements
of the conjugacy classes of P1. We want to that Q ⊂ Np(Pk) for some k.
For that we note the following.
p - l :

Indeed, if p | l, then l = |OP1 | =
|G|

|NG(P1)| implies that p | |G||P1| . This contra-

dicts the fact that P1 is a Sylow p-subgroup.

Note that Q acts on OP1 and as p - l, there exists atleast one orbit of
this action of size not divisible by p. Assume that this happens for Pk,

i.e p - |Q|
|NQ(Pk)| . As |Q| is p-group, this implies Q = NQ(Pk) = NG(Pk) ∩

Q. This implies Q ⊂ NG(Pk). Now H := NG(Pk)/Pk is a group (Pk is
normal subgroup of NG(Pk)) whose order is not divisible by p as Pk is a
Sylow p-subgroup, and therefore Q ⊂ ker(π) = Pk, where π : NG(Pk) →
NG(Pk)/Pk is the canonical group homomorphism. Therefore, Q = Pk.

(3) First note the following claim :
Let P be a Sylow p-subgroup and Q be a any p-subgroup, then
Q ∩ P = Q ∩NG(P ).
It is clear that Q ∩ P ⊂ Q ∩ NG(P ) =: H, and H is a either trivial or
a p-subgroup again. Again NG(P )/P is not a p-group as P is a Sylow p-
subgroup. Therefore like the previous proof H ⊂ P . It is clear that H ⊂ Q,
so H ⊂ P ∩Q. This settles the claim.

Let H be any p-subgroup of G and let it act on Sylp(G) via conjugation.
Then , we know by the previus part that p - np(G). Therefore, there exists

atleast one orbit of size not divisible by p. This implies p - |H|
|NH(Pi)| for

some Pi ∈ Sylp(G). As the groups in question are all p-groups, therefore
|H|

|NH(Pi)| = 1 or H = NH(Pi) = H ∩NH(Pi) = H ∩ Pi and we are done.

(4) Let P1 ∈ Sylp(G) act on Sylp(G) by conjugation. Thne the orbit of P1 is
the Sylow-p subgroup P1. If Pj ∈ Sylp(G) and Pj 6= P1, then orbit of Pj
under this action is of the size

[P1 : NP1
(Pj)] = [P1 : P1 ∩NG(Pj)] = [P1 : P1 ∩ Pj ],

and the size of the orbit is a non trivial power of p. Therefore np(G) =
1 + k.p for some positive integer k.

�

Definition 4.11. A permutation σ ∈ Sn is called a k cycle for k ≤ n, if there
exists k distinct elements a1, a2, . . . , ak ∈ [n], such that σ(ai) = ai+1 mod k for all i
and σ(x) = x for all x ∈ [n]\{a1, . . . , ak}. In this case we write σ = (a1 a2 . . . ak).
The set {a1, . . . , ak} is called the underlying set of σ and is denoted by Sσ.
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Lemma 4.12. If σ = (a1 a2 . . . ak), then k is the least positive integer such that
σ ◦ σ ◦ . . . σ := σk = e.

Proof. We claim that σi(aj) = aj+i mod k and σi(x) = x for all x ∈ [n]\{a1, . . . , ak}
. We prove this by induction. For i = 1 this is the definiton. Let the claim hold for
j < i. Now

σi(aj) = σ(σi−1(aj)) = σ(aj+i−1 mod k) = aj+i mod k.

This shows that σl(a1) = a1 then l ≥ k, and σk(aj) = aj for all j. Therefore the
lemma follows.

�

Example 4.13. (1) Let σ = (12)(34) ∈ S4 be the permutation such that

σ(1) = 2, σ(2) = 1, σ(3) = 4, σ(4) = 3.

Then σ is not a k-cycle.
(2) Let σ = (13)(12), then σ = (123).

Lemma 4.14. Let σ ∈ Sn, be a k cycle given by σ = (a1 a2 . . . ak), then

σ = (a1 ak)(a1 ak−1) . . . (a1 a3)(a1 a2).

Proof. Let x /∈ {a1, . . . , ak}, then

x = σ(x) = (a1 ak)(a1 ak−1) . . . (a1 a3)(a1 a2)(x).

Now for i < k, we have σ(ai) = ai+1 and σ(ak)a1. But

((a1 ak)(a1 ak−1) . . . (a1 a3)(a1 a2))(ak) = ((a1 ak))(ak) = a1,

and for i < k we have

((a1 ak)(a1 ak−1) . . . (a1 a3)(a1 a2))(ai) = ((a1 ak)(a1 ak−1) . . . (a1 ai+1)(a1 ai))(ai) =

= ((a1 ak)(a1 ak−1) . . . (a1 ai+1))(a1) = ((a1 ak)(a1 ak−1) . . . (a1 ai+2))(ai+1) = ai+1.

�

Definition 4.15. A permutation σ = σ1 ◦ σ2 ◦ · · · ◦ σl such that σi is a ki-cycle
and Sσi ∩ Sσj = Φ is called a composition of dsijoint cycles. Such a permutation is
called a permutation of type (k1, . . . , kl).

Proposition 4.16. Every σ ∈ Sn is a unique composition of disjoint cycles.

Proof. Indunction on n. The case n = 2 is obvious. Let σ ∈ Sn. Consider the set
A1 :=

{
σi(1)

}
. If A1 = [n], then σ = (1 σ(1) . . . σn−1(1)). Otherwise |A1| < n

and σ = σ′ ◦ (1 σ(1) . . . σj(1)). Sucha that σ′ only premutes Ac1. Therefore by
induction σ′ can be decomposed.

�

Lemma 4.17. Let (G, ., e) be a group and let g, h ∈ G, such that g.h = h.g and
both g and h has finite order. Then g.h has finite order and o(g.h)|lcm(o(g), o(h)).
Moreover, if gcd(o(g), o(h)) = 1, then o(g.h) = o(g).o(h).

Proof. First we claim that hi.g = ghi, whenever g.h = h.g. We prove this by
induction on i . the case i = 1 is the relation g.h = h.g. Now

hig = hi−1.h.g = hi−1g.h = g.hi−1.h = g.hi.
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Therefore, whenever g.h = h.g, we have gi.hj = hj .gi. We claim that (g.h)i = gi.hi

for any i ∈ N. We prove it by induction on i. The case i = 1 follows trivially. Now

(g.h)i = (g.h)i−1.g.h = gi−1.hi−1h.g = gi−1.g.hi = gi.hi.

Let k = lcm(o(g), o(h)), then o(g), o(h)|k. This implies

(g.h)k = gk.hk = e.e = e.

Therefore o(g.h) ≤ k, infact o(g.h)|k. Since (g.h)i = e, then

e = (g.h)i.o(g) = (g.h)i.o(h).

Therefore, hi.o(g) = gi.o(h) = e. This implies o(h)|i.o(g) and o(g)|i.o(h). Now let,
gcd(o(g), o(h)) = 1. Then o(h)|i and o(g)|i. Therefore, o(h).o(g)|i. This gives the
result.

�

Definition 4.18. Let σ ∈ Sn be a premutation. The fixed set of σ is defined as
follows

Fσ := {i ∈ [n]|σ(i) = i} .
Two premutations σ, τ ∈ Sn is called disjoint permutations if

(Fσ)c ∩ (Fτ )c = Φ.

Remark 4.19. If σ and τ are disjoint permutations, then σi and τ j are disjoint
too.

Lemma 4.20. Let σ, τ ∈ Sn, be disjoint permutations. Then σ ◦ τ = τ ◦ σ.
Moreover, o(σ ◦ τ) = lcm(o(σ), o(τ)).

Proof. Let i ∈ [n], then i is fixed by atleast one of σ or τ . WLOG, i ∈ Fσ, then
τ(i) ∈ Fσ too. Therefore, (τ ◦ σ)(i) = τ(i) = (σ ◦ τ)(i). Therefore, we get our
first claim. Note that for σ, τ disjoint cycles, such that σ ◦ τ = e, then σ = e and
τ = e. Indeed, let i /∈ Fσ, then i ∈ Fτ , i = σ ◦ τ(i) = σ(i), which is a contradiction.
Therefore [n] = Fσ, similarly [n] = Fτ .

Now , as σ ◦ τ = τ ◦ σ, therefore o(σ ◦ τ)|lcm(o(σ), o(τ)). Let i be a positive
integer such that (σ ◦ τ)i = e, then σi ◦ τ i = e. As σi and τ i are disjoint, therefore
σi = e = τ i. Therefore, o(σ)|i and o(τ)|i. Therefore, lcm(o(σ), o(τ))|i. This shows
that lcm(o(σ), o(τ))|o(σ ◦ τ).

�

Remark 4.21. g.h = h.g in a finite group G does not imply o(g.h) = lcm(o(g), o(h))
in general.

Lemma 4.22. Following are true in Sn

(1) (a b)(a b) = e.
(2) (a b)(c d) = (c d)(a b).
(3) (a b)(b c) = (b c)(a c).
(4) (a b)(a c) = (b c))(a b).

Proof. First two is obvious.

(a b)(b c)(a) = b = (b c)(a c)(a),

(a b)(b c)(b) = c = (b c)(a c)(b),

(a b)(b c)(c) = a = (b c)(a c)(c).

Similarly the last one can be checked. �
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Proposition 4.23. If e = τ1 . . . τn such that τi are transpositions. Then n is even.

Proof. We will prove this by induction.For n = 1, e canot be a transposition.
For n = 2, we get the result. Now let n > 2 and e = τ1 . . . τn such that τi are
transpositions. Let τn = (a1, b1).

Step 1 :
If τi−1τi = e for some i, then we get e as a length n− 2 composition of transpo-

sitions. By induction, this implies that n− 2 is even therefore n is even.
Step 2 : Otherwise , choose the first transposition from right having b1, say τi

and use lemma 4.22 to get e = σ1 . . . σn−1σn, such that σj = τj for j < i− 1, j > i
and σi−1 is a transposition premuting b1 and σi is a transposition fixing b1.

If after applying Step 2, the condition of Step 1 is not satisfied then we apply
Step 2 again until we satisfy Step 1 condition otherwise we reach a stage such that
e = σ1 . . . σn, such that σi’s are trasnpositions and only σ1 permutes b1. This is not
possible as e fixes b1, but σ1 . . . σn, such that σi’s are trasnpositions and only σ1
permutes b1, does not fix b1. So Step 1 condition is verified at some intermediate
stage and therefore we get the result from Step 1.

�

Theorem 4.24. Let σ = σ1 . . . σm = τ1 . . . τn, such that σi, τi’s are transpositions.
Then either m,n are both even or m,n are both odd.

Proof. Note that in any group (g.h)−1 = h−1.g−1. Also note that if τ is a transpo-
sition then τ−1 = τ . Therefore, σ = σ1 . . . σm = τ1 . . . τn implies that

e = τnτn−1 . . . τ1σ1 . . . σm.

By previous proposition, this implies m+n is even. Therefore, the theorem follows.
�

Definition 4.25. A permutation is called even if it can be written as composition of
even number of permutations otherwise it is called odd. The set of even permutation
in Sn is denoted by An. Let Oddn, denote the set of odd premutations.

Remark 4.26. The cardinality of An is n!/2.

Definition 4.27. A subgroup G ⊂ Sn is called transitive if the induced action of
G on {1, 2, . . . , n} is transitive.

Lemma 4.28. (1) Let p ∈ Sn and σ = (123), then pσp−1 = (p(1)p(2)p(3)). If
σ = (123)(47) then pσp−1 = (p(1)p(2)p(3))(p(4)p(7)).

(2) Show that two premutations σ, τ ∈ Sn are conjugate to each other iff they
have the same cycle type.

Proof. Exercise. �

Lemma 4.29. Let p bea prime and let G be a trnasitive subgroup of Sp. Then any
normal subgroup H 6= {e} of G is again a transitive subgroup.

Proof. Let H act on [p]. Let i, j ∈ [p] and let Oi and Oj be orbits under this action.
Now there exists σ ∈ G such that σ(j) = i. Let x ∈ Oj , then x = h.j for some
h ∈ H. Then σ(x) = σ ◦ h(j) . As H is normal therefore there exists h′ ∈ H such
that σ ◦ h = h′ ◦ σ. So σ(x) = h′ ◦ σ(j) = h′(i), so σOj ⊂ Oi. Similarly Oi ⊂ σOj .
So Oi is in bijection with Oj for all i, j. This implies p = m.|Oi| for any i. Note
that if all h ∈ H fixes all i ∈ [p]. Then H = {e}. Therefore |Oi| > 1. This implies
|Oi| = p. Therefore H is a transitive subgroup. �
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Proposition 4.30. Any transitive subgroup G of Sp containing a transposition is
the whole group Sp.

Proof. Let H ⊂ G be the subgroup generated by transpositions in G. Then H 6=
{e}.Note that for any τ ∈ H, τ = τ1 ◦ . . . τk, τi transpositions in G. Then for any
g ∈ G we have gτg−1 = gτ1g

−1 ◦ . . . gτkg−1 and gτig
−1 is again a transposition

in G. Therefore, H is normal subgroup of G. Previous lemma implies that H
is a therefore a transitive subgroup of G. Assume, WLOG, that (1, 2) ∈ H and
suppose all (1, j) ∈ H, where 2 ≤ j ≤ q. Note that (1, i)(1, j)(1, i) = (i, j) and
transpositions generate Sp. Therefore, it is enough to show p = q. Let σ ∈ H
such that σ(1) = p and σ = τ1 ◦ . . . τl. It is not possible that all τi keeps the
set [q] := {1, . . . q} invariant as their somposition is σ which does not keep [q],
invariant. Therefore, one of the τk is τk = (i, j), such that i ≤ q and q < j. Then
(1, i)(i, j)(1, i) = (1, j) ∈ H. Therefore p = q. �

Remark 4.31. (1) Find out the class equations of S3 and S4.
(2) Let σ ∈ An. Let CA(σ) and CS(σ) denote the conjugacy classes of σ in An

and Sn respectively. Let StabA(σ) and StabS(σ) be the stabilizer of σ in An
and Sn respectively. Then |CS(σ)||StabS(σ)| = |Sn| and |CA(σ)|.|StabA(σ)| =
|An|. Therefore, |CA(σ)|.|StabA(σ)| = 1/2|CS(σ)||StabS(σ)|. Note that
StabA(σ) ⊂ StabS(σ). If StabA(σ) = StabS(σ), then CA(σ) = 1/2CS(σ)
( in An conjugacy class of σ splits into halves). So if CS(σ) is odd then
it this is not possible. If StabA(σ) 6= StabS(σ) then the conjugacy classes
remain same as |StabA(σ)| = 1/2|StabS(σ)|.

(3) Class equation of S5 is 120 = 1 + 10 + 15 + 20 + 20 + 30 + 24. The 10 and
30 belongs to odd permutation, therefore they do not contribute to the class
equation of A5. The number of permutations of cycle type (2, 2, 1) is 15,
which is odd number so they can not split in halves. As 24, the number of
premutation of cycle type (5) does not divide the cardinality of A5, it must
split into halves. The conjugacy classes of cycle type (3, 1, 1) contains the 3
cycle (123) and they give 20 many elements of S5. But the odd premutation
(45) ∈ StabS((123)), therefore CA(123) = CS(123). Therefore, the class
equation of A5 is 60 = 1 + 15 + 20 + 12 + 12.

Definition 4.32. A group G with no non trivial normal subgroup is called a simple
group.

Remark 4.33. (1) Simple abelian groups are precisely the groups Z/pZ for p
a prime. Indeed, Let G be an abelian group and let g 6= e. If (g) 6= G, thene
this is a non trivial normal subgroup so G is not simple. If G = (g), and
o(g) is not prime or infinite. In both cases we will get non trivial normal
subgroups.

(2) The group A5 is simple. The class equation of A5 gives us that there are
1 conjugacy class of size 1 (type (1, 1, 1, 1)), size 20 (type (3, 1, 1)), size
15 ( type (2, 2, 1)), and 2 conjugacy classes each having size 12 (type (5),
classes [(12345)] and [(13524)]. Any normal subgroup of A5 contains the
conjugacy class of size 1, plus whole conjugacy classes for some of the non
trivial conjugacy classes. Also the cardinality of the normal subgroup must
divide 60. This is not possible unless the normal subgroup is one of the
trivial normal subgroups.
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(3) Let G be a group

G1 := [G,G] :=<
{
ghg−1h−1|g, h ∈ G

}
>,

is the commutator subgroup of G. It is normal in G, and Gab := G/G1

is an abelian group such that any homormorphism φ : G → A, with A an
abelian group uniquely factors through G→ Gab. If G is simple non abelian
then G = G1, if G is abelian then G1 = {1}.

Remark 4.34. (1) We see that for any prime p | |G|, np(G) = |G|
|NG(P )| for

any P ∈ Sylp(G). As P ⊂ NP (G), therefore np(G) can not have a power
of p divisor but it divides |G|. Threfore np(G)||G|/pn, where |G| = pn.m
with (p,m) = 1.

(2) A Sylow p-subgroup P is normal iff it is the unique Sylow p-subgroup iff
np(G) = 1 as all the Sylow p-subgroup are conjugate to each other and all
conjugates of a Sylow p-subgroup is again a Sylow p-subgroup.

(3) If G is abelian and p be a prime dividing |G|, then np(G) = 1.
(4) Sylow p subgroup and Sylow q-subgroup for p 6= q have trivial intersection.
(5) Let |G| = p.q where p, q primes and p < q. Then G has exactly one subgroup

of order q, which is therefore normal. Indeed, nq|p, and nq ≡ 1 mod q.
Therefore nq = 1.

(6) Let |G| = 12. Then either G has normal Sylow 3-subgroup or else it is
isomorphic to A4.

Proof. We know n3|4 and n3 ≡ 1 mod 3. So n3 = 1or4.n3 = 1 gives the
first condition. If n3 = 4. Then |Syl3(G)| = 4 and the conjugation action
of G on Syl3(G) is transitive. This action gives a group homomorphism
φ : G→ S4. Note that

ker(φ) =
{
g ∈ G|g ∈ ∩4i=1NG(Pi)

}
.

Alos note that |NG(Pi)| = 12/n3 = 3. Therefore NG(Pi) = Pi. But
Pi∩Pj = {e} as they are disctinct subgroups of prime cardinality. Therefore
φ is injective. So im(φ) as a subrgoup of S4 is of order 12. The generator
of Pi’s give order 3 elements in the imgae of φ in S4. There are eight such
order 3 elements. The order 3 elements of S4 are 3-cycles, which are even
premutation. Therefore, |A4∩Im(φ)| cardinality is atleast 8.Lagrange tells
us that therefore |A4 ∩ Im(φ)| = 12 and we get our claim. �

Definition 4.35. Given a group G, a sequence of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1} ,

is called a solvable series of G if , Gi+1 is normal in Gi and Gi/Gi+1 is abelian
for all 0 ≤ i < n. A group G is called solvable if it has a solvable series.

Examples of Solvable groups Abelian groups are solvable. Simple non abelian
groups are not solvable. Therefore, A5 is not solvable. S1 and S2 are obviosuly
solvable. The series

S3 ⊃ A3 ⊃ {e}
is a solvable series of S3. Let

V4 := {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} .
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Then V4 is a normal subgroup of A4 and A4/V4 is group of order 3 so cyclic and
V4 is abelian. Therefore

S4 ⊃ A4 ⊃ V4 ⊃ {e}
is a solvable series of S4.

Lemma 4.36. Let G be a group. Define G1 := [G,G] and Gi := [Gi−1, Gi−1].
Then G is solvable iff there exists a natural number n such that Gn = {1}.

Proof. If G staisfies that Gn = {1}, then G is solvable is obvious as commuta-
tor subgroups are normal and quotienting by commutator subgroup gives abelian
groups. Now suppose G is solvable and

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1} ,

be a solvable series of G. Now for any K ⊂ H ⊂ G, such that H is normal in
G and K is normal in H and such that G/H and H/K are abelian then G1 is a
subgroup of H and G1/K ∩G1 is abelian as G/H is abelian and H/K is abelian.
As G1/K ∩G1 is abelian, we get that G2 ⊂ K. So inductively one can prove that
Gn ⊂ Gn and we are done.

�

5. Lecture 8

Definition 5.1. Given a group G, a sequence of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1} ,

is called a solvable series of G if , Gi+1 is normal in Gi and Gi/Gi+1 is abelian
for all 0 ≤ i < n. A group G is called solvable if it has a solvable series.

Examples of Solvable groups Abelian groups are solvable. Simple non abelian
groups are not solvable. Therefore, A5 is not solvable. S1 and S2 are obviosuly
solvable. The series

S3 ⊃ A3 ⊃ {e}
is a solvable series of S3. Let

V4 := {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} .

Then V4 is a normal subgroup of A4 and A4/V4 is group of order 3 so cyclic and
V4 is abelian. Therefore

S4 ⊃ A4 ⊃ V4 ⊃ {e}
is a solvable series of S4.

Theorem 5.2. (Second Isomorphism Theorem) Let H be a subgroup of a group G
and N a normal subgroup of G. Then HN is a subgroup of G , H ∩N is a normal
subgroup of H, and H/H ∩N ∼= HN/N .

Proof. As N is normal h1.n1.h2.n2 = h1h2h
−1
2 n1h2n2 = h1h2n

′n2 for some n′ ∈ N .
In particular we get that HN = NH. Therefore, H.N is a subgroup of G. The
subgroup N ⊂ HN is normal and H ⊂ HN is a subgroup. The homomorphism
H → HN/N sending h 7→ h.N has kernel H ∩ N . For all h ∈ H,n ∈ N , we have
h.n.N = h.N . Therefore the map H → HN/N is surjective. Now apply theorem
??.

�
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Theorem 5.3. (Correspondence Theorem) Let N be a normal subgroup of G and
let π : G→ G/N be the canonical quotient group homomorphism. Then H 7→ π(H)
is a one to one correspondence between the set of subgroups H conatining N and
the set of subgroups of G/N . Moreover, the normal subgroups of G containing N
correspond to normal subgroups of G/N .

Proof. First of all π(H) is subgrioup of G/N and for any subgroup H ′ ⊂ G/N ,
π−1(H ′) is a subgroup of G. Since π(N) = e.N ∈ H ′, therefore π−1(H ′) contains
N . We will verify that for any subgroup H containing N , we have π−1(π(H)) = H.
It is clear that H ⊂ π−1(π(H)). Let g ∈ π−1(π(H)), therefore we have π(g) = π(h)
for some h ∈ H. This implies g.h−1 ∈ N , therefore g.h−1 ∈ H. This implies g ∈ H.
Next we show that for any subgroup H ′ ⊂ G/N , we have π(π−1(H ′)) = H ′. Again
π(π−1(H ′)) ⊂ H ′ is obvious. Let h′ ∈ H ′. Then there exists g ∈ G such that
π(g) = h′ as π is surjective. Then g ∈ π−1(H ′), therefore π(g) = h ∈ π(π−1(H ′)).
Now for any normal subgroup N ′ ⊂ G/N , we have π−1(N ′) is a normal subgroup
of G containing N (see exercise). Let H ⊂ G be a normal subgroup of G containing
N . Then π(g)π(H)π(g)−1 = π(g.Hg−1) = π(H) for all g ∈ G. As π is surjective,
this shows that π(H) is normal. Note that π(H) = H/N .

�

Theorem 5.4. (Third isomorphism theorem) Let G be a group and N,H ⊂ G
normal subgroups of G such that N ⊂ H, then G/H ∼= G/N/(H/N).

Proof. See exercise.
�

Lemma 5.5. Let G be a group. Define G1 := [G,G] and Gi := [Gi−1, Gi−1]. Then
G is solvable iff there exists a natural number n such that Gn = {1}.

Proof. If G staisfies that Gn = {1}, then G is solvable is obvious as commuta-
tor subgroups are normal and quotienting by commutator subgroup gives abelian
groups. Now suppose G is solvable and

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1} ,

be a solvable series of G. Now for any G ⊂ H ⊃ K, such that H is normal in
G and K is normal in H and such that G/H and H/K are abelian then G1 is a
subgroup of H and G1/K ∩G1 is abelian as G/H is abelian and H/K is abelian.
As G1/K ∩G1 is abelian, we get that G2 ⊂ K. So inductively one can prove that
Gn ⊂ Gn and we are done.

�

Lemma 5.6. Let

1→ N → G→ H → 1,

be an exact sequence of groups. Then G is solvable iff H and N are both solvable.

Proof. Let p : G→ H be the quotient map and N → G we think it as an inclusion.
Ket G be solvable with solvable series

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1} ,

then

N = N0 ⊃ G1 ∩N ⊃ · · · ⊃ Gn ∩N = {1} ,
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is a solvable series of N as subgroups of abelian groups are abelian and intersection
H ∩N of normal subgroup N with a subgroup H is a normal subgroup of H. On
the other hand as quotients of abelian groups are abelian and quotient of a normal
subgroup is normal we get

H = H0 ⊃ p(G1) ⊃ · · · ⊃ p(Gn) = {1} ,
is a solvable series of H.

On the other hand if

N = N0 ⊃ N1 ⊃ · · · ⊃ Nn = {1} ,
be a solvable series of N and

H = H0 ⊃ H1 ⊃ · · · ⊃ Hm = {1} ,
a solvable series of H, then

G = p−1(H0) ⊃ p−1(H1) ⊃ · · · ⊃ p−1(Hm)(N = N0) ⊃ N1 ⊃ . . . Nn = {1} ,
is a solvable series of G.

�

Proposition 5.7. Every group of order pn for some prime p is solvable. Moreiver
a finite group G is solvable iff there exists a sequence of sub groups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1} ,
such that Gi+1 is a normal subgroup of Gi and Gi/Gi+1 is cyclic of prime order
for all 0 ≤ i < n.

Proof. We prove the first part of induction on n. If a group G is of order p1 then
there is nothing to prove. Suppose we know the statement for all 1 < r < n. Let
|G| = pn and G is non abelian then the |Z(G)| = pk where 1 ≤ k < n. Then Z(G)
and G/Z(G) are solvable by induction hypothesis and therefore we are done. For
the second part suppose

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1} ,
such that Gi+1 is a normal subgroup of Gi and Gi/Gi+1 is cyclic of prime order for
all 0 ≤ i < n, then offcourse G is solvable. On the other hand suppose the finite
group G is solvable and

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1} ,
be a solvable series. Let H be a finite group and let N be a normal subgroup such
that H/N is abelian. Let K be a maximal proper normal subgroup containing N .
Then H/K is simple and it is a quotient subgroup of an abelian group H/N , there-
fore H/K is of order p for some prime p. Therefore, inductively we can construct
subgroups Hi,j of Gi containing Gi+1 such that Hi,0 = Gi and Hi,m = Gi+1, Hi,j+1

is normal subgroup Hi,j and Hi,j/Hi,j+1 is or prime order for 0 ≤ j < m.
�

Theorem 5.8. The group Sn is not solvable for n > 4.

Proof. We know that A5 is non abelian simple therefore non solvable. This implies
S5 is not solvable as subgroups of solvable groups are solvable. For every n >
4, there exists n injective group homomorphism S5 → Sn by premuting just the
first 5 letters. Then Sn for n > 4 solvable will imply S5 is solvable. Which is a
contradiction.
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�

Direct Product

Let H and K be groups H ×K has group structure given by (h1, k1).(h2, k2) =
(h1.h2, k1.k2) with identity (1, 1) and inverse of (h, k) given by (h−1, k−1). Note
that φH : H → H×K given by h 7→ (h, 1) and φK : K → H×K given by k 7→ (1, k)
are injective group homomorphism, making φK(K) ∼= K and φH(H) ∼= H normal
subgroups of G with φH(H) ∩ φ(K) = {(1, 1)} and φH(H).φK(K) = H ×K and
every element of φH(H) commutes with every element φK(K).

Theorem 5.9 (Detection of direct product). Let G be a group and H and K be
subgroups such that

(1) G = HK,
(2) H ∩K = {1},
(3) hk = kh for all h ∈ H, k ∈ K.

Then the natural map f : H ×K → G given by f(h, k) = hk is an isomorphism of
groups.

Proof.

f((h1, k1).(h2, k2)) = h1h2k1k2 = h1k1h2k2 = f(h1, k1)f(h2, k2).

If hk = e, then h, k ∈ H ∩K. So f is injective. The homomorphism f is surjective
as G = HK.

�

Semi direct product

(1) Let

G : {φ : R→ R|φ(x) = ax+ b, a ∈ R∗andb ∈ R} .

Then

G ∼=
{[
a b
0 1

]
∈ Gl2(R

}
.

Let

H :=

{[
1 b
0 1

]}
,

and

K :=

{[
a 0
0 1

]}
.

Then H ∩K = {Id} and G = HK. Also note that H is normal in G,
G/H ∼= K and G is not abelian. Therefore G � H ×K.

(2) Let G = Gl2(R), H = Sl2(R) and

K :=

{[
a 0
0 1

]
a ∈ R∗

}
.

Then G = HK, H ∩K = {Id} and H is normal in G, but elements of H
does not commute with elements of K.
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6. lecture 9

Note that if H is a normal subgroup of G and let K be a subgroup of G such
that H ∩K = {1}. Then we have the following obeservations

(1) We get a homomorphism φ : K → Aut(H), given by φ(k)(h) = khk−1.
This is a group homomorphism.

(2) (h1k1h2k2 = h1k1h2k
−1
1 k1k2 = h1φ(k1)(h2)k1k2

(3) (hk)−1 = k−1h−1 = (k−1h−1k)k−1 = φ(k−1)(h−1).k−1.

Proposition 6.1. Let H and K be two groups and let φ : K → Aut(H) homomor-
phism. The set H ×K has a group structure ( the group is denoted by H oφ K),
such that

(1) (h1, k1)(h2, k2) := (h1φ(k1)(h2), k1k2).
(2) The subset H×1 (resp. 1×K) is a subgroup with the obvious group structure

on H × 1 ( resp. 1×K) coming from the group structure of H (resp. K).
(3) (H × 1)(1×K) = H oφ K and (H × 1) ∩ (1×K) = {(1, 1)}.
(4) (H×1) is a normal subgroup and the conjugation action of 1×K on H×1

can be identified with homomorphism φ.
(5) Every element of H × 1 commutes with every elemnt of 1 ×K iff φ is the

trivial homomorphism.

Proof. (h, 1)(1, k) = (h.φ(1)(1), 1.k) = (h, k). Therefore (H×1)(1×K) = HoφK.
Note that

(h1, k1)(h, 1)(h1, k1)−1 = (h1φ(k1)(h), k1)(φ(k−11 )(h−1), k−11 ).

Therefore normality of H × 1 follows. Note that

(1, k)(h, 1)(1, k)−1 = (1φ(k)(h), k)(1, k−1) = (φ(k)(h), 1).

�

Theorem 6.2. Let G be a group and let H,K subgroups of G such that

(1) G = HK,
(2) H ∩K = {1}.
(3) H is normal in G.

Then φ : K → Aut(H) given by φ(k)(h) = khk−1 is group homomorphism such
that f : H oφ K → G gievn by f(h, k) = hk is an isomorphism of groups.

Proof. �

Example 6.3. (1) If φ(k) is the identity automorphism of H, then H ×φK ∼=
H ×K.

(2) H = R and K = R∗, φ : R∗ → Aut(R) such that φ(x)(a) = x.a. Then

H oφ K ∼=
{[
a b
0 1

]
∈ Gl2(R

}
,

where (b, a) 7→
[
a b
0 1

]
(3) If H = Z/m and K = (Z/m)∗. Then Aut(Z/m) ∼= (Z/m)∗, and we view

this isomorphism by mapping a unit a ∈ Z/m to the group automorphism of
Z/m defined by multiplication by a. This identification gives a non trivial
homomorphism (infact isomorphism) φ : K → Aut(H) and we get the
semidirect product H oφ K.
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(4) A group which is direct product of H ×K can also be non trivial semidirect
product H oφ K. Indeed, Let n be odd take G = Gln(R), H = Sln(R) and

K :=

{[
a 0
0 Idn−1

]
|a ∈ R∗

}
∼= R∗.

We have already seen that the conjugation action of K on H gives a non
trivial homomorphism φ : K → Aut(H). Therefore G ∼= H ×φ R∗.

Now the center of G is Z(G) = {c.Idn|c ∈ R∗} ∼= R∗. Let K ′ = Z(G).
As n is odd HK ′ = G, H ∩ K ′ = {Idn}, note that both H and K ′ are
normal in G therefore G ∼= H ×K ′ ∼= H × R∗.

Theorem 6.4. Let H1, H2,K1,K2 be groups and f1 : H1 → H2 and f2 : K1 →
K2 be group isomorphisms. Then F : H1 × K1 → H2 × K2 given by F (h, k) =
(f1(h), f2(k) is an isomorphism of groups.

Proof. �

Theorem 6.5. Let H1, H2,K1,K2 be groups and f1 : H1 → H2 and f2 : K1 → K2

be group isomorphisms and let φ1 : K1 → Aut(H1) be group homomorphism. Then
there exists φ′ : K2 → Aut(H2) homomorphism such that H1oφ1

K1
∼= H2oφ2

K2.

Proof. Using f2 we get an isomorphism f∗1 : Aut(H1)→ Aut(H2), given by f∗1 (σ) =
f1 ◦ σ ◦ f−11 . Using this and f2 get φ′ := f∗1 ◦ φ1 ◦ f−12 .

�

Theorem 6.6 (Chinese Remainder Theorem). Let G = Z/mnZ with (m,n) = 1.
Then thre exists unique copy of H = Z/mZ and K = Z/nZ such that H ∩K = {1}
and H + K = G, G/H ∼= K and G/K ∼= H. Inparticular, the map K × H → G
given by (k, h) 7→ k + h gives an isomorphism.

Same method of the proof can be used to prove the following

Theorem 6.7. Let G be an abelian group |G| =
∏k
i=1 p

ni
i be the prime factorisation

of |G| and let Pi be the Sylow pi-subgroup. Then G ∼=
∏k
i=1 Pi.

Proof. Let us consider the map θ :
∏k
i=1 Pi → G giben by θ((a1, . . . ak)) =

∑k
i=1 ai.

This is a group homomorphism. If
∑k
i=1 ai = 0 with ai ∈ Pi, then ai which has

order a power of pi is equal to −
∑
j 6=i aj which has order dividing

∏
j 6=i p

nj

j . This
is only possible if the order of ai is 1, in that case ai = 0. Therefore, θ is injective.
Now compare cardinality.

�

Definition 6.8. A commutative ring F is a field if every non zero element is a
unit.

Remark 6.9. Let φ : F → A be a ring homomorphism and let F be a field then φ
is injective. Moreover, φ(F ) is a field isomorphic to F .

Definition 6.10. A field E containing a field F is called an extension field of F .
In this situation E can be regarded as an F vector space. The dimension of E as an
F vector space is called the degree of the extension E/F and is denoted by [E : F ].
Given two extension E1/F and E2/F an F homomorphsm is a homomorphism φ :
E1 → E2 such that φ|F = idF . An F -isomorphism is a bijective F -homomorphism.
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Proposition 6.11 (Substitution principle). Let A be a ring and let B be an A
algebra (assume A ⊂ B). Then an A algebra homomorphism φ : A[x1, . . . , xn]→ B
is completely determined by φ(xi)’s. Let I be an ideal of A[x1, . . . , xn] such that
A ∩ I = 0, then an A-algebra homomorphism φ : A[x1, . . . , xn]/I → B is natural
bijection with the set of points (b1, . . . bn) ∈ Bn such that f(b1, . . . , bn) = 0 for all
f ∈ I.

Proof. Given φ(xi) ∈ B, the natural map φ(
∑
I aIx

I) := aI
∑
I φ(xI) gives a well

defined A-algebra homomorphism where I = (i1, . . . , in) and xI = xi11 . . . . x
in
n ,

φ(xI) := φ(x1)i1 . . . . , φ(xn)in . This gives the first part. An A algebra homomor-
phismA[x1, xn]/I → B is determined byA-algebra homomorphism φ : A[x1, . . . , xn]→
B such that φ(I) = 0. Now the second claim follows.

�

Example 6.12. (1) Let A be an integral domain then

K(A) = {(a, b)|a ∈ A, b ∈ A \ 0} /((a1, b1) ∼ (a2, b2) ⇐⇒ a1b2 = b1a2)

is the fraction field. There is a natural map l : A→ K(A) which is injective
and l(a) = [(a, 1]) It has the universal property, that any ring homomor-
phism φ : A→ B such that the nonzero elements of A maps to units in B,
then φ can be uniquely extended to a ring homomorphism ψ : K(A) → B
such that ψ◦ l = φ. Let F be a field and let A = F [x], then K(A) is denoted
by F (x). It is an infinite dimensional vector space over F .

(2) Characteristic of a field : Given any integral domain A, consider the
unique homomorphism φ : Z → A , which is completely determined by
φ(1) = 1. As A is an integral domain, we see that Im(φ) is an integral
domain, therefore ker(φ) is a prime ideal of Z. When ker(φ) is trivial then
we say that the characteristic of A is 0. Else ker(φ) = (p) for some prime
p, which is called the characteristic of A. The field Fp, the ring Fp[x], the
field Fp(x) are all characteristic p field.

(3) Let F be a field and f(x) =
∑n
i=0 aix

i ∈ F [x] be an irreducible polynomial.
Then the ideal generated by f(x) is a prime ideal as F [x] is an U.F.D and
it is infact maximal because F [x] is a P.I.D. Let E := F [x]/(f(x)). This
a field. As F sits as a subring in F [x] as constant polynomials, the map
F → F [x]→ F [x]/(f(x)) is injective, and therefore E is an extension of F
and it has a distinguised element the imga eof x denoted by x̄ . The element
f(t) =

∑n
i=0 ait

i ∈ E[t] has x̄ as the root. The degree [E : F ] = n = deg(f).
Indeed, the set (1, x̄, . . . , x̄n−1) is basis because of division algorithm and
irreducibility of f(x).

(4) Any finite field is of characteristic p for some prime p and it has pn el-
ements. It is also the case that there exists innfinitely many irreducible
polynomials in Fp[x] of degree greater than 1, so there exists finite fileds
whose elements are greater than p.

(5) Extension of finite fields are simple. Let F be a field of cardinality pn = q.
Then |F ∗| = q − 1. Let t be the maximum of the orders of the elements of
F ∗ and let α be an element of order t. Since the group is abelian, order of
every element is a divisor of t. This show that the q − 1 many elements
of F ∗ satusfies f(x) = xt − 1 equation. As f can have atmost q − 1 roots
and t|q − 1,we have t = q − 1, or F ∗ is cyclic with generator α. So F is a
simple extension of Fp.
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(6) Let E/F be an extension, let α1, . . . , αn be elements in E. Then F (α1, . . . , αn)
denote the subfield of E generated by F and α1, . . . , αn. First of all such a
field exists because F [α1, . . . , αn] ⊂ E exists by substitution principle and it
is an integral domain. F (α1, . . . , αn) is the fraction field of F [α1, . . . , αn].
We can describe the elements in F (α1, . . . , αn) as rational functions eval-
uated on (α1, . . . , αn). The field F (α) is called a simple extension. Let
α ∈ E, then we have an F algebra homomorphism evα : F [x] → E such
that evα(x) = α. The image is F [α]. If evα injective then α is not a root of
any non zero polynomial in F [x] therefore α is called transcendental over
F . In this case F (α) ∼= F (x). Infact the degree in this case is infinite.

(7) C is an extension of R of degree 2 as (1, i) is a basis. Note that the R
extension R[x]/(x2 + 1) is R-isomorphic to C. Note that for any degree 2
real polynomial f(x) with non real roots we have the R extension R[x]/f(x)
is isomorphic to C.

(8) The Q-extension Q(i) is a field extension of degree 2, so is the Q-extension

Q(
√

2). But this two fields are not isomorphic as Q extensions.

Lemma 6.13 (Degrees in tower). Let F ⊂ E ⊂ L be fields. Then L/F is of finite
degree iff L/E and E/F are of finite degree. In this case [L : F ] = [L : E][E : F ]

Proof. Let L/E have E basis (l1, . . . lm) and E/F has F basis (e1, . . . , en). Then
(eifj)’s generates L as an F vector space is obvious. So L/F is of finite degree.
Note that

∑
i,j aijeifj = 0 and let bj =

∑
i ai,jei, then

∑
j bjfj = 0 so bj = 0 for

all j and this implies ai,j = 0 for all i, j. Therefore, (eifj) is a basis of L/F . So
[L : F ] = [L : E][E : F ]. If L/F is of finite degree, then any F generating set L
will be an E generating set of L as F ⊂ E. On the other hand E is a sub F vector
space of L, therefore E/F will have finite degree.

�

7. Lecture 9

Definition 7.1. Let L/k be a field extension. An element α ∈ L is called algeraic
over k if there exists a non zero polynomial f(x) ∈ k[x], such that f(α) = 0. An α
is called trascendental over k if it is not algebraic over k.

Remark 7.2. Let L/k be a field extension and let α ∈ L. The smallest subring of
L containing k and α is denoted by k[α] and the smallest subfield of L containing k
and α is denoted by k(α). Given such an α ∈ L, we define a ring homomorphism
evα : k[x] → L such that evα(x) = α and evα|k is just the inclusion k → L. Note
that Im(evα) is a subring of L containing k and α. It is also an integral domain,
being a subring of a field. Therefore the fraction field K(Im(evα)) can be throught
of as a sufield of L containing α and k using universal property of the fraction field.

Lemma 7.3. Let L/k be any extension and let α ∈ L. Then k[α] = Im(evα) and
k(α) = K(Im(evα)) (rather the image using universal property)

Proof. Let R ⊂ L be a subring containg α, k, then any polynomial expression in
α with coefficients in k is in R. Therefore evα : k[x] → L factors through R and
this shows that k[α] = Im(evα). Let F ⊂ L be a subfield of L containing k and α,
then k[α] ⊂ F and evα factors through F . Now k[α]→ F is an injection such that
every non zero element of k[α] is a unit in F , therefore the unique homomorphism
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K(Im(evα))→ L preserving the inclusion k[α] ⊂ L factors through F . Therefore,
k(α) ⊂ F .

�

Lemma 7.4. Let L/k be an extension and α ∈ L. Then α is algebraic over k iff
k[α] = k(α), iff k(α)/k is a finite extension.

Proof. Note that k(α) is the fraction field of k[α] , therefore k[α] = k(α) iff k[α] is
already a field. Consider the homomorphism evα : k[x] → L, whose image is k[α].
Since the image is an integral domain, the ker(evα) is a prime ideal in k[x]. Now
the kernel is the set of all polynomial in k[x] which has α as a root. Therefore it
is non zero iff there exists a non zero polynomial with α as a root iff α is algebraic
over k. The kernel is non zero iff it is a non zero prime ideal iff it is a maximal
ideal (k[x] is a P.I.D) iff there exists irreducible polynomiakl f(x) ∈ k[x], such
that ker(evα) = (f) and this happens iff k[α] is a field. Now k[α] is a field iff
k(α) = k[α]. Now k[α] is field implies it is a finite extension of k, therefore k(α)
is a finite extension over k. Now if k(α)/k is a finite extension and k[α] is a not
field, then ker(evα) = 0, therefore the k subvector space of k(α) denote by k[α] is
infinite dimensional k-vector space. This absurd. So k(α)/k is a finite extension iff
k[α] = k(α).

�

Definition 7.5. Let L/k is an extension. Then L/k is called an algebraic extension
if all α ∈ L are algebraic over k. An extension L/k is called a purely transcendental
extension if α ∈ k are the only algberaic elements in L.

Lemma 7.6. (1) Let L/k be a finite extension t hen L/k is an algebraic ex-
tension.

(2) Let k(t) be the fraction field of the polynomial ring k[t], then k(t)/k is a
purely transcendental extension.

(3) Let k ⊂ F ⊂ L be field extensions and α ∈ L. Then α is algebraic over k
implies α is algebraic over F .

(4) If L/k be an algebraic extension and α, β ∈ L algebraic over k. Then α±β,
α.β and α−1.β are algebraic over k.

Proof. (1) As L/k is a finite extension, therefore for any subfield k ⊂ F ⊂ L,
we have F/k is also a finite extension over k. Let α ∈ L. Then k(α)/k is
a finite extension. This implies α is algebraic over k. Therefore L/k is an
algebraic extension.

(2) Let α = f(t)/g(t) ∈ k(t) such that (g(t), f(t)) = 1, g(t) 6= 0 and α /∈
k. Let h(x) =

∑n
i aix

i such that an 6= 0 and h(α) = 0. Then 0 =∑n
i ai(f(t)/g(t))i. Multiplying both sides by g(t)n we get anf(t)n = g(t).l(t)

for some polynomial l(t) ∈ k[t]. This implies g(t) is a non zero constant in
k (gcd(f, g) = 1). In this case degree of g(t).l(t) is atmost (n − 1).deg(f),
on the other hand degree of f(t)n is n.deg(f). This implies f(t) ∈ k.

As there exists a non zero f(x) ∈ k[x] such that f(α) = 0, therefore there exists
f(x) ∈ F [x] such that f(α) = 0.
Let α, β be algebraic over k. Let k(α, β) ⊂ L smalles subfield of L containing α, β.
Therefore k(α, β) = k(α)(β). As α ∈ k(α) is algebraic over k, we get k(α) is a finite
extension of k. On the other hand β is algebraic over k, implies β is algebraic over
k(α). therefore k(α)(β) is finite extension of k(α). Therefore, the tower formula
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gives us k(α)(β) is a finite extension of k. Therefore, it is an algebraic extension of
k.

�

The field extension Q(21/3) is subfield of R and the equation x3− 2 has two non
real roots, therefore in Q(21/3) the polynomial x3 − 2 = (x− 21/3)g(x) where g(x)
is a irreducible polynomial in Q(21/3)[x]. On the other hand the field Q(21/3, ω) is
a field where x3 − 2 splits in linear factor and the field is genrated by the roots of
x3 − 2 over Q. Note that the degree of the extension [Q(21/3, ω) : Q] = 6 using the
degrees in tower formula.

Definition 7.7. Let f(x) ∈ k[x] be a non constant polynomial. A splitting field K
of f over k is a field extension K/k such that

(1) f(x) splits into linear factors in K[x], equivalently f(x) = c.
∏n
i=1(x− αi)

with c ∈ k, αi ∈ K and deg(f) = n,
(2) k(α1, . . . , αn) = K.

Lemma 7.8. Let f ∈ k[x] be a non constant polynomial. Then there exists a
splitting field K of f over k.

Proof. We will prove this theorem using induction on degree of f . If deg(f) = 1.
Then K = k[x]/f ∼= k, where f(x) = ax + b and a 6= 0, so root is −b/a ∈ k. If
we know the result upto degree k < n. Let f(x) be of degree n. Let f1(x) be
an irreducible component of degree d ≤ n. Then, let K ′ := k[x]/f1 . Therefore,
K ′ = k(α) where α = (̄x), and f(α) = f1(α) = 0. So in K ′ the polynomial f(t) has
a linear factor (t−α), or f(t) = (t−α)g(t) with g(t) ∈ K ′[t] and degree g(t) = n−1.
By induction, There exists K/K ′ splitting field of g(t). It is clear that K/k is a
splitting field of f .

�

Lemma 7.9. Let F be a field with q = pn elements, then F is a splitting field of
the polynomial xq − x over Fp.

Proof. We know that F ∗ = (α) and therefore every element of F ∗ satisfies xq−1−1 =
0, which implies the q elements of F satisfies xq − x.

�

Lemma 7.10. Let q = pn. Then there exists a field F/Fp of cardinality q.

Proof. Take a splitting field F/Fp of the polynomial xq − x. Let S ⊂ F be the
set of elements of F satisfying the equation xq − x = 0. This set is closed under
multiplication and conatins 0 and 1. Since (a+ b)q = aq + bq in char p, infact the
set S is subfield of F containig Fp, therefore F = S. Note that if α is a root of
xq−x, then xq−x−(αq−α) = (x−α).g(x), where g(x) = (x−α)q−1−1.Therefore
g(α) 6= 0. this implies the roots of xq − x are distinct, so |F | = q.

�

8. Lecture 10

Let σ : k → k′ be an isomorphism. Let f(x) ∈ k[x] be an irreducible polyno-
mial.The isomorphism σ can be extended to give an isomorphism of rings σ′ : k[x]→
k′[x], such that σ′(x) = x and σ′|k = σ. Note that σ′(f(x)) is irreducible. Therefore
σ′ induces an isomorphism σ′ : k[x]/(f)→ k′[x]/(σ′(f)) such that σ′|k = σ.
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Assume, moreover, k, k′ ⊂ K such that α ∈ K is a root of f(x) and α′ ∈ K
is a root of σ′(f). Then previous isomorphism σ′ : k[x]/(f) → k′[x]/(σ′(f)) can
be used together with the k (resp. k′) isomorphisms evα : k[x]/(f) → k(α) (resp.
evα′ : k′[x]/(σ′(f)) → k′(α′)) to construct an isomorphism τ : k(α) → k′(α′) such
that τ |k = σ and τ(α) = α′. Inparticular if σ = id : k → k , then any two roots α, α′

of f(x) gives an isomorphism τ : k(α)→ k(α′) such that τ |k = id and τ(α) = α′.

Definition 8.1. Let K/k be an algebrai extension. Two elements α, α′ ∈ K are
called k-conjugates if there exists a k-isomorphism τ : k(α) → k(α′) such that
τ(α) = α′.

Lemma 8.2. Let K/k be an algebraic extension and α, α′ ∈ K. Then α, α′ are
k-conjugates iff α and α′ have the same minimal polynomial over k.

Proof. Consider the map evα : k[x] → K and evα′ : k[x] → K. The images of this
to maps are k(α) and k(α′) respectively. The kernel of this maps are generated
by the minimal polynomials pα and pα′ and evα : k[x]/(pα) ∼= k(α) and evα′ :
k[x]/(pα′) → k(α′) are k- isomorphisms . If the minmimal polynomials are same
then the k-automorpohism φ : k(α) → k(α′) is given by evα′ ◦ ev−1α . On the
other hand if τ : k(α) → k(α′) is a k-isomorphism such that τ(α) = α′, then the
k-homomorphism sends τ ◦ evα : k[x]→ k(α′) sends x 7→ α′. We see that

τ ◦ evα(pα(x)) = τ(pα(α)) = pα(α′) = 0.

Therefore, α′ is a root of pα, which is monic and irreducible of pα′ = pα. �

Proposition 8.3 (Uniqueness of splitting fields). Let σ : k → k′ be a field isomor-
phism. Let f(x) ∈ k[x] be a nonconstant polynomial and let K and K ′ be splitting
fields of f over k and σ(f) over k′ respectively. Then there exists an isomorphism
τ : K → K ′ such that τ |k = σ.

Proof. We will prove it using induction on degree of f . If deg(f) = 1, then this is
obvious as the the splitting filed are k and k′ respectively. If deg(f) = n and let f1
be an irreudicble component of f . Then σ(f1) is an irreducible component of σ(f).
Let α ∈ K be a root of f1 and let β ∈ K ′ be a root of σ(f1). Then there exists a
isomorphism σ1 : k(α) → k′(β) such that σ1|k = σ and σ1(α) = β. Over k(α) we
have f(x) = (x− α)g(x) with g(x) ∈ k(α)[x] and K is a splitting field of g(x) over
k(α). On the other hand σ1(g(x)).(x − β) = σ(f(x)) and K ′/k′(β) is a splitting
field of σ1(g(x)). Now by induction we get the desired result.

�

Corollary 8.4. For every q = pn, there exists a unique field (unique upto Fp-
isomorphism) F/Fp of cardinality q.

Proof. �

Lemma 8.5. Let K/k be a splitting field of some non constant f(x) ∈ k[x]. Let
K ⊂ L be any extension. Then for any k-homomorphism σ : K → L, we have
σ(K) = K.

Proof. �

Proposition 8.6. Let K be the splitting field of f over k and let g be an irreducible
polynomial over k. If g has a root in K then g splits in K. Conversely, if K/k is
a finite extension such that irreducible polynomial over k having a root in K splits
in K, then K is the splitting field of some polynomial over k.
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Proof. �

Definition 8.7. An algebraic extension K/k is called normal if any irreducible
polynomial over k having a root in K splits in K.

Proposition 8.8. (1) Every finite extension K/k is subfield of a finite normal
extension L/k. Infact for finite extensions Ki/k with i = 1, 2 . . . , n, there
exists a finite normal extension L/k and k-homomorpshim σi : Ki → L.

(2) Let k ⊂ K ⊂ L finite extensions, let N/k normal extension containinig L.
Let m be the numbere of distinct k homomorphism K → N and let n be the
number of distinct K-homomorphism L→ N . Then the number of distinct
k-homomorphism L→ N is mn.

(3) Let K/k be an extension of degree n and let N/k be a finite normal ex-
tension such that K ⊂ N subfield. Then, there are at most n distinct
k-homomorphism σ : K → N .

Proof. �

9. Lecture 11

Remark 9.1. (1) Let f(x) ∈ k[x] irreducible of degree n. Let N be a splitting
field of g(x) ∈ k[x] and let f(x) have a root in L, say α. Then the degree
n extension k(α) ⊂ N . Then f splits in N and the splitting field L of f is
contained in N .

(2) Let f(x) = x3−2 ∈ Q[x]. Let N be the splitting field of f . The three district
roots of f , then there are 3 distinct Q-homomorphism σ : Q(1/3)→ N .

(3) Let f(x) = xp − t ∈ Fp(t)[x]. Morever f(x) has no root in Fp(t) and it
isirreducible. Indeed, infact let F be char p field then f(x) = xp − a, for
a ∈ F , either has root in F or it is irreducible in F [x]. Suppose L/F
be a splitting field of f(x) over F , let α, β are roots. Then αp = βp,
then (α − β)p = 0. Therefore α = β. So all the roots of xp − a are
equal in L. If α /∈ F , let g(x) be an irreducible factor of f(x) of degree
m > 1. If m < p, then as g(x) has all roots equal to α, therefore αm ∈ F
and (p,m) = 1. As αp ∈ F , we get αap+bm ∈ F for all integers a, b.
Therefore α ∈ F . Contraiction. Therefore m = p and f(x) is irreduicble.
Note that t1/p ∈ Fp(t), implies, there exists f(t), g(t) ∈ Fp[t], such that
gcd(f(t), g(t)) = 1 and g(t)p.t = f(t)p. Comparing the , highest powers ( or
factorisation), we see that this is not possible. So xp−t does not have a root
in Fp(t). The number of Fp(t)-homomorphism φ : Fp(t)(t1/p)→ Fp(t)(t1/p)
is 1.

Definition 9.2. Let k be a field. An irreducible polynomial f(x) ∈ k[x] is called
separable if all its roots (in a splitting field) are simple. Otherwise, f is called
inseparable. Let L/k be an algebraic extension. Let α ∈ L. The element α is
called separable over k if the minimal polynomial is separable, otherwise it is called
inseprable over k. The extension L/k is called seprable if every element α ∈ L is
separable. If there exists an α ∈ L such that α is inseprable over k, then L/k is
called inseparable.

Proposition 9.3. (1) A polynomial f(x) ∈ k[x] has multiple roots α iff f(α) =
f ′(α) = 0.

(2) An irredducible polynomial f(x) ∈ k[x] has multiple roots iff f ′ = 0.



GALOIS THEORY , ARITHMETIC AND GEOMETRY 31

(3) An irreducible polynomial f(x) ∈ k[x] is inseperable iff char(k) = p and
f(x) = g(xp) for some irreducible g(x) ∈ k[x].

Proof. (1) f(x) = (x − α)2g(x), then f ′(x) = 2(x − α)g(x) + (x − α)2.g′(x).
Therefore if f(x) has multiple root α, then f(α) = f ′(α) = 0. On the
other hand if f(α) = f ′(α) = 0, then f(x) = (x − α).g(x), and f ′(x) =
g(x) + (x − α)g′(x). Since f ′(α) = 0, therefore g(α) = 0. Then α is a
multiple root of f(x).

(2) Consider the homomorphism evα : k[x] → L, where L is a splitting field
of f . Then f(x) generate the kernel and α is a multiple root iff f ′(x) ∈
(f(x)). As f ′(x) has degree less than f(x) and f(x) irreducible, therefore
f ′(x) ∈ (f(x)) iff f ′(x) = 0.

(3) f(x) is inseperable iff f ′(x) = 0. So if f(x) = g(xp) and char(k) = p and
g(x) is irreducible, then f ′(x) = p.xp−1g′(xp) = 0. On the other hand
suppose f ′(x) = 0, then f(x) =

∑
i=0 aix

i and f ′(x) =
∑
i=1 ai.i.x

i−1 = 0.
Therefore, ai.i = 0. Therefore, i has to be a multiple of p where char(k) =
p, so f(x) =

∑
j ajx

jp. Let g(x) =
∑
j ajx

j . Then f(x) = g(xp). As f(x)

is irreducible, therefore g(x) is irreducible too.
�

Example 9.4. Fp(t)(t1/p) is an inseprable extension over Fp(t).

Proposition 9.5. Let K/k be a finite field extension of degree n. K/k is seperable
if and only if for any finite normal extension N/k such that K ⊂ N is a subfield,
there are n-distinct k-homomorphism K → N .

Proof. Suppose there are n-distinct k-homomorphism K → N . Let α ∈ K. Then
by Proposition 8.8, the number of k(α) embedding of K → N is atmost [K : k(α)]
and number of k-embedding of k(α) → N is atmost [k(α) : k]. As the number of
k-embedding K → N is n = [K : k(α)][k(α) : k] and it is equal to the product of
number of k(α) embedding K → N and the number of k-embedding k(α) → N ,
we get [k(α) : k] = deg(fα) is equal to the number of k embedding of k(α) → N .
Now the number of k -embedding k(α)→ N is the number of distinct roots of fα,
therefore all the roots of fα is distinct and we get α is separable over k.

Now let K/k be a finite separable extension of degree n. We want to show that
there are n-distinct k-homomorphism K → N . We will do it by induction on n. If
n = 1, then it is trivial as K = k. If n > 1, let α ∈ K \ k. Then note that K/k(α)
is a finite seprable extnesion and has degree less than n and N/k(α) is normal.
Therefore, the number of k(α) homomorphism K → N is equal to [K : k(α)]. Now
the number of k homomorphism k(α)→ N is equal to the number of distinct roots
of fα which is equal to the degree of fα as α is seperable. Therefore the number of
k homomorphism k(α)→ N is equal to [k(α) : k]. Now again using Proposition 8.8
we get the number k homomorphism K → N is equal to [K : k(α)][k(α) : k] = n.

�

Corollary 9.6. Let k ⊂ K ⊂ L. Let L/K and K/k are finite seprable, then L/k
is finite seprable.

Theorem 9.7. Let K/k be a finite seprable extension. Then there exists α ∈ K
such that k(α) = K.

Proof. Let F be a finite field K/F be a finite extension. Then F is a finite extension
of Fp and K/Fp is finite seprable as K is a splitting field of a separable polynomial
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over Fp. Therefore K/F is seprable and morover K = Fp(α) so K = F (α). Let
F be an infinite field and Let K/F be a finite seprable extension of degree n.Let
N/F be a normal extension such that K ⊂ N . Then the number of distinct F -
homomorphism σi : K → N is n. Let for i 6= j,

Vij := {x ∈ K|σi(x) = σj(x)} .

Then Vij are prooper F vector subspaces of K. As F is infinite , therefore ∪ijVij 6=
K. This implies, there exists α ∈ K such that σi(α) 6= σj(α) for all i 6= j. Therefore,
the number of F homomorpshim F (α) → N is atleast n and by separability it is
n ≤ [F (α) : F ]. But F (α) ⊂ K. Therefore [F (α) : F ] ≤ n. This implies F (α) = K.

�

Lemma 9.8. Any non trivial vector space V over an infinite field K is not finite
union of proper K-subspaces.

Proof. We do it by induction of number of proper subspaces n. If n = 1, then
properness implies the claim. Let V1, . . . , Vn be proper subspaces. Let v /∈ ∪n−1i=1 Vi.
If v /∈ Vn, we are done. If v ∈ Vn, and choose w /∈ Vn. Then v + cw /∈ Vn, for all
c ∈ K∗. If v + cw belongs to some Vi for all c ∈ K∗ and i ≤ n− 1, then by pigeon
hole, there exists c1 6= c2 ∈ K∗ such that v + c1w, v + c2w ∈ Vi for some i ≤ n− 1.
This will imply w ∈ Vi and therefore v ∈ Vi, which is a contradiction. So there
exists c ∈ K∗ such that v + cw /∈ Vi for all i ≤ n.

�

10. Trace, Norm, Discriminant

Definition 10.1. Let E/k be a finite extension and let α ∈ E. Then the trace
is defined as trE/k(α) := trace(mα) and the norm is defined as NormE/k(α) =
det(mα), where mα : E → E is the k-linear transformation mα(β) = α.β.

Definition 10.2. Let f ∈ k[t] and let L be a splitting field of f such that f =∏n
i=1 a(t − αi) for a, α1, . . . , αn ∈ L. Define 4f :=

∏
i<j(αi − αj). Then the

discriminant of f is defined as

Df := 42
f = (−1)n(n−1)/2

∏
i6=j

(αi − αj).

Remark 10.3. (1) E/k as before such that [E : k] = n and let x ∈ k. then
NormE/k(x) = xn and trE/k(x) = n.x.

(2) Let k = Q, E = Q(i). For any a + bi ∈ Q(i), the matrix of ma+bi with
respect to the basis 1, i of Q(i)/Q is[

a −b
b a

]
.

Therefore, trE/k(a+ bi) = 2a and NormE/k(a+ bi) = a2 + b2.

(3) Let f(x) =
∑n
i=0 aix

i ∈ k[x], with an = 1 irreducible, α a root in some

extension. Then k(α) has a k basis given by
{

1, α, α2, . . . , αn−1
}

. The
matrix of mα with respect to this basis has the charateristic polynomial
same as minimal polynomial = f(x). The matrix is the following n × n
companion matrix
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mα =



0 0 . . . . . . −a0
1 0 . . . . . . −a1
0 1 0 . . . −a2

0 . . . 1 0 −an−2
0 . . . . . . 1 −an−1


.

Normk(α)/k(α) = det(mα) = (−1)na0, trk(α)/k(α) = tr(mα) = −an−1.
(4) Note that Df 6= 0 if and only if f has no multiple roots.

Lemma 10.4. Let L/k be finite k-extension, let V be a ffinite dimensional L-vector
space and let T : V → V be a L-linear transformation. Then

detk(T ) = NormL/k(detLT ), trk(T ) = trL/k(trLT ).

Proof. Let {ei} be an L basis with respect to which T is in rational canonical form,
that is T is block diagonal where each diagonal block looks like

0 0 . . . . . . a0
1 0 . . . . . . a1
0 1 0 . . . a2

0 . . . 1 0 an−2
0 . . . . . . 1 an−1


.

As norm is multiplcative and trace is additive and

det(

[
A 0
0 B

]
) = det(A).det(B), tr(

[
A 0
0 B

]
) = tr(A) + tr(B),

So we can assume T is one of the diagonal block. Then detL(T ) = (−1)n−1a0,
trL(T ) = an−1. Let {lj} be the k-basis of L. Then {ljei} is a k-basis for V . With
respect to this basis, we get the matrix

m0 m0 . . . . . . ma0

m1 m0 . . . . . . ma1

m0 m1 m0 . . . ma2

m0 . . . m1 m0 man−2

m0 . . . . . . m1 man−1


,

where for any element a ∈ L, ma : V → V is the L-linear ( thus k-linear) map
given by multiplication by a. Let r = [L : k], then

trk(T ) = trk(man−1
) = trL/k(an−1).

Therefore trk(T ) = trL/k(trLT ). Similarly,

detk(T ) = (−1)r(n−1)detk(ma0) = NormL/k((−1)n−1a0) = NormL/k(detLT ).

�
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Corollary 10.5. Let k ⊂ L ⊂ K be finite extensions and let α ∈ K. Then

NormK/k(α) = NormL/k(NormK/L(α)), trK/k(α) = trL/k(trK/L(α)).

Corollary 10.6. Let L/k be finite extension, α ∈ L and r = [L : k(α)]. Let

Pα = tn +
∑n−1
i=0 ait

i be the minimal polynomial of α over k. Then

trL/k(α) = −ran−1, NormL/k(α) = (−1)nrar0.

Proof. For the k-linear transformation mα : k(α)→ k(α), the minimal polynomial
is same as the characteristic polynomial, which is equal to Pα. Then

NormL/k(α) = Normk(α)/k(NormL/k(α)(α)) =

= Normk(α)/k(αr) = (Normk(α)/k(α))r = (−1)nrar0.

The formula for trace follows similarly.
�

Theorem 10.7. Let L/k be finite inseperable extension. Then trL/k(α) = 0 for
every α ∈ L

Proof. Let β ∈ L inseparable over k. Then Pβ = g(tp), where Pβ is the minimal
polynomial of β over k and g(t) ∈ k[t] is an irreducible polynomial. Note that [k(β) :
k] = deg(Pβ), and g is the minimal polynomial of Pβp of βp over k. Therefore,
[k(β) : k(βp)] = p. Therefore, 1, β, β2, . . . , βp−1 gives a basis of k(β)/k(βp) and
note that the minimal polynomial Pβi of βi over k(βp) is nothing byt xp − βip, for

o < i < p. Therefore, trk(β)/k(βp)(β
i) = 0. This implies

trL/k(α) = trk(βp)/k(trk(β)/k(βp)(trL/k(β)(α))) = 0,

for all α ∈ L.
�

Proposition 10.8. Let L/k be a separable extension and let L ⊂ N subfield such
that N/k be normal. Let {φ1, . . . , φn} = Homk(L,N). Then

trL/k(α) =

n∑
i=1

φi(α), NormL/k(α) =

n∏
i=1

φi(α).

Proof. For α ∈ L let Pα denote the minimal polynomial of α over k. Then the set
Homk(k(α), N) is in bijection with the set of roots of Pα, given by (α1, . . . , αd).
As α is separable we get

|Homk(k(α), N)| = [k(α) : k] = deg(Pα) = d.

Consider the map r : Homk(L,N) → Homk(k(α), N), where r(φ) = φ|k(α). This

map is surjective (prove it) and r−1(θ) has size [L : k(α)] for every θ ( prove it).
Therefore

n∑
i=1

(φi(α)) = [L : k(α)]
∑

ψ∈Homk(k(α),N)

ψ(α)

= [L : k(α)]

d∑
i=1

αi = [L : k(α)]trk(α)/k(α) = trL/k(α).

Similarly we get the formula for norm.
�
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Lemma 10.9. (Independence of characters) Let L,N are field extensions of k,
λ1, . . . , λn ∈ N and φ1, . . . , φn ∈ Homk(L,N) distinct such that for all α ∈ L, we
have

∑n
i=1 λiφi(α) = 0. Then λi = 0 all i.

Proof. Induction on n. The case n = 1 is stratight forward as φ(1) = 1 for any
φ ∈ Homk(L,N). Let n > 1, then there exists β ∈ L such that φ1(β) 6= φn(β) and∑
i λiφi(α.beta) = 0 for α ∈ L. Therefore, we get following two equations∑

i

λiφi(α).φi(β) = 0;

∑
i

λiφi(α)φn(β) = 0.

Subtracting, we get

n−1∑
i=1

λi(φi(β)− φn(β))φi(α) = 0,

for all α ∈ L. This gives by induction, λi(φi(β) − φn(β)) = 0 for all 0 < i < n,
which gives λ1 = 0. Then again by induction λi = 0 for all 1 < i ≤ n. �

Corollary 10.10. Let L/k be a finite separable extension. Then there exists soem
α ∈ L such that trL/k(α) 6= 0.

Proof. Let k ⊂ L ⊂ N extensions such that N/k normal. And let {φ1, . . . , φn} =
Homk(L,N). Now trL/k(α) =

∑n
i=1 φi(α). Using, the previous lemma we get our

result.
�

Theorem 10.11. Let k be a field and let f ∈ k[t], be monic irreducible separable
of degree n and let L/k be the splitting field of f over k and let α ∈ L be any root
of f .Then

Df = (−1)n(n−1)/2Normk(α)/k(f ′(α)).

Proof. There is a bijection between the set Homk(k(α), L) and the roots of f .
There are n disntinct roots of f , say α1, . . . , αn. Then f =

∏
i(x−αi) and f ′(αi) =∏

i6=j(αi − αj). Then∏
i 6=j

(αi − αj) =
∏
i

f ′(αi) =
∏
i

φi(f
′(α)) = Normk(α)/k(f ′(α)),

where φi(α) = αi.
�

11. Galois Correspondence

Definition 11.1. (1) Let K/k be an extension. Let G(K/k) denote the set of
k-isomorphism of K → K. It is a subgroup of the group of automorphisms
of K, denoted by Aut(K).

(2) Let G ⊂ Aut(K) be a subgroup,

KG := {α ∈ K|σ(α) = α,∀σ ∈ G}

.
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Remark 11.2. KG is a subfield of K. Indeed, α, β ∈ KG and σ ∈ G, then
σ(α + β) = σ(α) + σ(β) = α + β, similarly σ(α.β) = α.β, 0, 1 ∈ KG, σ(α−1) =
σ(α)−1 = α−1.

Proposition 11.3. Let E be a splitting field of a seprable irreducible polynomial
f ∈ k[x], then G(E/k) has order [E : k].

Proof. By Proposition 9.5 (using E as K and N in the proposition), we get the
number of distinct k homomorphism E → E is equal to [E : k]. As E a finite
dimension k-vector space, we get that injective linear transformations are bijective.
Therefore, we get the result.

�

Example 11.4. (1) Let E = k(α), f be the minimal polynomial of α over k
and α is the only root of f in E. Then G(E/k) = {1}, even if f is separable.

(2) Let E = Fp(t)(t1/p), and k = Fp(t). Then G(E/k) = {1} even though E/k
is normal.

Theorem 11.5. Let E be a field and let G be a finite subgroup of Aut(E). Then
[E : EG] ≤ |G|.

Proof. Let k := EG and let G = {σ1, . . . , σm} and let {α1, . . . , αn} ⊂ E such that
n > m. We want to show αi’s are linearly dependent over k. We get the following
m equations with n unknowns xi’s.

n∑
i=1

σj(αi)xi = 0, 1 ≤ j ≤ m.

Therefore there exists non trivial solution in E. Let {c1, . . . , cn} ⊂ E a non trivial
solution with minimum number of non -zeroes and assume after a premutation of
αi’s that c1 = 1. If all the other ci’s are in k we are done by just taking j = 1
in the above system of equations, as σ1 = id. If there is a ci for i 6= 1 such that
ci /∈ k, then there exists j 6= 1 such that σj(ci) 6= ci. Applying this σj to the
above equation and using the fact that composing with σj gives a bijection G→ G,
we get {c1, σj(c2), . . . , σj(ci), . . . , σj(cn)} is also a solution of the above system of
equation. Therefore,

{0, c2 − σj(c2), . . . , ci − σj(ci), . . . , cn − σj(cn)}
is also a system of non trivial solution with more zeroes than {c1, . . . , cn}. Contra-
diction.

�

Corollary 11.6. Let G be a finite subgroup of Aut(E). Then G = G(E/EG).

Proof. By previous proposition [E : EG] ≤ |G|. As G ⊂ G(E/EG), we get |G| ≤
|G(E/EG)|. AS E/EG is a finite extension, there exists a smallest normal extension
N/EG (splitting field of the minimal polynomials of the generators E/EG) such
that E ⊂ N . Then |G(E/EG)| is less than or equal to the number of distinct EG

homomorphism E → N , say m. Note that N/EG is separable if and only if E/EG

is separable. The number of distinct EG homomorphism E → N is less than or
equal to [E : EG]. Therefore

[E : EG] ≤ |G| ≤ |G(E/EG)| ≤ m ≤ [E : EG].
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Therefore,

[E : EG] = |G| = |G(E/EG)| = m.

�

Definition 11.7. Let L/k be a finite extension. We say that L/k is Galois if L/k
is normal and separable.

Corollary 11.8. Let G be a finite subgroup of Aut(E) , then E/EG is Galois.

Proof. By the similar argument as corollary 11.6we get E/EG is separable. Also
we get |G(E/EG)| = |HomEG(E,N)|. This says that the map G(E/EG) →
HomEG(E,N) composing by the inclusion E ⊂ N is a bijection. Therefore every
θ ∈ HomEG(E,N) comes from an α ∈ G(E/EG) by composing with the inclu-
sion E ⊂ N , equivalently for any such θ, the image is E. Let α ∈ E such that
f(x) ∈ EG[x] is the minimal polynomial of α. Then any other root α 6= β of f(x)
can be used to construct an EG isomorphism φ : EG(α) → EG(β), which can be
extended to an EG auto morphism φ : N → N . Now this φ|E ∈ HomEG(E,N)
and φ(E) = E so β ∈ E. So E/EG is normal. �

Proposition 11.9. Let K/k Galois extension. Then G(K/k) is a finite group of
order [K : k] and k = KG(K/k).

Proof. By proposition 11.3 |G(K/k)| = [K : k]. If K 6= k and α ∈ K \ k, then for
α 6= β another k conjugate we have a k-isomorphism φ : k(α) → k(β) mapping α
to β. This by normality of K/k can be extended to σ : K → K a k-automorphism.
Therefore, for any α ∈ K \ k, there exists σ ∈ G(K/k) such that σ(α) 6= α.

�

Corollary 11.10. Let K/k be finite. Then K/k is Galois iff [K : k] = |G(K/k)|
iff KG(K/k) = k.

Proof. K/k Galois implies both conditions. Using corollary 11.8 we get KG(K/k) =
k implies K/(KG(K/k) = k) is Galois and corllary 11.6 gives us that |G(K/k)| =
[K : k]. On the other hand [K : k] = |G(K/k) := G|, then we get a tower of
extension k ⊂ KG ⊂ K. Since K/KG is Galois and by 11.6 G = G(K/KG) and
|G| = [K : KG], therefore [K : KG] = [K : k], therefore k = KG. and K/k is
Galois.

�

Lemma 11.11. Let K/k be a finite normal extension and let k ⊂ F ⊂ K be a tower
of extensions. Then F/k is normal if and only if for all σ ∈ G(K/k), σ(F ) = F .

Proof. If F/k is nnormal then we have proved before that σ(F ) = F . Let α ∈
F \ k, then any conjugate of α is in K. Let β be one such conjugate. Then the k
isomorphism τ : k(α) → k(β) can be extended to a k-automorphism θ : K → K,
then θ(F ) = F , implies θ(α) = τ(α) = β ∈ F .

�

Let K/k be a Galois extension and let G := G(K/k) be the Galois group. Denote
by

S(G) := {H ⊂ G| subgroup} ,
S(K/k) := {k ⊂ K1 ⊂ K| subfield of K containing k} .
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Let Φ : S(K/k)→ S(G) be the map given by

k ⊂ K1 ⊂ K 7→ G(K/K1) ⊂ G
and Ψ : S(G)→ S(K/k) be the map given by

H ⊂ G 7→ k ⊂ KH ⊂ K.

Theorem 11.12 (Fundamental theorem of Galois theory). The maps Φ ◦ Ψ and
Ψ ◦ Φ are identity maps. Therefore, Φ and Ψ induces bijections between S(G)
and S(K/k). Moreover, under this bijection a normal subgroup N ⊂ G corre-
sponds to the Galois extension KN/k with Galois group G(KN/k) = G/N . Con-
versely, given k ⊂ L ⊂ K extension such that L/k Galois, we have G(K/L) and
G(K/k)/G(K/L) ∼= G(L/k).

Proof. Let k ⊂ K1 ⊂ K ∈ S(K/k) , then K/K1 is finite separable, therefore Galois,
then KG(K/K1) = K1 by proposition 11.9. This shows Ψ ◦ Φ = id. Let H ⊂ G be
a subgroup and let KH be the fixed field, then K/KH is Galois by corollary 11.8.
Note that H ⊂ G(K/KH) and [K : KH ] = |G(K/KH)|. So [K : KH ] ≥ |H|. On,
the other hand by theorem 11.5, [K : KH ] ≤ |H|. Therefore, G(K/KH) = H. This
shows Φ ◦Ψ = id.

For the second part we first show that K1/k is Galois iff G(K/K1) is normal in

G. Let σ ∈ G. Then KσG(K/K1)σ
−1

= σ(K).
�

Proposition 11.13. Let k be a finite field and let K/k be a finite extension, then
K/k is Galois and G(K/k) is cyclic.

Proof. �

12. Solvability by radicals

Proposition 12.1. Let k be a field L/k be the splitting field fo xm−1 over k, such
that (m, char(k)) = 1. Then,

(1) L/k is Galois.
(2) The roots of the equation xm−1 forms a cyclic subgroup ζm of L∗, therefore

L = k(ρ). Here ρ is a generator (called the primitive m-th root of unity) of
the group ζm.

(3) The map σ ∈ G(L/k) 7→ i(mod)m, where σ(ρ) = ρi is well defined ( does
not depend on the choice of the primitive root ρ ) injective homomorphism
into (Z/mZ)∗.

Proof. (1) L/k is finite normal being splitting field. Ther dervative of xm−1 is
m.xm−1 and (m, char(k)) = 1, it is non zero with a signle root 0. Therefore
, it is separable.

(2) Let ζm := {ρ1, . . . , ρm} be the roots. They are distinct. It is clear that
ζm forms a group under multiplication. It is a finite abelian group. Let
ρ ∈ ζm be an element such that it has maximum order l. Then any element
of ζm satisfies xl = 1. As it has atmost l solution therefore l = m and ζm
is cyclic.

(3) Any σ ∈ G(L/k) only permutes the root so σ(ρ) = ρi for some i which only
depends on σ and (i,m) = 1. For the last one we know that

σ(ρn) = ρ = ρin
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asσ is surjective. Therefore in = 1(mod m. Note that If θ be another
generator, then θ = ρj with (j,m) = 1. Then σ(θ) = σ(ρj) = ρij . So
ij = i(mod m). So the map G(L/k)→ (Z/mZ)∗, is a well defined injective
group homomorphism.

�

Remark 12.2. Note that in the previous proposition, we have G(K/k) is finite
abelian. Therefore it is solvable.

Definition 12.3. Let K1/k and K2/k be two finite extensions such that K1,K2 ⊂
N for some finite extension N/k. Then K1.K2 ⊂ N , is smallest subfield of N such
that K1,K2 is both contained in K1K2.

Remark 12.4. Let α1, . . . , αm, β1, . . . , βn ∈ N , such that K1 = k(α1, . . . , αm) and
K2 = k(β1, . . . , βn). Then it is easy (using the smallest subfield description) to
verify that K1.K2 = k(α1, . . . , αm, β1, . . . , βn).

Proposition 12.5. Let K1/k be a Galois extension, then K1K2/K2 is a ga-
lois extension. Moreover, there is a natural injective group homomorphism θ :
G(K1K2/K2)→ G(K1/k).

Proof. As K1/k is a splitting field of some seprable polynomial f(x) ∈ k[x], there-
fore K1K2/K2 is the splitting field of the same seprable f(x) over K2. So K1.K2/K2

is Galois. Let φ ∈ G(K1K2/K2), then φ fixes k. Moreover, K1/k is normal implies,
that φ(K1) = K1. So we get a homomorphism θ : G(K1K2/K2) → G(K1/k) such
that θ(σ) = σ|K1

. If θ(σ) = idK1
, as σ|K2

= idK2
, we get σ = id, so θ is injective.

�

Remark 12.6. If K2/k is Galois, then K1K2/k is Galois. Any g ∈ G(K1/k)
can be extented to g̃ ∈ G(K1K2/k) and G(K1K2/K2) ⊂ G(K1K2/k) is normal
subgroup. So g̃σg̃−1 ∈ G(K1K2/K2) for all σ ∈ G(K1K2/K2). This implies im(θ)
is normal subgroup. Blah blah.......

Definition 12.7. An extension K/k is called cyclic if it is Galois and G(K/k) is
cyclic.

Proposition 12.8. Let k be a field containing all m-th roots of unity for (m, char(k)) =
1 and let L/k be a splitting field of f(x) = xm − a, a ∈ k. Let α ∈ L be a root of
f(x). then L = k(α) and L/k is cyclic. If m is prime then L = k or [L : k] = m.

Proof. We have in L[x], f(x) =
∏m−1
i=0 (x−α.ρi), where α is any root of f(x) and ρ

is a primitive m-th root of unity., Moreover L = k(α) as k contains all m-th roots
of unity . since f is seprable we get L/k is Galois extension. Let σ ∈ G(L/k),
then σ(α) = α.ρi. Therefore we get a well defined (!) group homomorphism
θ : G(L/k) → Z/mZ with θ(α) = imod m. Kernel of this map is trivial . This
impliesG(L/k) is cyclic. Ifm is prime thsnG(L/k) = Z/mZ or the trivial subgroup,
therefore, the second assertion follows.

�

Proposition 12.9. Let k be a field containing all m-th roots of unity for m a prime
with (m, char(k) = 1. Let L/k be a cyclic extension of degree m. Then there exists
α ∈ k such that L is a splitting field of xm − α over k.
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Proof. Let ρ be a primitive m-root of unity and a is an integer. Let m|a, then

ρia = 1, therefore
∑m−1
i=0 ρia = m. If m does not divide a, then θ = ρa is again a

primitive m-th root of 1. Therefore
∑m−1
i=0 ρia =

∑m−1
i=0 θi = 0 as it is the m− 1-th

coefficient of xm − 1.
It is enough to show that there exists α ∈ L\k such that αm ∈ k. Then K(α)/k

is a nontrivial extension whose degree divides m, therefore it has to be equal to
m. So L = k(α). Since L/k is separable we have L = k(β) for some β ∈ L, then
the minimal polynomial of of Pβ(x) =

∏m
i=1(x − βi), with β1 = β. Since Galois

group is cyclic and acts transitively on {β1, . . . , βm}, therefore the action is by
cyclic permutation. So we can assume that there exists a generator σ ∈ G(L/k),
such that σ(βi) = βi+1 , 1 ≤ i ≤ m− 1 and σ(βm) = β1 = β.

Define for 1 ≤ j ≤ m,

αj :=

m−1∑
i=0

ρjiβi+1.

Note the following
m∑
j=1

αj =

m−1∑
i=0

βi+1(

m∑
j=1

ρji) = mβ1,

and αm just the sum of the roots so
∑m
j=1 αj /∈ k and αm ∈ k.So there exists a

1 ≤ j ≤ m− 1 such that αj /∈ k. Then

σ(αj) =

m−1∑
i=0

ρjiσ(βi+1) =

m−2∑
i=0

ρjiβi+2 + ρj(m−1)β1 = ρ−j
m−1∑
i=0

ρjiσ(βi+1) = ρ−jαj .

So σ(αmj ) = αmj . This implies αmj ∈ k. Thus we get the result.
�

Definition 12.10. Let k be a field. An extension K/k is calles simple radical
extension if there exists α ∈ K such that αm = a ∈ k,(m, char(k)) = 1 and
K = k(α).

An extension K/k is called a radical extension if there exists subfields k ⊂ Ki ⊂
K, such that K − 1 = k, Kn = K, Ki ⊂ Ki+1 and Ki+1/Ki are simple radical
extensions.

Remark 12.11. (1) If k ⊂ K ⊂ L and L/K and K/k both radical then L/k
is radical.indeed, let k ⊂ Ki ⊂ K, such that K−1 = k, Kn = K, Ki ⊂ Ki+1

and Ki+1/Ki are simple radical extension and let K ⊂ Li ⊂ K, such that
L−1 = K, Lm = L, Li ⊂ Li+1 and Li+1/Li are simple radical extensions.
Then the putting this towers together we get L/k is a radical extension.

(2) Any simple radical extension is finite separable. Therefore, radical extension
is finite separable.

(3) Let K/k be a simple radical extension with K = k(α), let N/K be the
splitting field of xm − αm over k, then N/k is a radical extension.

(4) L/k radical and N/L be any extension such that F ⊂ N be a subfield. Then
LF/F is radical. Therefore L1, L2/k radical then L1L2/k is radical.

Proposition 12.12. Let L/k be a radical extension. Then there exists an extension
M/L such that M/k is Galois radical.
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Proof. We will prove this by induction on [L : k]. If [L : k] = 1, then M = L = k.
Now suppose, for any radical extension L1/L2 such that [L1 : L2] < n, then there
exists M1/L2 Galois radical such that L1 ⊂M1. Now suppose [L : k] = n and L/k
be radical. If it is simple radical then we are done by one of the remark. If it is
not, then there exists k ⊂ L′ ⊂ L , such that L′/k is radical L/L′ simple radical
and [L : L′], [L′ : k] < n. Then, by induction there exists Galois radical M1/k such
that L1 ⊂ M1 and there exists α ∈ L such that αm ∈ L1, (mchar(k)) = 1 and
L = L1(α). Therefore αm ∈ M1 and if α ∈ M1 we are done. Else, let M/M1 be
a splitting field of xm − αm over M1. Thus M/M1 is Galois radical and mapping
α to any root of xm − αm in M lifts the inclusion L1 ⊂ M1 to give an injective
homomorphism L1(α) → M . Now M/M1 is Galois radical and M1/k is Galois
radical therefore M/k is Galois radical.

�

Proposition 12.13. Let L/k be a Galois radical extension. Then G(L/k) is solv-
able.

Proof. Let L1 = k ⊂ L2 · · · ⊂ Ln = L such that there exists αi ∈ Li+1,mi ∈ N,
such that Li+1 = Li(αi), α

mi
i ∈ Li, (mi, char(k)) = 1. Let m = m − 1.m2 · · ·n−1,

then (m, char(k)) = 1. Let N/L be the splitting field of xm−1 over L and let F ⊂ N
be the smallest subfield of N containing k and the roots of xm− 1. Then LF = N ,
F/k Galois radical extension with G(F/k) solvable, LiF contains all mi-th roots
of unity, (define L0F = k), Li+1F = LiF (αi) and they are Galois radical extnesion
with G(Li+1F/LiF ) abelian group. Let Gn−i := G(LF/LiF ), then Gj ⊂ G(LF/k)
, Gj ⊂ Gj+1 normal subgroup and Gj+1/Gj ∼= G(Lj+1F/LjF ). This implies
G(LF/k) = G(N/k) is solvable. But L/k is Galois, therefore G(L/k) is a quotient
of G(N/k) and we are done.

�

Proposition 12.14. Let L/k be Galois such that ([L : k], char(k)) = 1 and G(L/k)
is solvable. Then there exists M/L such that M/k is a radical extension.

Proof. Let G := G(L/k) and let G0 = {e} ⊂ G1 ⊂ . . . Gn = G be a solvable
series such that Gi is normal in Gi+1 and Gi+1/Gi ∼= Z/piZ, with p − i’s are
prime. Note that [L : k] = |G| ( as L/k is Galois), therefore (pi, char(k)) = 1.
Let m = p0.p2 . . . pn−1. Then (m, char(k)) = 1. Consider the splitting field N of
xm − 1 over L. Then N/L is Galois, so N/k is Galois. We will show that N/k
is radical extension. Let F ⊂ N be the smalles subfield containing k and roots of
xm − 1. Then F/k is Galois radical and LF = N and F contains all pi-th roots of
unity for all pi. Let Li := LGn−i . Then Li+1/Li is Galois extension with Galois
group Gn−i/Gn−i−1 ∼= Z/pn−i−1. Now Li+1F/LiF is Galois and the Galois group
is either trivial or Z/pn−i−1 and since LiF contains all pn−i−1-th roots of unity we
get Li+1F/LiF is Galois radical ( infact simple radical). Therefore LF/F is Galois
radical which implies LF/k is Galois radical.

�

Definition 12.15. Let f ∈ k[x], f is said to be solvable by radicals over k if the
splitting filed L of f over k is a subfield of a radical extension of k.

Theorem 12.16. Let f ∈ k[x], L splitting filed of f over k, such that ([L :
k], char(k)) = 1. Then L/k is Galois and moreover f is solvable by radicals over k
iff G(L/k) is solvable.
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Proof. Let β ∈ L and let Pβ be its minimal polynomial over k. Then deg(Pβ)|[L : k],
therefore deg(Pβ)) is not divisible by char(k). This shows that Pβ is separbale,
hence L/k is Galois. Now if f is solvable by radicals then L ⊂ N , such that
N/k is Radical. Infact we can choose N/k to be Galois radical. Then G(N/L) ⊂
G(N/k) is a normal subgroup as L/k is Galois and G(N/k)/G(N/L) ∼= G(L/k).
As N/k is Galois radical, therefore G(N/k) is solvable. Quotient of solvable group
is solvable. Therfore, we get G(L/k) is solvable. The only if part follows from
previous proposition.

�

Theorem 12.17. Let p be a prime. Then there exists an irreducible polynomial
f(x) ∈ Q[x] of degree p such that the Galois group G(L/Q) of the splitting field L/Q
of f is isomorphic to Sp. Therefore, for p ≥ 5, there exists irreducible polynomial
f of degree p ≥ 5 such that f is not solvable by radicals.

Proof. Claim 1 : For each prime p ≥ 3, there exists f(x) ∈ Q[x], irreducible, with
exactly p − 2 real roots. Threfore the Galois group of the splitting field of f is a
trnasitive subgroup of Sp containing a transposition.

Proof. �

�

13. Algebraic Closure

Definition 13.1. A field k is algebraically closed if any non constant f ∈ k[x] has
root in k. A field extension k̄/k is called an algebraic closure of k if k̄/k is algebraic
and k̄ is algebraically closed.

Proposition 13.2. Let k̄/k be an extension. Then the following are equivalent.

(1) k̄/k is an algebraic closure.
(2) k̄/k is an algebraic extension and any f ∈ k[x] irreducible splits over k̄.
(3) k̄/k is an algebraic extension and k̄ does not have any non trivial algebraic

extension.

Proof. (1) 1 implies 2 is trivial.
(2) 2 implies 3 : If α algebraic over k̄, then α is algbraic over k. Then the

minimal polynomial of α over k has all the roots in k̄ by 2, so α ∈ k̄.
(3) 3 implies 1 : Let f ∈ k̄[x] non constant, then the splitting field of f over k̄

is k̄ by 3, therefore f splits in k̄.
�

Corollary 13.3. Let L/k extension such that L is algebrically closed. Let k̄ :=
{α ∈ L|α algebraic over k}. Then k̄/k is an algebraic closure of k.

Theorem 13.4. Let k be a field , then there exists k̄/k which is an algebraic closure
of k.

Proof. New variables : Let

S := {(f, i)|f ∈ k[x] monic non constant , 1 ≤ i ≤ deg(f)}
XS := {xi(f)|(f, i) ∈ S} .

Let f(x) ∈ k[x], then

f = xn − a1(f)xn−1 + · · ·+ (−1)nan(f), ai(f) ∈ k.
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Here ai(f)’s r i-th symmetric polynomial on the roots of f(x). Let

σi(f) :=
∑

j1<···<jl

xj1(f) . . . xjl(f), ti(f) := σi(f)− ai(f).

Consider the ideal I := (tj(f))j,f ⊂ k[XS ]. Then I 6= (1). If not then there exists

r1, . . . , rN ∈ k[XS ], and ti1(f1), . . . , tiN (fN ) such that
∑N
j=1 rjtij (fj) = 1 in k[XS ].

Let L/k be the splitting field of f1, . . . fN . Then consider the homomorphism
ev : k[XS ] → L given by ev|k = id, ev(xj(fl)) the j-th root of fl and all the other
variables goes to 0. Then ev((tj(fl)) = 0 for approriate i’s and 1 ≤ l ≤ N . Which
is a contradiction as it gives ev(1) = 0.

Therefore there exists a maximal ideal m ⊂ k[XS ] containing I. Define k̄ :=
k[XS ]/m and let q : k[XS ] → k̄ be the canonical quotient map and let j : k →
k[XS ] → k̄. Then k̄/k is an algebraic closure. Indeed, k̄ is generated over k by
q(xj(f). Let f = xn − a1(f)xn−1 + · · ·+ (−1)nan(f) then

j(f) = xn−q(a1(f))xn−1+· · ·+(−1)nq(an(f)) = xn−q(σ1(f))xn−1+· · ·+(−1)nq(σn(f)) =

= q(

n∏
i=1

(x− xi(f)) =

n∏
i=1

(x− q(xi(f)),

so f splits in k̄ and and q(xi(f)) are algebraic over k.
�

Theorem 13.5. Let i : k → k̄ and i′ : k → k̄′ be two algebraic closures of k, then
there exists j : k̄ ∼= k̄′ isomorphism such that j ◦ i = i′.

Proof. Claim : Let L/k be an algebraic extension and K be algebraically closed
then any i : k → K can be extended to j : L→ K.

Proof of claim Let

P := {(L′/k, θ)|L′ ⊂ L, θ : L′ → K extension of i} .
Usual inclusion of subfields and extension of homomorphism gives P a non empty
poset structure. Let C be a chain then N := ∪(L′/k,θ′)∈CL′ is subfield of L con-
taining k and using θ′ we can construct an extension β : N → K of i. Therefore
there exists a maximal element (L′′/k, θ) in P . If L′′ 6= L, then there exists an
α ∈ L algebraic over L′′, therefore algebraic over k. As K is algebraically closed,
the minimal polynomial of α has all the roots in K, so fixing a root we can extend
θ to L′′(α)→ K. This contradicts the maximality.

Proof of the theorem There exists an extension of i′ given by j : k̄ → k̄′. This
is injective. Let α ∈ k̄′, then the minimal polynomial of α over k has all the roots
in k̄, so j is surjective.

�

14. Absolute Galois groups

Definition 14.1. Let k be a field. k is called sperabely closed if every separable
polynomial splits in k[x]. A separable closure of k is an algebraic extension K/k
such that such that every element of K is seperable over k and K is separably closed

Exercise 14.2. Show that the following are equivalent for a extension K/k.

(1) K/k is a seperable closure.
(2) K/k is a separable extension and any irreducible separable polynomial f(x) ∈

k[x] splits in K.
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(3) K/k is a separable extension and there does not exists any non trivial
seprable extension of K.

Theorem 14.3. Given any field k, there exists a unique ( upto a k-isomorphism)
a seprable closure ksep/k.

Proof. Let k̄/k be an algebraic closure. Then ksep :=
{
x ∈ k̄|x separable over k

}
.

Then ksep is seprable closure of k. Let L/k be a seprable extension an let K ′ be
a separably closed field. Then any homomorphism k → K ′ can be extended to a
homomorphism L→ K ′ (Exercise). Using this we get the uniqueness.(Exercise).

�

Let ksep/k be a separable closure of k. The absolute Galois group Gk of k is
defined as

Gk := {σ : ksep → ksep|k isomorphism} .
Let σ ∈ Gk and α ∈ ksep. Let L/k be the splitting field of the minimal polynomial
of α. Then L/k is Galois and σ|L : L → L an k automorphism. Therefore given
any L/k normal extension such that L ⊂ ksep. We get a homomorphism rL :
Gk → G(L/k). These homomorphisms are surjective indeed, we can extend any
σ ∈ G(L/k) to a k homomorphism to a k-embedding σ : L → ksep. By Zorn’s
lemma this can be extended to a k-homomorphism σ : ksep → ksep, which is
surjective (exercise).

Definition 14.4. Let I be a set with a partial order ≤. An inverse system (also
called a projective system) indexed by I is a collection of sets ( or groups or topo-
logical spaces) (Ai)i∈I together with maps ( of sets, groups, rings, or topological
spaces)

φij : Ai → Aj

for all j ≤ i such that φii = ida=Ai and for k ≤ j ≤ i we have φjk ◦ φij = φik.

Example 14.5. (1) Let p be a prime and Ai := Z/piZ for i ∈ N and φij :
Z/piZ→ Z/pjZ be the mod pj map for j ≤ i

(2) Let R be any ring Ai := R[x]/xi for i ∈ N. Similar transition maps.
(3) ksep/k seprable closure. Let I be the set of L/k finite Galois extension

such that L ⊂ ksep. The partial order is given by inclusion. By Galois
correspondence we have, whenever L ⊂ L′ such that L,L′ ∈ I, there exists
a surjective groups homomorphism G(L′/k) → G(L/k), whose kernel is
the normal subrgoup G(L′/L). This groups are finite , so it has a discrete
topology with respect to which these groups are topological groups. This can
be done for any extension K/k such that it is separable and normal but not
necessarily finite.

Definition 14.6. The inverse limit of the system (Ai, φij) is the set/group/ring/topological
space

lim
←i

Ai :=

{
(ai)i∈I ∈

∏
i

Ai|φij(ai) = aj , j ≤ i

}
.

If Ai’s are topological space then we give
∏
iAi the product topology ( that is

open sets are product of open sets of each Ai such that only finitely many are not
the whole space Ai) and lim←iAi subspace topology.
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Exercise 14.7. (1) Let R be any ring Ai := R[x]/xi for i ∈ N. Similar
transition maps. Then show that the map R[[x]] → lim←iAi given by
f(x) 7→ f(x) mod xi is a ring homomorphism.

(2) Let p be a prime and Ai := Z/piZ for i ∈ N and φij : Z/piZ → Z/pjZ be
the mod pj map for j ≤ i. Show that lim←iAi ∼= Zp.

Lemma 14.8. Let K/k be normal seprable. Let I be the set of L/k finite Galois
extension such that L ⊂ K. The partial order is given by inclusion. And let L/k ∈ I
, G(L/k) be the corresponding system of groups. Then the restriction map gives an
isomorphism

G(K/k) ∼= lim
←L/k∈I

G(L/k).

Proof. Let σ ∈ G(K/k) and let k ⊂ L′ ⊂ L such that L/k, L′/k ∈ I. Then
rL(σ) ∈ G(L/k) and rL′((σ) ∈ G(L′/k). Consider the restriction homomorphism
G(L/k)→ G(L′/k) which is surjective. Then rL(σ)|L′ = rL′(σ). So the restriction
homomorphism r : G(K/k) ∼= lim←L/k∈I G(L/k) is well defined. Let r(σ) = id,
then for any α ∈ K, there exists a finite Galois extension L/k which is a splitting
field of the minimal polynomial of α. Then r(σ)|L = id, therefore σ(α) = α.
This implies σ = id. So r is injective. Fro surjectivity, let σL ∈ G(L/k) for
L/k ∈ I satisfy compatibility confition. Then define σ(α) = σ|L(α) where L/k is
any splitting field of the minimal polynomial of α contaained in K. Because of
compatiibility of the σ|L’s this is well defined. �

Lemma 14.9 (Topological properties). Let K/k be a seprable normal extension.

(1) G(K/k) is compact.
(2) For every k ⊂ L ⊂ K such that L/k is normal and seperable, the restriction

map G(K/k)→ G(L/k) is surjective and continuous with kernel G(K/L).
(3) For every k ⊂ L ⊂ K such that L/k is finite Galois, the subgroup G(K/L)

normal open and closed.
(4) For the sub extension L/k finite Galois, gives a basis of open sets G(K/L)

at the identity. Therefore G(K/k) is totally disconnected.

Proof. (1) As G(K/k) is a closed subgroups of product of compact groups ,
therefore Tychonoff implies it is compact.

(2) The restriction map G(K/k) → G(L/k) is just projection map ( inverse
limit wise only those finite Galois extension that is inside L is , it is
projected).Therefore, surjective and continuous. The kernel is obviously
G(K/L). It is closed normal subgroup.

(3) it is obvious.
(4)

�

From now on any normal separable extension (even if infinite) will be called a
Galois extension. Let K/k be a Galois extension. Let SG denote the set of closed
subgroups of G := G(K/k) and let SK denote the set of sub extensions k ⊂ L ⊂ K.

Theorem 14.10 (Infinite Galois correspondence). Let K/k be Galois extension.
Then there exists an inclusion reversing bijection :

SG → SK

H 7→ KH
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k ⊂ L ⊂ K 7→ G(K/L).

Moreover under this correspondence closed normal subgroups corresponds to k ⊂
L ⊂ K such that L/k is Galois. The open subgroups corresponds to k ⊂ L ⊂ K
such that L/k is finite.

Proof. �

15. Hilbert Theorem 90

Theorem 15.1. Let K/k be a cyclic extension of degree n with Galois group G =
(σ). Then for any α ∈ K, trK/k(α) = 0 iff α = β − σ(β).

Proof. Let α = β − σ(β). Then trK/k(α) = (
∑n−1
i=0 σ

i(β) −
∑n
i=1 σ

i(β)) = 0. For
the converse, note that as K/k is Galois, therefore separable. The indepnedence of
character result implies that there exists θ ∈ K such that trK/k(θ) 6= 0. That is∑n−1
i=0 σ

i(θ) = 0. Now it is given that trK/k(α) =
∑n−1
i=0 σ

i(α) = 0. Let

f(θ) = αθ + (α+ σ(α))(σ(θ)) + · · ·+ (α+ σ(α) + . . . σn−1(α))(σn−1(θ)).

Then verify (done in class that) α = f(θ)/trK/k(θ)− σ(f(θ)/trK/k(θ)).
�

Theorem 15.2. Let k be a field of characteristic p.

(1) For any a ∈ k, the polynomial xp − x − a is either irreducible over k or
splits into linear factors over k.

(2) Let K/k be a cyclic extension of degree p, then K is a splitting filed of some
xp − x− a ∈ k[x].

Proof. (1) Let a ∈ k, and let K be a field containing one root say α of the
polynomial f(x) = xp−x−a. Then for any i ∈ Z/pZ, we get α+ i is also a
root of f(x). So all the roots of f(x) are α+ i, 0 ≤ j ≤ p− 1. Therefore K
contains all the roots of f(x). Now if f(x) have no roots ion k and suppose
f(x) = g(x).h(x), g(x), h(x) ∈ k[x] non constant. Then in the the splitting
field K of f(x) all the roots of f(x) and g(x) is there. Therefore there exists
A ⊂ Z/pZ proper non empty subset such that (α + j) for j ∈ A are the
roots of g(x), where n = |A| is the degree of g(x). Therefore the n − 1-th
coefficient of g(x) , which is −

∑
j∈A(α+ j) is in k. So −nα−

∑
j∈A j ∈ k.

This implies nα ∈ k and as n is a unit in k we get α ∈ k, which is a
contradiction. therefore f(x) is irreducible in k[x].

(2) Note that −1 ∈ k and TrK/k(−1) = 0. Therefore, there exists β ∈ K, such
that β − σ(β) = −1 or σ(β) = β + 1. Since K/k is Galois, therefore β /∈ k
and σi(β) = β+j for all 0 ≤ j ≤ p−1. Now σ(βp−β) = (β+1)p−(β+1) =
βp−β. Therefore a = βp−β ∈ k. So , β ∈ K is a root of f(x) = xp−x−a.
This has no root in k as β /∈ k. Therefore, f is irreudicble and k(β) ⊂ K
is the splitting field whose degree over k is p. But K/k has degree p so
K = k(β).

�

Definition 15.3. Let K/k be a Galois extension with Galois group G.

(1) A map α : G→ K∗ is called a 1-cocycle if α(σ ◦ τ) = α(σ).σ(α(τ)) for all
σ, τ ∈ G.
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(2) A map α : G → K∗ is called a 1-coboundary if there exists a β ∈ K∗ such
that α(σ)) = σ(β)/β for all σ ∈ G. (In this case dβ := α.)

Remark 15.4. Let K/k and G be as above. Then for β ∈ K∗, dβ is a 1-cocycle.
Indeed,

dβ(στ) = σ(τ(β))/β = σ(β)/β.σ(β)−1στ(β) =

= σ(β)/βσ(τ(β))/σ(β) = dβ(σ)σ(dβ(τ))

Definition 15.5. Let K/k be a Galois extension with Galois group G. Then

H1(G,K∗) := 1−cocycle
1−coboundary .

Theorem 15.6. Let K/k be a Galois extension with Galois group G. Then H1(G,K∗) =
•, i.e. every 1-cocycle is a 1-coboundary.

Proof. Let G := G(K/k). Let α : G → K∗ such that α(στ) = α(σ).σ(α(τ)). We
consider the the following function K → K given by x 7→

∑
σ∈G α(σ)σ(x). By

independence of characters and as α(σ)’s are non zero we get there exists a θ ∈ K
such that 0 6= δ =

∑
σ∈G α(σ)σ(θ). Then for any σ ∈ G we get

σ(δ) = σ(
∑
τ∈G

α(τ)τ(θ)) =
∑
τ∈G

σ(α(τ))σ(τ(θ)) =

=
∑
τ∈G

α(σ)−1α(σ)σ(α(τ))σ(τ(θ)) =
∑
τ∈G

α(σ)−1α(στ)σ(τ(θ)) =

= α(σ)−1
∑
τ∈G

α(στ)σ(τ(θ)) = α(σ)−1δ.

Let β = δ−1. Then α(σ) = σ(β)/β.
�

Corollary 15.7. Let K/k be a cyclic Galois extension with G(K/k) = (σ) and
[K : k] = n. Then for any α ∈ K, NK/k(α) = 1 iff α = σ(β)/β for some β ∈ K∗.

Proof. If α = σ(β)/β. Then

NK/k(α) =

n−1∏
i=0

σi(α) =

n−1∏
i=0

(σi(σ(β)/σi(β) = 1.

On the other hand let α ∈ K such that NK/k(α) = 1. Then the map α : G → K∗

defined by α(σi) =
∏i−1
k=0 σ

k(α) gives a 1 cocyle. But then it is a coboundary, that
is there exists β ∈ K, such that α = α(σ) = σ(β)/β.

�

Theorem 15.8 (Kummer extension). Let k be a field and let n ≥ 1 such that
(char(k), n) = 1 and assume that k contains a primitive n-th root of unity ζn. Let
K/k be a cyclic extension of degree n, then ∃α ∈ k such that K = k(α1/n).

Proof. Let ζn be a primitive n-th root. Then

NK/k(ζn) =

n−1∏
i=0

σi(ζn) = ζn = 1.

Therefore, there exists β ∈ K such that ζn = σ(β)/β. Therefore, σ(β) = ζn.β.
Then

σi(β) = σi−1(ζn.β) = ζn.σ
i−1(β) = ζn.ζ

i−1
n .β = ζinβ.
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Note that σ(βn) = σ(β)n = βn. Therefore βn ∈ k. Let K ′ = k(β) and as β /∈ k, we
get k(β)/k is a non-trivial extension contained in K. Now [k(β) : k] is the number
of distinct k -homomorphism k(β) → K. As each σi gives a k homomorphism
k(β) → K and they are distinct, therefore n ≤ [k(β) : k]. On the other hand
[k(β) : k] ≤ n. Therefore k(β) = K.

�
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