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Preface

These are my planned course notes on Functional Analysis offered to MMath 1st
year students.



Week 0

Agenda

0.1 Things we need to decide

Already decided marks distribution.

0.2 What do we do in this course?

Linear algebra coupled with topology.



2]
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Week 1

Normed Linear Spaces

Definition 1.0.1. Let E be a real or complex vector space. A norm on E is a function
|- || : E — R such that

1. Vv € E, ||v|]| = 0 with equality iff v = 0.
2. Y € E,VA € R, || AV|| = [Al||v]].
3. Vw,w € E, [[v+w]| < |[v|/+|/w||. This property is also called triangle inequality.

Definition 1.0.2 (Normed Linear Space). A Normed Linear Space (V, || - ||) consists
of a real or complex vector space V along with a norm || - || on V. If the norm is clear
from the context we may drop it from notation.

Exercise 1.0.3. Let (V, || - ||) be a Normed Linear Space. Then d;. (v, w) := |[v —w||
is a metric called the metric induced by the norm.

Proposition 1.0.4. Let (E, || - ||[e), (F,|| - ||r) be normed linear spaces. A linear map
T: E — Fis continuous iff it is continuous at 0.

Proof. Only if part is obvious we only need to show the if part. To establish con-
tinuity at w, given € > 0 we need to find 6 > 0 such that d|. . (w, W) < 6§ =
dj.: (Tw), TM')) < e. Since T is continuous at zero given € > 0, there exists
d > 0 such that ||T(v)||[r < € whenever |[v|[g < &. This  works because if 5 >
dj.je (W, W) = [[w —w'||e then

e>||Tw) —=TW)|lr
= d”.HF(T(W),T(W/)). [l

Proposition 1.0.5. Let (E, || - [[¢), (F, | - ||r) be normed linear spaces. A linear map
T: E — Fis continuous iff there exists C > 0 such that || T(v)||r < C||v||e,Vv € E.
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Proof. If part: We know it is enough to show continuity at zero and that follows
because ||v|[g < €/C = ||T(V)||F < €.

Only if part: Since T is continuous at zero we know 30 > O such that (x) |[v[[e <
b= [|[TW)|lr < 1.

Claim: |[T(V)|r < 2|[v]|e.

If not then 3w such that || T(w)|r > 2[[w|e. Let w' = 3H276HEW. Then |W'|e =
2 < 5. Therefore by ()
25
1> [|TW)|lf = =——||T(w
25 2[wlle

—_ > 1,

3wle 8
a contradiction! O

Definition 1.0.6. Let (E, | - ||e), (F, || - ||r) be normed linear spaces. A linear map T :
E — Fis said to be bounded if there exists C > 0 such that Vv € E, || T(v)||r < C||V||e.
The set of bounded linear maps from E to F is denoted by L(E,F) and £(E, E) is
denoted by £(E). In general £(E, F) is a subset of L(E, F).

Definition 1.0.7 (The Dual of a Normed Linear Space). Let E be a normed linear
space over the field K where K could be R or C. Then the space £(E, K) of bounded
linear functionals is called the dual space of E and is denoted by E*.

1.1 Hahn Banach Theorems: Analytic Forms

Theorem 1.1.1 (Hahn Banach: Analytic Form). Let E be a real normed linear space and
F C E be a subspace. Let ¢ € F*. Then there exists d € E* such that ||$|| = ||d]|.

Proof. Step 1: Let F; = F 4+ Rxo, where xo € E \ F. Let us denote a prospective
candidate for ¢(xo) by do. Then we must have

(%) + Adol < [|P|l[Ix + Mxoll, ¥x € F,A € R. (1.1)

These inequalities are equivalent to the following system of inequalities.

$(x) +Ado < [[d]l[[x + Axol[, Vx € F,A €R (1.2)
—((x) +Ado) < [|b]l[lx + Axoll, Vx € F,A €R (1.3)
Since — (P (x) +Ado) = d(—x) + (—A)do and || x +Axo|| = || — (x +Axo)|| the system of

inequalities given by (1.3) and (1.2) are equivalent. So, we can say that the system
of inequalities given by (1.1) is equivalent with (1.2). Considering the cases A < 0 in

(1.2) we get
8
d(y) = ldlllly —xoll < bo < [[d[[x +xo0f| = b(x),¥x,y € F (1.4)
[Lecture Notes of P.S.Chakraborty]
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So, we must show sup, (¢ (y) — |||y — xol]) < infeer([|P[[x + xol — P (x)) or
equivalently

dy) = lldlllly —xoll < Illlx +xoll = (x), ¥x,y € F. (1.5)

But this follows from ¢(x) + b(y) = b(x-+y) < |(x-+y)|| < [ollIx-+yll < |o]I([x-+
Xo||+][y—xol||) and we can take any element from the closed interval [sup yer (d(y)—
by — xo0l), infxer (||d]]x + %ol — $(x))] as do. Thus we have established the
existence of an extension ¢ of ¢ to F;. Also from we conclude that ||¢;(x)]] <
[ l1x]l, ¥ € Fr. In other words 1 < ]l Also [b1]] = sup,cr, e 161 (x)] >
SUP, cr. =1 |P1(x)[| = [|¢]. Therefore ¢; is a norm preserving extension of ¢.

Step 2: Let P = {(Fi, 1) : F C Fi,d1 € Fj, dilr = &, ||1]| = ||$[|}. This is
a POset with partial order given by (F}, d}) = (Fi, d1). Every chain in P has an
upper bound and therefore by Zorn’s lemma P has a maximal element, say (F, $).
We claim that F must be E else by applying step 1 to F we can obtain a further
extension contradicting the maximality. O

An analysis of the argument: First thing to note is, in the above argument step 1
is the real step. If you notice the argument carefully you will see whenever we have
used || - || itis actually ||$|||| - |- So, it makes sense to rewrite the argument using the
notation p(x) = ||$||||x|| and observe which properties of this function actually goes
into the argument.

Proof of| in new notation. Step 1: Let F; = F + Rxo, where xo € E\ F. Let us
denote a prospective candidate for ¢ (xo) by ¢o. Then we must have

d(x) +Ado < plx+Axo),Vx € F,A € R. (1.2")
Considering the cases A < 0 in (1.2') we get
¢(y) = ply —x0) < do <P(x +x0) —b(x),¥x,y € F (1.4)

Here we have used one property of the function p, called positive homogeneity,
meaning p(Ax) = Ap(x), VA > 0,x € E. To showwe must show that sup, ¢ (d(y)—
Py —x0)) < infier(p(x +x0) — d(x)) or equivalently

$(y) —ply —xo) <px+x0) —d(x),Vx,y € F. (1.5

But this follows from ¢(x) + d(y) = d(x +y) < px+y) < plx+x0) + ply —
Xo) because p satisfies triangle inequality and we can take any element from the
interval [sup, (¢ (y) — ply — xo0)), infxer(p(x + x0) — d(x))] as do. Thus we have
established the existence of an extension ¢ of ¢ to F;. Also from we conclude
that ¢ (x) < p(x),Vx € Fy.

Step 2: Let P = {(F1,$1) : F C Fi, 1 € Fi, d1lr = &, d1(x) < p(x),Vx € Fi}
This is a POset with partial order given by (F}, $7) > (Fi,d1). Every chain in P
has an upper bound and therefore by Zorn’s lemma P has a maximal element, say
(F, d). We claim that F must be E else by applying step 1 to F we can obtain a further
extension contradicting the maximality. O

[Lecture Notes of P.S.Chakraborty]
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Let us note that we have used two properties of the function p and those are

1. Triangle inequality/ subadditivity: p(x +y) < p(x) + p(y).

2. Positive homogeneity: p(Ax) = Ap(x), VA € R-o,x € E.

Look and behold just by changing notation we have proved.

Theorem 1.1.2 (Hahn Banach, analytic version 2). Let E be a real vector space and
p : E — R a positively homogeneous subadditive function. Let F C E be a subspace and
¢ : F — Ra linear map satisfying ¢(x) < p(x),Vx € F. Then ¢ admits an extension § to
E satisfying (x) < p(x),Vx € E.

In fact this is stronger than theorem (1.1.1)) in the sense that it implies theorem
(1.1.1). Let us see that.

Proof of theorem using theorem(1.1.2). Letp(x) = ||$]|||x||- Then ¢(x) < [d(x)| <
p(x),¥x € F. By theorem 41.1.2) we get an extension ¢ of ¢ such that $(x) <

p(x),¥x € E. Note that —p(x) = P(—x) < p(—x) = p(x),Vx € E. Therefore
(%) < p(x) = ||d]/|Ix]|- In other words ||d|| < ||d||. The other inequality required

to show ||| = ||| follows from

Ill= sup 1dX)I> sup [dX)= sup [p(x)| = |l N

x:x€E,|[x||<1 x:x€F,||x||<1 x:x€F,||x||<1

Is this version/generalisation of any use? This question could be annoying but
we won't hesitate to ask this. Later we will define topologies on vector spaces using
seminorms. Those will be locally convex spaces. Using this version we can show
existence of continuous linear functionals on locally convex spaces. But before do-
ing any of that let us obtain versions of these results in the complex case. To be able
to apply this result to complex vector spaces we need a simple observation that
relates a complex linear functional with its real part, a real linear map.

Lemma 1.1.3. Let E be a vector space over C.

(i) If f : E — R is an R linear functional, then f(x) = f(x) — if(ix) is a C linear
functional and f = Rf.

(i) If g : E — C s C linear f = Rgq and f is defined as above then f = g.

(iii) If € is a normed space and f, f are as in (i) then ||f|| = ||f||.

Proof. (iii) Suppose [f(x)| < ||f]|[|x]|, then

f(x) = Rf(x) <R < [ f1x]-
[Lecture Notes of P.S.Chakraborty]
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Also
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(=) < [IFI-

Hence [f(x)| < ||f]/|Ix]|-
Now assume |f(x)| < ||f]|[|x||. Choose 0 such that f(x) = e'°|f(x)|. Hence
[F(x) = f(e %) = Rf(e™%x) = f(e™**x) < ||flllle"*x]. O

Definition 1.1.4. A real valued sub-additive function p defined on a vector space E
is called a seminorm if p(« - x) = |alp(x),Va € K, x € E.

Lemma 1.1.5. Let p be a seminorm on a vector space E, then (a) p(0) = 0; (b) [p(x) —
P <px—y), ¥y € E (c)p(x) > 0.

Proof. (a) This follows from, p(0) =p(0-x) =0 - p(x) = 0.
(b) Note that

p(x)—py) =px—y+y)—py) <plx—y)+ply) —ply) =plx—y).

Interchanging x and y we obtain the other inequality p(y) —p(x) < p(x —y) needed
to complete the proof.
(c) We have p(x) = p(x —0) = [p(x) —p(0)] = Ip(x)| > 0. O

Theorem 1.1.6. Suppose E is a subspace of a vector space F, p is a seminorm on F and
¢ : B — Ka linear map such that |d(x)| < p(x),Vx € E. Then there is a linear functional
$ defined on F such that Gle = ¢ and |d(x)| < p(x).

Proof. Case 1 (K = R): We have p(—x) = p(x) and we are done by theorem (1.1.2).

Case 2 (K = C): Let ¢; = R, then there exists real linear ¢; on F such that
$1le = &1 Let (x) = d1(x) —id1 (ix), then $|e = ¢. Finally givenany x € F,FA € C
such that A| = 1, Ap(x) = |p(x)|. We have,

[B(xX)] = d(Ax) = d1(Ax) < p(Ax) = p(x).
[]

Corollary 1.1.7 (Hahn-Banach Theorem). Let E C F be normed linear spaces and
¢ : E — C a continuous linear functional then there exists a continuous linear
functional ¢ : F — C such that ¢ = ¢ and ||d]| = ||P]|.

Proof. Take p(x) = ||¢||/|x|| and obtain ¢ such that || < p(x). This means ||¢| <
||| We have argued the other inequality required to prove equality several times.
O]

[Lecture Notes of P.S.Chakraborty]
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Week 2

Applications of Hahn-Banach theorem

Corollary 2.0.1 (Corollary to Hahn-Banach Theorem). Let E be a normed linear
space and x € E. Then there exists x* € E* such that x*(x) = ||x||, ||x*|| = 1.

Proof. Let F be the span of x and ¢ : F — K be the linear functional given by ¢(Ax) =
Allx||, VA € K. Then ||¢|| = 1. Let x* be a norm preserving extension of ¢. O

Corollary 2.0.2 (Corollary to Hahn-Banach Theorem). Let E be a normed linear
space and E* it’s dual. Then the norm of x € E satisfies,

[x[| = sup{l < x*,x > | : [|x*]| < 1},
where < x*, x > denotes x*(x).

Proof. Let x € E, then for any x* € E* with ||x*|] < 1, we have | < x*,x > | <
Ix*||lIx]| < [|x||. This shows that

Ix|| < sup{] <x*,x > :|]x*|| <1}

For the other inequality using the Hahn Banach theorem obtain x* of norm one such
that x*(x) = ||x||. O

Now that we have shown that E* is a nontrivial space it makes sense to recognise
one crucial property enjoyed by duals of normed linear spaces, namely complete-
ness. Stefan Banach initiated systematic study of these spaces and he called them
B spaces. Frechet started calling them Banach spaces. Let us officially record the
definition.

Definition 2.0.3 (Banach Space). A complete normed linear space is called a Banach
space

Proposition 2.0.4. Let E be a normed linear space and F be a Banach space. Then
L(E, F) is a Banach space. In particular E* is a Banach space.
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Proof. Let {T,} be a Cauchy sequence in £(E,F). Then Ve > 0,3N such that ||T,, —
Tm|| < €,¥n,m > N. Then for any x € E,

| Tax — Tix|| < €]|x|| forn, m > N. (2.1)
Using completeness of F we get lim T,,x = Tx. Also
T(ox 4+ By) = lim T, (ax + By) = lim T,y (x) + BT (y) = o«T(x) + BT (y).
Therefore T is linear and it is bounded because
ITE) = lim [|Ta (x)]| = lim [|Tn (%) + (Ta(x) = Tn D < (e + [[TaD]Ix]I-

Letting m tend to infinity in (2.1) we get ||T,, — T|| < e,¥n > N. Thus T =lim T, €
L(E, F) showing completeness of £(E, F). O

Proposition 2.0.5. Let E be a Banach space. A subspace F C E is complete iff it is
closed.

Proof. If part: Let {x,} C F be a Cauchy sequence. Then using completeness of E
we know limx,, = x for some x € E. Since F is closed limx,, = x € F. Thus F is
complete.

Only if part: Let {x,} C F be converging to x. As F is complete x € F. Therefore
Fis closed. O

Exercise 2.0.6. Show that a finite dimensional subspace of a normed linear space is
always closed. Hint: Any two norms on a finite dimensional space are equivalent.

2.1 Canonical embedding into second dual

Definition 2.1.1. Let j¢ : E — E** be the map defined by je (x)(x*) =< x*,x >. Then

lie(x)]| = sup |<x*x>|=]x|.

x*:||x*||=1

Therefore jg is an isometric embedding of E into E**, often referred as the canonical
embedding of E into E**. The norm closure of jg (E) is the completion of E. We say
E is reflexive if j is an isomorphism.

Proposition 2.1.2. Let E be a normed linear space. Then the completion of E is a
Banach space.

Proof. The norm closure of j (E) is the completion of E. Being closure of a subspace
it is a complete normed linear space or which is same as a Banach space. O

[Lecture Notes of P.S.Chakraborty]
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Remark 2.1.3. Can there be a non-reflexive normed linear space E such that there is
an isometric isomorphism T € £(E, E**), i.e., an isomorphism T satisfying || T(x)|| =
x|, ¥x € E? A counter example was given by Robert James. It is in his honour we
denote the canonical embedding by j.

Definition/Proposition 2.1.4. Let E, F be Banach spaces and T € L(E,F). Then T* :
F* — E* defined by T*(¢)(x) = (¢ o T)(x) defines a bounded linear map, called the
adjoint of T with || T*|| = ||T||. Also If = Ig-, where I¢, I¢- be the identity mappings
of E, E* respectively. If S € £L(F,G) then (SoT)* =T* o §*.

Proof. Let ¢ € F* then

[T ()| = sup{IT*(P)X):x € &, ||Ix|| < 1}
= sup{l¢(T(x))l:x € E, []x]| < 1}
< [T

Therefore || T*|| < ||T||. We give two proofs of the other inequality ||T|| < || T*||.

First proof.

T sup{||T(x)| : x € E,||x]| < 1}
sup{lp(T(x))|: x € E,p € F, |Ix||, [|[ ]| < 1}
sup{[|T*(d)|| : b € F*, || b]| < 1}

(I O

NN

Second proof. Let x € E, ¢ € F*. Then we have

T7(e(x))(P) =je () (T ) = T* () (x) = d(T(x)) = jr(T(x)) ().

In other words
T** Oj]:_ ZjFOT. (22)

In categorical parlance this means j is a natural transformation. (Soon we will elab-
orate on this.) Therefore,

ITIl = sup TG = sup [[HTO) = sup [TTGNI < sup  [T™(x™)|| = [T

XEBg XxEBg XEBg X**EB g«

Using [|T*[| < [|T]| for T* we get [|T**|| < [[T*|. Thus |[T|| < [|T* 0

Let us look back and reflect on what have we done just now. To any normed
linear space E we have associated a normed linear space, namely E*. Also to any
T € L(E,F) we have associated a T* € L(F*, E*). This association satisfies two
more properties, (i) If = Ig- and (ii) S € L(F,G) then (So T)* = T* o G*. Now in
mathematics whenever some structure occurs frequently we introduce terminology
so that we can talk about the structure and investigate its properties. In this case
the relevant structure is of categories and functors.

[Lecture Notes of P.S.Chakraborty]
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2.2 Categories and functors

Definition 2.2.1 (Locally small category). A locally small category € consists of
a class Ob(C) called objects of € and given any two objects A,B € Ob(C), a set
More(A, B) called morphisms of €. When there is no scope for confusion we will
drop € from the notation More. If f € Mor(A, B), then we may also write f: A — B
or A 5 B. We will denote Mor(A, A) by Mor(A). Given A,B,C € Ob(C), there
is a map o : Mor(A,B) x Mor(B,C) — Mor(A, C) called composition and for
each A € Ob(C) a morphism [, € Mor(A), called the identity morphism of A
such that Vf € Mor(A,B),g € Mor(B,C),Vh € Mor(C,D) we have o(o(f,g),h) =
o(f,o(g,h)) and o(Ia, f) = f = o(f, Ig). We denote o(f, g) by g o f. In this notation
the conditions become associativity ho (gof) = (hog)ofand foly =f=1Igof.

Example 2.2.2. The category Sets has sets as objects and functions as morphisms.

Example 2.2.3. The category Gp has groups as objects and group homomorphisms
as morphisms. The usual composition of functions define composition.

Example 2.2.4. Let G be a group. Then we can define a category with only one
object * and Mor(x) = G. The identity element of G plays the role of I, while
the group multiplication defines the composition. This example shows morphisms
may not be functions. Also in a sense the notion of category generalises the notion
of groups.

Example 2.2.5. The category Nlsk the category of normed linear spaces over K has
normed K vector spaces as objects and bounded linear maps as mrphisms.

Example 2.2.6. The category Ban has Banach spaces as objects with Mor(E,F) =
L(E, ).

Example 2.2.7. The category Ban,; has Banach spaces as objects with Mor(E,F) =
{Te L(EF) [T < T

Definition 2.2.8. Let C, D be categories. A covariant (contravariant) functor F: € —
D associates to an object A € Ob(C) an object F(A) € Ob(D) and to a morphism
f € More (A, B) an element F(f) € Morp (F(A), F(B))(F(f) € Mory (F(B), F(A)) such
that

1. For all f, g so that the composition g o f is defined we have F(g) o F(f) = F(go
f)(F(f) o F(g) = F(g o f)).

2. Forall A € Ob(C),F(Ia) = I(a).
Covariant functors are often called functors.

In this terminology we can state what we have already proved.
[Lecture Notes of P.S.Chakraborty]
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Example 2.2.9. The dualization functor * : Nlsx — Nls is the contravariant functor
sending E € Ob(Nlsk)toE*and T € L(E, F) to T*. Since dualization is contravariant
applying it twice we get the covariant functor second dual.

Definition 2.2.10. Let F,G : ¢ — D be functors. Then a natural transformation
n: F — G associates a morphism ny € Morg(F(A), G(A)) for each object A of € so
that for each f € More(A, B) we have g o F(f) = G(f) ona. This is also expressed
by saying the following diagram commutes.

)
(f)
F(B) —- G(B)

-
—
-
9]

Example 2.2.11. The James map gives a natural transformation j : Id — *x. We
have verified the relevant condition in (2.2).

2.3 Reflexive Banach spaces

Proposition 2.3.1. A closed subspace of a reflexive Banach space is reflexive.

Proof. Let F C E be a closed subspace with i : F < E the inclusion map. Let
y** € F**. We have to exhibit y € F such that jr(y) = y**. Since E is reflexive there
is x € E such that i**(y**) = je(x). It is enough to show that x € F. In other words
i(x) = x. Because then 1"*(y**) = je(x) = je o i(x) = 1**(jr(x)). If we can show i**
is one to one then we will get y** = j(x). So we need to show two things, (i) x € F
and 1** is one to one.

Proof of x € F. Suppose x ¢ F. Then by Hahn-Banach there exists x* € E* such that
x*(F) = 0 or equivalently i*(x*) = 0 and x*(x) = 1. We have the following chain of
equalities

1=&5%%) = (ex),x") = {7 (y™),x") = Y™, 1" (x")) = 0!

This contradiction shows x € F. ]

Injectivity of i**.Let y* € F* be arbitrary and x* be a norm preserving extension of y*,
in other words (x*,i(y)) = (y*,y), Yy € F. So, (i*(x*) —y*,y) = (x*, i(y)) —(y*,y) =
0,Vy € F. Thus y* = i*(x*). In other words i* is onto. Suppose i**(z**) = 0 for some
z** € F**. Then for all x* € E* we have (z**,1*(x*)) = 0. Since i* is onto, this means

Proposition 2.3.2. Let E be a Banach space. Then E is reflexive iff E* is reflexive.
[Lecture Notes of P.S.Chakraborty]
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Proof. Only if part: Let E be reflexive. We have to show every x*** € E*** is of the
form je-(x*). So, given x*** define x* by

(x*,x) = (x**,je(x)), Vx € E. (2.3)

k% >k

Claim: jg«(x*) = x

Proof of claim. We have to show (x***,x**) = (jg-(x*),x**), ¥x** € E**. So, let x** €
E** be arbitrary. Then using reflexivity of E we get x** = jg(x) for some x € E. The
following chain of equalities

show x*** = jg.(x*). H

If part: If E* is reflexive then by the only if part E** is reflexive. By proposition
(2.3.1), je (E) is reflexive. Therefore so is E. O

Proposition 2.3.3. Let E, F be isomorphic Banach spaces. Then E is reflexive iff F is
reflexive

Proof. 1t is enough to show one of the implications because the other follows by
symmetry. We will show the only if part. Let T : E — F be an isomorphism. Then
T : E* — F* is an isomorphism. Since James map is a natural transformation
we have T** o jg = jr o T. The left hand side is surjective because E is reflexive.
Therefore the right hand side must be surjective as well. Since T is an isomorphism
this implies jr is surjective. O

2.4 Duals of some Banach spaces

Proposition 2.4.1. Let ¢y = {{x} C R:limx,, = 0} be the space of sequences of real
numbers converging to zero. This is a Banach space with sup-norm. The dual of c,
is linearly isometrically isomorphic with £;.

Proof. Lete!™ = {e](f)} € co where e,&“) = 5,k is the Kronecker delta. These e™)’s do
not form a Hamel basis however an arbitrary x = {x,,} € ¢, can always be expressed
asx = Y % xne™ =lim, Y%, x,e(™). Here the limit converges in the topology
of ¢p. Any bounded linear functional ¢ € c satisfies

where ¢, = p(e(™).

Claim: {¢pn} € &y, || = 2, [dnl-
[Lecture Notes of P.S.Chakraborty]
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Proof of claim. We denote by sgn the signum function given by sgn(x) = 1forx > 0,
sgn(x) = —1 for x < 0. For each N let x'N) € B, the unit ball of ¢y, be the sequence

Ny ) sgn(dn)if 1 <n <N
X =
" 0 otherwise

Then for all N we have

N
D dal = dx™) = ™M < [bIX™N ] = (4]
n=1

Since this happens for all N we get {¢n} € {3 and }_, [Ppn| < ||$]]. On the other

hand
k k
b (x)| = Ili]Ing XnPn| < hmZ Xnlldn] < [x] Z b

shown ||| < X_ |dn]| the other inequality required to show ||| = > |dn]. O

We have established a linear isometry @ : ¢* 3 ¢ — {d,} € {;. Only thing that
remains to be shown is this is onto. But that is obvious because given any {$,} € {;
we can define ¢ € c¢* as ¢(x) = (limxn)Po + Y o1 Xndn. This series converges
because {x,,} is bounded and }_|$n| < co. Clearly @ () = {dn}. H

Proposition 2.4.2. Let ¢ = {{x,} € R : limx,, exists } be the space of convergent
sequences of real numbers. This is a Banach space with sup-norm. The dual of c is
linearly isometrically isomorphic with £;.

Proof. Let e™ = {ek '} € ¢o where ek = On is the Kronecker delta and 1 be the
constant sequence 1. Then an arbitrary x = {xn} € c can always be expressed as
X =Xl 4+ 3%, (xn — x0)e™ = xo1 + limy. "X _ (xn — xo0)e™ where xo = lim x,,.

Here the limit converges in the topology of c because lim [x, —xo| = 0. Any bounded
linear functional ¢ € c* satisfies

k k

d(x) = xoP( 1+hmZ n—xo0)d(e™) =xod( 1+11mZ n—X0)bn

where ¢, = ¢p(el™). Since ¢y C ¢, Pl., is a bounded linear functional. Therefore
{pn)2_; € £; and we can legitimately rearrange terms to write

d)(X) = XO((b(l) - Z (bn) + an(bn = X'O(I)O + ancbnr
n=I1

where ¢o = ¢(1) — 375 dn. Therefore [p(x)] < [[x[|(Idol + 33y [dnl).

Claim: [ = 3o [nl-
[Lecture Notes of P.S.Chakraborty]
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Proof of claim. We denote by sgn the signum function given by sgn(x) = 1forx > 0,
sgn(x) = —1 for x < 0. For each N let x'N) € B, the unit ball of ¢y, be the sequence

(N) sgn(dn) if 1 <N <N
X =]
b sgnd, otherwise

Then for all N we have

N [e9)
1> Al + (sgndo) Y dal = 10N < D)X MN ] = (1))
n=0

n=N+1

Since this happens for all N and limy ) 5 .7 &n = 0, we get 3 7 o [bnl < |||
We already have shown ||¢|| < Y5, [dn|. Therefore ||d|| = 3 |pnl. O

We have established a linear isometry @ : ¢j 3 ¢ — {$n} € {;. Only thing that
remains to be shown is this is onto. But that is obvious because given any {$,} € {;
we can define ¢ € cj as ¢(x) = ), xndn. This series converges because {x,,} is
bounded and }_|$pn| < co. Clearly @ (¢d) = {dpn}. O

Proposition 2.4.3. The spaces c and ¢y cannot be linearly isometrically isomorphic.

Proof. Let a be a real number less than 1/2 in absolute value. Then a = %((a + %) +
(a— g)). By doing this for each component for sufficiently large n we can conclude
that every x € co of norm less than or equal to one can always be expressed as
x = 3(y + z) with ||y[, ||z]| < 1,y,z € ¢, different from x. But 1 cannot be written
as %(a +b) with a # 1 # b, |al, [b| < 1. Therefore 1 cannot be expressed as %(y +z)
with ||y, ||z|| < 1,y,z € c different from 1. Now in case we had a linear isometric
isomorphism T : ¢y — ¢ then from a decomposition of T~'(1) we would have
obtained one for 1! O
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Week 3

Geometric Formulation/Meaning of
Hahn-Banach Theorems

3.1 The Minkowski functional

Definition 3.1.1. Let E be a vector space and A C E a subset. We say A is absorbing
if every x € E lies in some t - A for some t = t(x) > 0. Note that an absorbing set
always contains zero. We say that A is balanced if x € A, [A| < T implies Ax € A.

Definition 3.1.2. The Minkowski functional of an absobing set A is defined by
pa =inf{t > 0: t'x € AL
Theorem 3.1.3. Let p be a seminorm on a vector space E. Then A = {x : p(x) < 1}isa

convex, balanced, absorbing set and p = pa.

Proof. Only thing we need to verify isp = pa. If x € Eand s > p(x) then s™'x € A.
Therefore pa(x) < p(x). On the other hand if 0 < t < p(x), thent 'x ¢ A. Hence

p(x) <palx). O

Definition 3.1.4. A vector space E endowed with a topology is called a topological
vector space if it is Hausdorff and the operations of addition and scalar multiplica-
tion are continuous.

Theorem 3.1.5. Let A be a convex absorbing subset of a vector space E and p » its Minkowski
functional. Then

1. pa is subadditive, i.e., pa(x +y) < pa(x) +paly), Vx,y € E.
2. pa is positively homogeneous.

3. If A is balanced then p A is a seminorm.
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4. If E is a topological vector space and A is open then A ={x € E: pa(x) < 1}.

Proof. (1)For all € > 0 we have A, psuch that pa(x) < A < pa(x)+€,paly) < p<
paly) +eand %, ¥ € A. The convexity of A implies

x+y A x Hy

= = €A
Adpu A+pA A+pp

Therefore pa(x +y) < A+ 1 < pax) +pal(y) + 2e. Since € is arbitrarily small, we
obtain subadditivity.

(2), (3) Easily follows from the definition.

(4) Let x € A. There exists an open neighborhood V of origin such that x4V C A.
Since scalar multiplication is continuous there exists € > 0 such that e.x € V. Then
(1 + €e)x € A. Therefore pa(x) < (1+ e)f1 < 1. Conversely suppose that x € E
satisfies pa (x) < 1. Then there exists € > 0 such that m €Aand pa(x)+e< 1.

Exploiting the convexity of A we get x = (p(x) +¢€) SoTe T (1—-p(x)—e)0eA. O

Theorem 3.1.6. Let E be a topological vector space over R and A be a convex open neigh-
borhood of the origin. Let xo ¢ A, then there is a hyperplane separating x, from A, in other
words there is a continuous linear functional { € E* such that

Uxo) =Tand l(x) <1, Vxe€A.

Proof. Ina TVS scalar multiplication is continuous and A contains the origin. There-
fore given any x € E, the sequence x/n converges to 0, hence eventually enters the
open neighborhood A. This shows that A is absorbing. Let pa be the Minkowski
functional of A. Then by theorem we know that p, is subadditive, pos-
itively homogeneous and A = {x € E : pa(x) < 1}. Since xo ¢ A, we have
PA(x0) = 1. On the one dimensional space spanned by x, define {(Axy) = A. Then
for A > 0, {(Ax) = A < pa(Axo). If A < O, then £(Axg) = A < 0 < pal(Axp). In
any case for any x from the subspace spanned by x, we have {(x) < pa(x). By
theorem we can extend { to a linear map denoted by the same symbol { on E
such that {(x) < pa(x),Vx € E. Then { is continuous because if x € (—A) N A, then
—1<l(x)< 1. O

Theorem 3.1.7. Suppose A and B are disjoint nonempty convex sets in a topological vector
space E. If A is open there exists € E* and v € R such that

Rp(x) <v <RP(y),Vx € A, Vy € B.

If the scalar field is R then R = ¢.

Proof. We will first do the case where the scalar field is R. Fix ap € A and b, € B.
Putxp = bp—apand C = A—B+x,. Then C is open because it is a union of open sets
A —b+x0,b € B. Clearly C is convex and contains the origin. Also xy € C, because
A and B are disjoint. Using theorem (3.1.6)) obtain a continuous linear functional ¢
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such that ¢(xp) = 1 and ¢p(x) < 1,vx € C. If a € A,b € B, then db(a—b + x¢) =
d(a) — ¢(b) + 1 < 1. Therefore, p(a) < $(b). Lety = inf{d(b) : b € B}. Then
¢(a) <7y,Va € A. Since A is open we must have ¢p(a) < y,Va € A.

If the scalar field is C, there is a continuous real linear map ¢, satisfies the asser-
tion. If ¢ is the associated complex linear map whose real part is ¢, then ¢ € E*
and does the job. O

Definition 3.1.8. A topological vector space is said to be locally convex if every
point or equivalently origin has a neighborhood basis consisting of convex open
sets.

Corollary 3.1.9. Let B be a closed and convex subset of a locally convex space E and
Xo ¢ B then there exists ¢ € E* such that ¢(xo) < inf{d(x) : x € B}.

Proof. Let A be a convex neighborhood of x, disjoint from B. Now apply theo-
rem (3.1.7) O

Lemma 3.1.10 (Topological lemma). Let E be a topological vector space, C C E be a
compact set and D C E be a closed set. Then C + D is closed.

Proof. Since you are familiar with nets we will prove this using nets. Let {x +
Yataca € C+D be a convergent net with lim, (x4 +y«) = z. Since C is compact there
exists a subnet {x} converging to some x € C. Thenlimg ypg = limg(xg+ypg—xp) =
z—x € D.So,wehavez=x+y € C+D. O

Theorem 3.1.11. Let E be a locally convex space. Suppose A, B C E are convex sets with
A compact and B closed, A N B = (. Then there exists a linear continuous map ¢ : £ — K
and o, 3 € R such that

Ro(x) <a< P <RO(Y),Vx € A, Vy € B.

Proof. Consider the convex set C = B — A. By the topological lemma C is closed
and 0 ¢ C, because A N B = (). Since E is locally convex there exists a convex open
D C E\ C containing the origin. In particular C N D = (). By theorem we get
a continuous linear map ¢ € E* and v € R such that

Rp(d) <y <RP(c),vd € D,Vc € C.

Since 0 € D,y > 0. The inequality Rd(c) > v, Ve € C gives RPp(b) — RPp(a) > v >
0,Vb € B,Va € A. Let § = inf,eg RP(b), « = sup, ., RPp(a). Then B > « + vy and
we are done. O
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3.2 Markov-Kakutani fixed point theorem

As a cute application of theorem (3.1.11) we discuss a proof of Markov-Kakutani
fixed point theorem for locally convex spaces due to Dirk Werner.

Theorem 3.2.1 (Markov-Kakutani fixed point theorem). Let C be a compact convex
set in a locally convex space E. A continuous map T : C — C is said to be affine if
T(Ax+(1—=A)y) =AT(x)+ (1 —=A)T(y), Vx,y € C,VA € [0, 1]. Every commuting family
{Ti}ier of continuous affine endomorphisms of C has a common fixed point.

Lemma 3.2.2. Let C be a compact convex set in a locally convex Hausdorff space E and let
T: C — C be a continuous affine transformation. Then T has a fixed point.

Proof. Let A ={(x,x) : x € C} be the diagonal in C and I' = {(x, Tx) : x € C}. If T has
no fixed point then ANT = (). Both A and I" are compact convex sets in E x E. By
the Hahn-Banach theorem we get continuous linear functionals ¢y, ¢, and
&, B €R,x < 3 such that

R(p1(x) + d2(x)) < o0 < B < R(P1(y) + d2(Ty)).

Consequently (o (Tx) — ¢o(x)) > p — a > 0. Iterating this inequality we get
R(P2(T™x) — d2(x)) = n(B — «) — oo for arbitrary x € C. This makes the sequence
MR, (T™(x))}n unbounded contradicting the compactness of R, (C). H

Proof of Markov-Kakutani fixed point theorem. Let C; be the fixed points of T;. Then
Ci # 0, Cy is compact and convex. We need to show NC; # . But that will follow
once we establish finite intersection property. Since T;T; = T;T;, T;(C;) C Cj. Hence
Tilc; has a fixed point by lemma. In other words C; N C; # (). An obvious induction
shows NierCi # 0,V finite F C 1. O

3.3 Weak topology

Definition 3.3.1 (Weak topology determined by a family). Let {X,}xca be a collec-
tion of topological spaces and X a set. Suppose we have a collection of functions
{fa : X = XgJaea. Then the weak topology determined by this data is the weakest
topology on X that makes all the f,’s continuous.

Remark 3.3.2. The collection {ﬂ{‘:ﬁ’gg (UgmeN,oty...., 0 € A, Uy, € Xg, is open Vi}
is a basis for the weak topology on X.We have the following characterisation of net
convergence in weak topology. A net {xg} converges in weak topology to x € X iff
Vo € A, limg fo(xpg) = fo(x). A function f : Y — X from another topological space
Y to X is continuous iff f, o f: Y — f is continuous for all «x € A.
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Example 3.3.3 (Product topology:). Let {X«}«ca be a collection of topological spaces
and
X=]]Xa={x:A = UseaXalVa € A, x(x) € Xq}.

This set exists by axiom of choice. Let 7ty : X — X, be the map 7, : x — x(«). Then
the weak topology determined by the family {7ty : X — X}«ea is called the product
topology on [ | X«. A net{x,},cr C [ X« converges to x iff x, (&) — x(«), Vor € A.

Exercise 3.3.4 (Characterization of products by universal properties). The product
topological space X satisfies two properties.

1. Suppose Y is a topological space and for each « € A we have a continuous
function g4 : Y — X4. Then there is a continuous function g : Y — X such that
Ty 09 = (o, V.

2. Let Z be a topological space so that for each o € A we have continuous maps
P« : L — X, and whenever we have continuous maps g, : Y — Xg, Ve,
there exists unique g : Y — Z satisfying py 0 g = go, Vot € A. Then Z is
homeomorphic with X. In other words this property characterises product

topology.

Definition 3.3.5. Let E be a K-vector space and A C L(E;K) a collection of linear
maps. Then the weak topology on E determined by this family is denoted by
o(E;A). So whenever we talk about the space o(E;A) we mean E endowed with
the weak topology determined by A. In particular if E is a topological vector space
and E* is the collection of continuous linear functionals on E then o(E; E*) is called
the weak topology on E. Also each x € E determines a linear map ¢, on E* given
by ¢y : x* = x*(x). Then o(E*;{dy : x € E}) is called the weak* topology on E*.

Remark 3.3.6. 1f E is a normed linear space then o(E*;je (E)) is E* with weak* topol-
ogy.

Theorem 3.3.7 (Mazur). Let E be a locally convex space and K a convex subset of E. Then
K is weakly closed if and only if it is closed.

Proof. An arbitrary subset of E is closed provided it is weakly closed. So, we only
need to show that K is weakly closed assuming it is closed. If possible let x, be a
point in the weak closure of K which is not in K. Then there is a net x, € K such that
Vi € E*, d(xa) — P(xo). At the same time by corollary there exists ¢ € E*
such that ¢(xo) < inf{d(x) : x € K}. Clearly these two contradict each other because
{d(x«)} can not converge to d(xo). m

Theorem 3.3.8 (Banach-Alaoglu Theorem). Let E be a Banach space, then Bg- the closed
unit ball in E* is weak™ compact.

Proof. For x € Elet By = {z € C: |z] < ||x]|}. Then by Tychonoff’s theorem B =
[ Iice Bx is compact. It suffices to show that the unit ball in E* can be embedded
in B. Let ¢ : Bg- — B be given by ¢(x*) = (< x*,x >). Then clearly ¢ is one to
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one. To show Be- is compact it suffices to show that ¢~ is continuous and ¢ (Bg-) is
closed. ¢ is continuous because by definition of weak* topology if ¢(x?) is a net
converging in weak* topology to x*, then the x-th coordinate of ¢ (x},) is converging
to the x-th coordinate of ¢(x), i.e., ¢(x},) is converging to ¢(x*). Clearly ¢ is one to
one. H

Corollary 3.3.9. Let E be a reflexive Banach space. Then the unit ball of E is weakly
compact.

Proof. By reflexivity the weak topology of E coincides with the weak* topology of
E**. D

Remark 3.3.10. The converse is also true but we are not proving that now. One way
to see it is through Goldstine’e theorem.

3.4 Stone-Weirstrass Theorem

Theorem 3.4.1 (Weirstrass Theorem). Polynomials are dense in Cla, b].

Proof. Enough to prove for the interval [0, 1]. Let Q = {0, 1} and P be the power set
of Q. Consider the probability space (Q3, Pq, P,) where P, ({1}) =p, P,({0}) =1 —p.
Let (O, &4, Py ) be the n-fold product of (Q, Pq, P,). Then Q,, = Q", the n-fold
cartesian product of Q). Consider the random variables Xj : (Q,,&,) — (R, Br),
given by Xj : w — wj; where w = (wy,...,wy) € Q™. Note that for allny,...,mn €
Q,

HPﬂP {w: Xj(w) =n;}) =p=" (1 —p)" =M.

j=1

Pn,p ({(U : Xj( ) T])/ \ ]

If we denote - ~ 2 i1 X by X, then
Epyn I:J Z X np {CU}) =
n wey

and

Vary (o) = | (R = EgRu)2dPap = 3 (Kn() ~ EpXo2Prp(few)) = PP,

By Chebychev’s inequality

Varp(in) _ p(1—p) o 1

Pn,p ({(U : |Xn(w) - Ean| > 6}) < 52 - TL62 X 4T162

With this background we are now ready to approximate f by polynomials. Idea
of the proof is as follows: X,, is close to p with high probability. Therefore we
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expect that E, f(X,,) should be close to f(p). So, let us try to estimate the difference
|Epf(yn) — f(p)| or equivalently |Ep(f(in) — f(p))I. Since f € C[0, 1], it is uniformly
continuous. Therefore given € > 0 there is § > 0 such that

Ix —yl< d = |f(x) —f(y)| < /2.

Let N € N be such that % < N. Then forn > N,

E, (F(Ra) — ()| = | J (£(Xn) — F(p)) APl
< J (F(Xn) — £(p))dPnp
= [ 1R — IR, = pl < 5)aP +

juf(m —f)II(Xn — pl > 8)dPn
+

_ @ 2||f|[Var, (Xy))
2 52

< <4 If] <e
2  2nd?

We are done once we note that

Ba(f)(p) = Epf(Xa) = Y (L‘)f (E) D<(1 —p)™

is a polynomial in p and we have proved
|Bn(f) —f|| < e. O
Corollary 3.4.2. Let X be a compact topological space and A C C(X,R) a closed
unital subalgebra, then
e if f € A, then [f| € A.
e Aisa lattice, thatisf,gec A = f/\g,fVgeA.
Proof. (i) There is a sequence of polynomials p,, (t) such that on the interval [—||f||, || f||]

Pn(-) uniformly converges to t — [t|. Clearly p,, (f) € A and uniformly converges to
[f|. Since A is closed |f| € A.

(ii) For this just note that
fAg = S(f+g—If—gl)

fVg = s(f+g+If—gl)

N =N =

O]
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Theorem 3.4.3 (Stone-Weirstrass Theorem). Let X be a compact topological space and A
a closed unital subalgebra of C(X, R) which separates points. Then A = C(X,R).

Proof. Let f € C(X,R). We will show that f € A. Lets,t € X. Since A separates
points there is g € A such that g(s) # g(t). For some A, pu € R let

gv)=p+A—p

Then g € A and g(s) = A, g(t) = w. Thus for s # t, there exists fs € A such that

foi(s) = f(s)
foe(t) = f(t).

Let Uy ={ve X:fs(v) < f(v) +€}. Thent € U, and U, is open. Since X is compact
thereis ty,--- ,t, such that X = U;Uy,. Define

gs = min fgy,.

1<i<n
Then,
gs € A
gs(s) > f(S)
gs < f+e
Now define

Vs ={veX:gsv) >f(v) —e}

Note that Vs is open and s € V. Thus X = Usex Vs and there is sy, - - -, s,y such that
X =U",V,,. Put

= max (s..
g ]gigmgsl

Then g € A and
f—e<g<f+te.

Thatis ||f — g} < €. Since A is closed f € A. O

[Lecture Notes of P.S.Chakraborty]



Week 4

Baire Category Theorem and its
Consequences

This week we discuss the other basic tools of functional analysis.

4.1 Baire Category Theorem

Theorem 4.1.1 (Baire Category Theorem). Let X be a complete metric space. If U,, is a
sequence of open dense sets in X then NU,, is also dense in X.

Proof. Let d be a distance defining the topology of X. Let B be an open ball and
we want to show that B N U,, # ¢. Clearly it suffices to show that for any closed
ball B N U, # ¢. Replacing X by B it suffices to show that NU,, # ¢. We shall
define a sequence x,, and positive real numbers 1, such that (i) B'(x,,, 7») € U, N
B(xn_1,Tn_1) and (ii) 1, < 1/n. Here B’(u, 1) denotes the closed ball with center
u and radius r. Start with x; € U; and r; < 1 such that B/(x;,77) C U,. After
defining Xy, --- ,xn_1 choose x,, € U, N B(xn_1,Tmh—1) and m, < 1/n such that (ii)
holds. One can do this because U,, is dense and U, N B(xn_1, Th_1) is open. Clearly
d(Xn, Xntp) < Th < 1/n for eachn > 1 and p. Hence x,, is a Cauchy sequence and
by hypothesis it converges to some x € E. Since X1, € B'(x, 1) forallp > 1,
x € B'(xn, ™n) C U, for each n. Therefore x € NU,,. O

Corollary 4.1.2. Let X be a complete metric space and C,, a sequence of closed sets
such that X = UC,,. Then at least one of them has nonempty interior.

Proof. On the contrary suppose every C,, has empty interior. Let U,, = X\ C,,, then
U, s are dense open subsets of X and by Baire’s theorem NU,, is dense. On the other
hand

AU, =NX\ Cr) =X\ (UC) =X\ X=¢

a contradiction. ]
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4.2 The uniform boundedness principle and an appli-
cation

Theorem 4.2.1 (Uniform Boundedness Principle). Let {Ty : E — Flqca be a family of
continuous linear maps such that for each x € E there exists M, such that sup || To(x)|| <
M, ||x||, then there exists M such that sup _ || T«| < M.

Proof. Let C,, = {x € E: V&, [[Ta(x)|| < n||x||}. Then clearly each C, is closed
and they cover E. Therefore at least one of them say Cy contains a ball of radius
r around X, for some r and xo. Hence || T, (x| < k||x|| whenever ||[x — xo|| < r and
consequently for x with ||[x — xo|| < v using ||x|| < ||xo|| + T we get

[ Tec(x = xo) || < ITec O + [ Tee (0| < Kellx[] + K[xol} < k(2[x0]| + 7).

Therefore sup_ || Ty|| < k(@2|xoll+7) -

T

Corollary 4.2.2. Let E be a Banach space. Let X be a weakly bounded subset of E.
That means for all € E*, ¢(X) is abounded subset of K. Then X is a norm bounded
subset of E.

Proof. Letj: E — E** be the canonical embedding. Then by hypothesis

V¢ € EY,IMy, such tat sup [|j(x) ()] < M.
xeX

By the uniform boundedness principle there exists M such that

sup ||x|| = sup [[j(x)]| < M.
xeX xeX

4.3 A typical application

Let1 < p < oo and {«,,} be a sequence of scalars such that }_ «, 3,, converges for all
{Bn} € &,. Then {o,} € {4. To see this consider the linear functional Ty € £} given

by Tn({Bn)}) = ZE; onPn. From convergence of )~ a3, we conclude that the
hypothesis of UBP is met. Therefore UBP gives us M such that M > sup,, || Tn|| =
supy, {‘/Z]T:1 lotn 9. Therefore > >0 oy |9 < M < oo0.
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4.4 Quotient spaces

Now that we have some idea about bounded linear maps on normed linear spaces
we can ask how about extending some of the results of linear algebra to normed
linear spaces. The first theorem we learnt was the first isomorphism theorem. Recall
that first isomorphism theorem says if T is a linear map from a linear space E onto
another linear space T then T induces an isomorphism qt : E/ker T — F. Now if
we want to extend this to normed linear spaces first thing we need is the notion of
quotients.

Definition/Proposition 4.4.1. Let E be a normed linear space and F C E a closed sub-
space. Then ||[x]|| == inf{||x + y|| : y € F} defines a norm on the vector space E/F.

Proof. Let x1,x; € E. Then Vy;,y, € Fwe have
%1 +y1 +x2 +yz2| < |lx1 +y1l +|x2 +y2|.

Taking infimum over both sides as y;,y, varies over F we get ||[x; +x2]|| < ||[x1]|| +
|[x2]]|. Similarly we get ||[Ax]|| = [Al||[x]||. Finally note that ||[x]|| = 0 iff x = limy,
for some sequence {y,} C F. Since F is closed, this happens iff x € F. In other words
x] =0€ E/F O

Lemma 4.4.2. Let E be a normed linear space. Then E is complete iff convergence of 3 _ || xn ||
implies convergence of Y Xn.

Proof. Only if part is easy and we only show the if part. Let {x,} be a Cauchy se-
quence in E. Then we can extract a subsequence {x,, } such that ||x,,,, —xn,| <
5%, Vk. Then the series _ ||xn, ., —Xn,|| converges. By our hypothesis S (s —
Xn, ) converges. That means x,,, — x, converges. In other words the subsequence
{xn,} converges. Since the original sequence is Cauchy from the convergence of a

subsequence we conclude convergence of the whole sequence. O

Proposition 4.4.3. Let E be a Banach space and F C E is a closed subspace. Then
E/F with the quotient norm is a Banach space.

Proof. Let ) ||[xn]|| < oo to show completeness of E/F it is enough to show con-
vergence of ) [x,]. For each n obtain y, € F such that |[x, + yn|| < |[[xn]]| + 5=.
Then ) ||xn + Ynl|| < oo and using completeness of E we conclude convergence of
S (Xn+Yn) say to xo. In other words || SN, (xn+yn)—xo|| — 0. Since ¥ N, y, € F
we have

N N
1> Bl = Dol |l < 1| D (%n +yn) —xol| = 0.
n=1

n=1

Thus we have established lim 2:21 [xn] = X0l O
[Lecture Notes of P.S.Chakraborty]
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4.5 An application of UBP to complex analysis

We briefly recall the basic concepts of Banach space valued holomorphic functions.

Definition 4.5.1. (1) Let O be an open subset of C and E a Banach space. A function
f: O — Eis called weakly holomorphic if given any bounded linear functional ¢
on E, the function ¢ o f : 3 — C is holomorphic.
(2) The function f is called strongly holomorphic if for all z € Q

flw) — f(z)

Lim, _,—— exists .
w—z

Proposition 4.5.2. If f : ) — E is weakly holomorphic then f is norm continuous.

Proof. Suppose 0 € ), and we will show that f is norm continous at zero. Let ¢ be
a linear functional on E. Since ¢ o f is holomorphic,

$(f(z)) — ¢(f(0)) 1 J $(f(w))
r

z T 2m fr (w—2z)w dw,

where T is the positively oriented circle of radius 2r for some small enough r and
0 < |z| < 2r. For |z| < T the right hand side is bounded by ' C(¢) for some constant
C(¢) dependent on ¢. So

f(z) — (0
o) (%) | <1t 'C(d) forO< |zl <.
By the uniform boundedness principle, there is some constant ¢ such that for 0 <
z<,| w || < c. Therefore f is norm continuous at 0. O

4.6 Open mapping theorem and its main corollary

Theorem 4.6.1 (Open Mapping Theorem). Let T : E — F be a continuous surjection,
then T is an open mapping theorem.

Lemma 4.6.2. Let T : E — F be a bounded operator from a Banach space E to another
Banach space F. Let Be and By be the unit balls of € and F respectively. Suppose that T(Bg)
closure contains rBy for some r > O, then T(Bg) contains rBy.

Proof. Lety € rBf and 6 € (0,1) such that y’ = §~ 'y € rBg. By the assumption,
there exists x; € B such that ||y’ — T(x7)|| < (1 — 8)r. Since T((1 — 8)Bg) contains
(1 — 8)rBy, there exists x, € (1 — 8)Bg such that ||[y — T(x;) — T(x2)|| < r(1 — §)%.
Since T((1 — 8)?Bg ) contains (1 — 8)*rBy, there exists x3 € (1 — §)*Bg such that Ily—
T(x1) — T(x2) = T(x3)|| < r(1— 6)3. Continuing this process we get a sequence
Xn € (1 —8)" "B such that

ly—T(x1) —T(x2) — - = T(xn)|| < v(1—8)".
[Lecture Notes of P.S.Chakraborty]
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Since ) ||xy|| converges and E is complete the series ) x,, converges to x’ say. Since
T is continuous T(x') =y’ and ||x'|| < 3 (1 —=8)"' =&'. Put x = 5x/, then clearly
x € Bgand T(x) =8y’ =y. O

Open Mapping Theorem. We have to show that the image of an open ball around zero
under T contains an open ball around zero. Since T is surjective, F = UT(nBg). But
by the corollary to the Baire theorem we get closure of T(mBg) contains an open
ball V = y + €Bf. Putr = 5% and take z € vBr. Since y,y + 2mz € V, there
exists sequences Yn, Y’ € T(mBg) such that limy,, = y,limy n =Y+ 2mz. Hence
Zn = Yn — Y’y € T(ZmBg) converges to 2mz, and thus 5 -z, € T(Bg) converges to

z. Thus we can apply the previous lemma and conclude the proof. O

Remark 4.6.3 (A typical application). Let || - ||1,] - || be two norms on a linear
space E turning E into a Banach space. Suppose there exists C > 0 such that
|Ix|][1 < CJ|x||2,¥x € E. Then there exists C’ such that ||x||> < C'||x||;,Vx € E. To
see this just observe that the identity map from (E, || - ||2) to (E, || - ||1) is a bijective
continuous surjection. By the open mapping theorem this mapping has a continu-
ous or equivalently bounded inverse. We can take C’ to be the norm of the inverse.

Theorem 4.6.4 (Closed Graph Theorem). Let E, F be Banach spaces and T : E — Fa
linear map such that the graph of T, T ={(x, T(x)) : x € E}is a closed subset of E x F. Then
T is continuous.

Proof. The vector space E x Fis a Banach space with the norm || (x, y)|| = ||x||g +lull
By hypothesis I' is a closed subspace of a Banach space, hence I' becomes a Banach
space. Define t; : I' — E as m; ((x, T( )))=xand m, : ExF = F,asm((x,y)) =y.
By the open mapping theorem 7t;' is a continuous linear map from X to I'. But

T=mo 711 , hence continuous. [l
Proposition 4.6.5. Let || - ||n be a norm on C([0, 1]) turning it into a Banach space.
Also ||fn — fllxy — O implies limf,(x) = f(x),Vx € [0,1]. Then || - ||» must be

equivalent with the sup norm.

Proof. Because of remark it is enough to show that the identity mapping from
(C(10, 1), || - [|sup) to (C([0,11),]| - ||x) is continuous. We can appeal to closed graph
theorem provided we show that the graph of identity mapping is closed. In other
words if lim ||f,, — f||sup = O,lim ||f;, — g[|»r = O then we must show g = f. But that
follows from g(x) = lim f,, (x) = f(x). O
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Week 5

Hilbert Spaces

We briefly introduce Hilbert spaces and classify them.

5.1 Hilbert Spaces

Definition 5.1.1. Let H be a vector space. A pre-inner product on H is a sesquilinear
map (-,-) : H x H — Ksuch that

1. (w,v) = (v,u),vVu,v € H.
2. (u,av+ Pw) = a(u,v) + B{u,w), Ve, B € K, Vu,v € H.
3. (u,u) >0Vu e H.

Definition 5.1.2. A Pre-Hilbert Space or a pre-inner product space is a pair consist-
ing of vector space along with a pre-inner product.

Proposition 5.1.3 (Cauchy-Schwarz Inequality). Let J{ be a vector space equipped
with a pre-inner product, then

| <uw,v>| <V {uuy/(v,v),vuve H

Proof. Let (u,v) = re',r > 0. Note that if the scalar field is R then 6 € {m,0}. We
will divide the proof in cases. The first one is{u, u) = (v,v) = 0.
—i0

0 < (u—e v, u—e %)

= (wu)+ (v,v) —e P, v) —e®(v,u)

= —2r<0.
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Thus we get r = 0 proving the inequality in this case. Next case is both (u,u) and
(v,v) are not simultaneously zero. Without loss of generality we can assume that

(v,v) #0. Let t = — YL then,

Vv’

0 < (u+tv,u+tv)

= (wu) + [t v,v) - 2|<<LL::>>|
_ (W) 2, v
= ()= Vv (v)
2
(u,u) — Hu, )l

Now transferring \(<uv,,\\)/)>\z to the other side and multiplying both sides by (v,v) we

get the result. O
Corollary 5.1.4. We have (u,v) = 0 whenever (v,v) = 0.

Corollary 5.1.5. N ={v € H : (v,v) = 0} is a subspace.

Proof. Clearly N is closed under scalar multiplication. Only thing we need to show
that it is closed under addition. Let u,v € N. Then by the C-S inequality we get
(u,v) = 0. Thus (u+v,u+v) =0. O

Corollary 5.1.6. /(u,u) =sup, , ,_; (u,v)|

Proof. If (u,u) = 0 then both sides are zero. Otherwise by the C-S inequality left
hand side is less than or equal to right hand side and taking v = u/4/(u, u) we get
the other inequality. O

Definition 5.1.7. Let J{ be a vector space. An inner product on ¥ is a sesquilinear
map (-,-) : H x H — Ksuch that

1. (-,-) is a pre-inner product.

2. Positive definiteness: (u,u) =0 = u = 0.

An inner product space (4, (-, -)) is a pair consisting of a vector space J along with
an inner product on H

Definition/Proposition 5.1.8. Let (I, (-,-)) be an inner product space, then the map

| - |l : H — R4 given by
||V|| — V <V,V>,V 7£ 0
0, forv=0.

is a norm on . This norm is referred as the norm associated with the inner product
(5720
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Proof. Let u,v € H. Only thing we need to verify is ||u + v|| < ||u]| + ||v||. That
follows from,

lu+vl]* = @4v,u+v) = |ul® +|[v||* + 2R((u,v))
2 2 2
< ull” + IS+ 2wl = (el 4 [viD

]

Definition 5.1.9. An inner product space (¥, (-, -)) is called a Hilbert space if H is
complete with respect to the norm associated with the inner product.

Definition 5.1.10. Let J{;, J{, be Hilbert spaces. A linear map U : H{; — I, is called
unitary if it is one-to-one, onto and preserves inner products that is, (Ux, Uy) =

(x,y), for all x,y € H;. The Hilbert spaces 3{;, }, are called unitarily equivalent if
there is a unitary U from J; to 7(,.

Proposition 5.1.11. Let 3{;, 7, be Hilbert spaces with dense subspaces S;,S, re-
spectively. Let U : S; — S, be a bijection such that (Ux, Uy) = (x,y), for all
X,y € S;, then U extends to a unitary map denoted by the same symbol U from
j‘f] to 5’(2.

Proof. Observe that |[U(x)|| = ||x||, for all x € 8;. Therefore U converts Cauchy
sequences to Cauchy sequences. If x is an element in J(; there is a sequence {x,, } of
elements of S converging to x. Now {U(x,, )} is also Cauchy and therefore converges
to some limit. Define Ux as this limit. Clearly this is well defined. By playing
the same game with U~' we conclude that the extended map is bijective as well.
Continuity of the innerproduct combined with the density of Si’s give (Ux, Uy) =
(x,y), forall x,y € H;. O

Definition/Proposition 5.1.12. Let (e, (+,-)) be a pre-Hilbert space. Let N = {v ¢
Hpre : (v,v) = 0}. Then (u+N,v+ N) = (u,v) defines an inner product on H,../N.
Completion of H,../N with respect to the associated norm is called the Hilbert
space associated with the pre-Hilbert space H,..

Proof. By corollary (5.1.4) the sesquilinear form (-, -) is well defined. Only thing we
need to verify is positive definiteness. Let u € J{,,. be such that (u+ N,u+ N) =
(u,u) =0. Thenu € N and consequently u+ N = N. O

Proposition 5.1.13. Let 3 be a Hilbert space and C C J{ be a closed convex set.
Then for all x ¢ C there exists unique Z € C such that ||x — Z|| = inf{||x — z|| : z € C}.
Verbally this means C has a unique point closest to x.

Proof. Uniqueness: Let z1,z, € C be equidistant from x. In other words ||x —z;|| =
|x — z2||. Then by the parallelogram identity

Ix—z1) + (x = z2) I* + [|(x = z1) = (x = z2)[I* = 2(Ix — 21 |I* + [Ix — z2]|*)
[Lecture Notes of P.S.Chakraborty]
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Therefore
_ Atz

X
Ix— =
So, either z; = z, or else their midpoint Z‘er—“ is a point from C closer to x.

1
I*+ 7z = 2l* = Ix =21 |1* = [lx — za|*.

Existence: Let ¢ = inf{||x — z||* : z € C}. Then there exists a sequence {z,} C C
such that ¢ < ||x — z,||* < ¢ + L. Then using parallelogram identity we get

Z1 +ZZHZ
2
<2 c+T/n+c+1/m)—4c=2(1/n+1/m).

1zn — zmI* = 2(1Ix — znll* + [Ix — zw[I*) — 4% —

Since H is complete and C is closed {z,,} converges to some Z € C. Using continuity
of corm we conclude

|x — Z|| = lim ||x — z|| = ¢ = inf{||x — z||* : z € C}. O

Proposition 5.1.14. Let 5, C H be a closed subspace and x ¢ 3. Let Z be the
unique solution to the minimization problem min{||x—z|| : z € H,}. Then (x—2%,z) =
0,Vz € H,.

Proof. We do it for complex scalars. The real case is easier. Let A € C and z € H,.
Then
e —2|1* < llx — 2= Az||?

So, for all such A and z
—2R{x —Z,Az) + Az = 0.
Write A = [Ale'?, fix 0, divide by [A| and let [A| go to zero to conclude
—2R(x —2,e"%) > 0.
Since 0 is arbitrary we must have (x — Z,z) = 0. O
Definition 5.1.15. Let S C H be a subset. Then S* :={x € 3 : (x,y) =0,Vy € S}.

Proposition 5.1.16. Let S C I be a subset. Then the following holds.

1. St is a closed subspace.
2. S+t = (S+)* is the closure of linear span of S.

3. SNSt C {0} If0 € Sthen SN St ={0}.

Proof. Obvious. [

Theorem 5.1.17 (Projection theorem). Let Hy C I be a closed subspace. Then every
x € H can be written uniquely as y+z wherey € Ho, z € Hy. The mapping Py, : x — y
is a bounded linear map from H to itself so that P5, = Paq,.
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Proof. Lety = argmin{|[x—ul| : u € Ho}and z = x—y € Hj by proposition (5.1.14).
To see uniqueness of the decomposition note that if x = y; + z1 = y, + z, with
Yi1,Y2 € Ho,z1,22 € j‘fé‘, then Y1 — Y2 = 2 — 21 € Ho N j‘C(J)‘ = {0}. Clearly
Py, : x — y is linear. To see it is bounded let us calculate ||x|?, keeping in mind
{y,z) =0.

x> = {y + 2,y +2) = (Y, y) + (z,2) = [ylI* + lIz]1* > [[y1* = [|Psc, (¥) 1.
Therefore P4, is bounded with norm bounded by 1. If 7y # {0} then ||P4 || =1. O

Theorem 5.1.18 (Riesz Representation Theorem). Let ¢ € IH*, then there is unique
uy € Hso that (v) = (ug, V). Moreover ||| = ||ug||. The mapping & — wuy gives a
conjugate linear isometry from JH* to J.

Proof. Let 7y = ker ¢. Note that ¢ = 0 if and only if ker ¢ = H. So, if $ = 0 we can
take uy = 0. Let us now consider the case ¢ # 0. Then H is a proper subspace. So
there exists v € Hj satisfying ¢(v) = 1. By the first isomorphism theorem of linear
algebra 3z = Cv. Let ug, = o1z, then

gy — A WETC
Uy, W) =
¢ 1if we HE

Thus ¢(w) = (uge, W), ¥w. An application of Cauchy-Schwarz inequality yields
1]l = [l - -

Definition 5.1.19. Let J{ be a Hilbert space.

1. Orthogonal set: A subset S C J is said to be orthogonal if every element of S
is nonzero and v,w € S,v # w implies (v, w) = 0.

2. Orthonormal set: A subset S C J{ is said to be orthonormal if it is orthogonal
and every element of S has norm one.

3. Orthonormal basis: A maximal with respect to inclusion orthonormal set is
called an orthonormal basis to be abbreviated as O.N.B. It exists by a simple
application of Zorn’s lemma.

4. An orthonormal set S is said to be complete if H{ = Span S.

Definition 5.1.20. Let X be a set and f : X — R>( be a function. Let = {F
X : Fisafiniteset }. This is directed by inclusion. The limit of the net {s¢
> xer f(X)}res if exists is denoted by > . f(x).

TN

Theorem 5.1.21 (Bessel’s inequality). Let ‘B be an orthonormal set. Then for all v € H
we have ) o I{w, V)I* < |v]|%.
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[36]

Proof. Let F C B be a finite subset. Then {{(u,v)ju:u e FfU{v—} | (u,v)u}isan
orthogonal set and by exercise (5.1.22) we have

D vl + v =D (vl = ||

ueF ueF

Therefore ) ¢ |[(w, v)u||* < ||v||%. Thenet F — >, ¢ [[{u,v)ul|? is a montone net
bounded by ||v||?. Hence it converges to >, .o [{u, V)[* < |[v]|%. O

Exercise 5.1.22. Let S be a finite orthogonal set. Then || >, s ul* = X o5 [/l

Proposition 5.1.23. Every orthonormal set can be extended to a orthonormal basis.

Proof. Let ‘B be an orthonormal set. Consider the partially ordered set P = {8’ :
B’ O B,PB’is an O.N.B } ordered by inclusion. Clearly every chain in this partially
ordered set has an upper bound it has a maximal element 5’. This gives an or-
thonormal basis containing ‘B. O

Lemma 5.1.24. Let S be an orthonormal set and x € I, then the orthogonal projection of
x on span of S is given by ) s (v, x)v.

Proof. Note that (x — >, .s(v,x)v,w) = 0,Vw € S. Therefore

=D Av[F=lx=D> mx)v+ D) A+ v,x)v|?

veSsS veS veSs
=[x — Z<VIX>V||2 + Z (A + (v,x))]* [By pythagoras
veS veS
> [lx=D_(vxv? (5.)
veSs
Thus ) _,cs(v,x)v = argmin{||x —u|| : u € Span S}. O

Proposition 5.1.25. Let S C J{ be an orthonormal set then the following are equiv-
alent.

1. Sis an orthonormal basis.

2. Sis complete.

3. Parseval’s relation: For all x € I, ||x||* = }_ s |(v, x)|?
Proof. (1) = (2) : Let H, be the closed linear span of S. If 7, C I, then choose
v € H \ Ho. The vector w = v — P4,v must be non-zero because otherwise v =

Pyc,v € Ho. Since w € Hy, S U {y) is an orthonormal basis properly containing S.
This contradicts maximality of S!
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(2) = (3) : Let x € H. Then for any finiteset F C S, (x — 3, ¢ (v, x)v) L v, ¥ €
F. Therefore by pythagoras’ theorem

X2 = 3 1w )P + =3 (vx)vl? (5.2)

veF veF

Using completeness of S, foreach € > Owe getvy,..., vy () € Sandscalars Ay, ..., Ay (e)
so that ||x — Z)n:(?) Ajv|| < e. If we call the finite set {v1,...,vn(c)}, Fe then by 1i

n(e)
k=) Wxl> < llx— ) Avsll* < €? (5.3)
j=1

vEFe

Therefore the net F +— x — 3 ¢ (v,x)v defined on the directed set of finite subsets
of S converges to 0. In other words the second term in (5.2) converges to 0. This
proves |[x||? = limg Y, o¢ (v, x)[%.

(3) = (1) : If possible let x € J{ \ S be such that {x} U S be orthonormal.
Then (v,x) = 0,Vv € S. Therefore ||x||* = Y ,.s(v,x)|* = 0, a contradiction to
orthonormality of {x} U S. H

Corollary 5.1.26 (Abstract Fourier Expansion). Let S be an orthonormal basis. Then
forallx € H{ wehavex =) (v, x)v.

Proof. Since ||x||* =limg ), ¢ [(v, x)[?, from (5.2) we have limp [|[x—)_ . (v, x)Vv|| = 0
or equivalently x = lim ) | (v, X)v = ) s (v, X)V. O
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Week 6

Problems

6.1 Monday, 13th February 2023

Exercise 6.1.1. Let E be a Banach space and F a finite dimensional subspace. Show
that F is closed.

Exercise 6.1.2. Let E be a finite dimensional Banach space. Can you give a dense
proper subspace of E?

Exercise 6.1.3. Let E be an infinite dimensional Banach space. Give a dense proper
subspace of E.

Exercise 6.1.4. Let E be a Banach space and F a closed subspace. We say F is alge-
braically complemented if there is another closed subspace F' such that F& F = E.
Suppose F is finite dimensional. Then show that F is algebraically complemented.

Exercise 6.1.5. Let E be a Banach space and F a closed subspace. We say F is topo-
logically complemented if it is algebraically complemented and the norm on E is
equivalent to the norm on the £;-sum of F and F' where F,F' are endowed with
norms obtained from E as its subspaces. Show that if a closed subspace is alge-
braically complemented then it is topologically complemented.

Exercise 6.1.6. Let E be a Banach space and ¢ : E — K be an unbounded linear
functional then show that ker ¢ is dense in E.

Exercise 6.1.7. Let E be a Banach space and ¢ : E — K be a linear map. If ker ¢ is a
dense proper subspace then show that ¢ must be unbounded.

Exercise 6.1.8. Let E be a Banach space and ¢ : E — K. Then ker ¢ is closed iff ¢ is
continuous.

Solution. We only need to show the only if part. Let q : E — E/ ker ¢ be the quotient
map. Let ¢ : E/ker ¢ — K be the induced map. It is continuous because E/ ker ¢
is one dimensional and any linear map on a finite dimensional space is continuous.
Then being a composition of continuous maps ¢ = ¢ o q is continuous. O



[40]

Exercise 6.1.9. Show that there is a bounded linear map L : {,, — R such that

1. liminfx < L(x) < limsup x.
2. L(x) = limx, if L(x) = {x} is a convergent sequence.

3. L(x) = L(S(x)) where S : {,, — ( is the shift operator given by S(x), =
(K)n+1 .
Exercise 6.1.10. Let E, F be Banach spaces and T,, € £(E;F) be such that forall x € E,

the sequence {T,,(x)} is convergent. Then show that sup_ ||T.| < oco. Let T(x) =
lim T,,(x). Then show that T € £(E;F). If x, — x, then show that T, (x,.) — T(x).

6.2 Wednesday, 15th February 2023

Exercise 6.2.1. Show that for each n, k there exists C,,x > 0 such that for all poly-
nomials P of degree less than or equal to n, in k variables with K coefficients we
have

sup  |P(x)| < Cn,kJ [PC)] dx.

x€B (0;r)CRK B(o:r) VOU(B(0;7))

Exercise 6.2.2. Given any two isomorphic Banach spaces E, F define their Banach
Mazur distance as

Sem(E,F) == {||T||.|IT"|| : T € L(E,F) is invertible with T~' € £(F, E)}

Then show that égam (E, F) > 1 and 6gm(E, F) = 1 along with dim E < co implies E, F
are linearly isometrically isomorphic.

Solution. First note that since ||A.T||||[(A.T)~'|| = || T|||T~'|| we have
Sem(E,F) ={|IT " : IT|| =1, T € £(E, F) is an isomorphism}.

Let dgm(E,F) = 1. Then there exists a sequence T, € L(E, F) of norm 1 such that
|T. "l — 1. Since E is finite dimensional the unit ball of £(E, F) is compact. There-
fore along a subsequence T,, converges to some T. By passing to this subsequence
we can assume T, — T.

Claim T must be one to one:
Proof of claim. Suppose Tx = 0. Then using lim T, = T we get Tx = lim T,x = 0.
Using x = lim T, 'T,, (x) we get
[Pl = Lim | T Tox|| < limsup [T Tax|| < Mlim || Toux|| = 0

where M = limsup || T, || < oo because ||T,;'|| — 1. O
[Lecture Notes of P.S.Chakraborty]
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Therefore T is an isomorphism. Since S — S~! is a continuous map from £(E, F)

to £(F,E) and norm is a continuous map we must have |T,"| — |T'||. But
lim || T,,—1|| = 1. Therefore ||[T~'|| = 1 as well. So we have both ||T|| =1 = ||T'|. In
other words T is the required isometry between E and F. O

Exercise 6.2.3. Let E be a separable, then E is a quotient of {;.

6.3 Friday, 17th February

Exercise 6.3.1. Let F C E be a closed subspace of a Banach space. Show that @ :
(E/F)* = F+ ={x* € E*: (x*,x) = 0,Vx € F} given by ®(¢$)(x) = b([x]) is a linear
isometric one to one onto map.

Exercise 6.3.2. Let F C E be a closed subspace of a Banach space. Define ¥ : F* —
E*/F+ as follows: given ¢ € F* by Hahn Banach obtain a norm preserving extension
$. Define ¥(¢p) = [d]. Show that ¥ is a linear isometric isomorphism.

Exercise 6.3.3. Let E be a reflexive Banach space. Show that for all x* € E*,3x €
E fIxll =1, x"(x) = [[x*|l-

Exercise 6.3.4. Goal of this exercise is showing the collection of continuous nowhere
differentiable functions is a dense Gs subset of C[0, 1]. This exercise is from Peder-
sen’s Analysis Now.

1. Let F, ={f € C[0,1] : Ix¢ € [0,1], such that Yy € [0,1], [f(y) — f(x¢)] < njy —
x¢|, }. Then show that &,, is closed.

2. Let f € C[0, 1] be differentiable at x. Then show that f € U, F,,.

3. Finally show that J,, has empty interior.

4. Conclude that no where differentiable continuous functions form a dense Gg
subset of C[0, 1].

6.4 Monday, 20th February

Exercise 6.4.1. Let } be a Hilbert space and T : H x H — K be a sesquilinear form.
If there exists a positive constant C such that

IT(u,v)| < Cllul|/|[v]], Vu,v € K.
Then there is a unique bounded linear map T € B(H) such that || T|| < C and

T(u,v) = (T(u),v), Vu,v € H.
[Lecture Notes of P.S.Chakraborty]
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Exercise 6.4.2. If we have Hilbert spaces 3, H,, and a sesquilinear map B : J{; X
H, — K such that
IB(w,v)| < Cllul|||v|l, Yu € Hq, Vv € H;

where C is a positive constant then there exists a bounded linear map T : H; — I,
of norm less than or equal to C and

B(u,v) = (T(u),v),Vu € H;, W € H,.

2

Exercise 6.4.3. Let x,y : [0,1] — R be C'-functions such that ||$* H2 + |2 H2 = [,

then | [y y(t)2xdt| < £
Solution to Exercise[6.4.3] Let x/(t) = 4 and y/(t) = §¥. Then

:
72’(T'L) — J elﬂint%dt
0
1
= e Ny (t)[I5) + 27Tinj e 2T x(t)dt
0
= 2mink(n).

Similarly y’(n) = 2mting(n). Therefore

—|| || H =42 > n?(Ik)* + lg(m)P).

Todx ,
| vSear) = iy
= |)_2my(n)x(n)
< 2n Z Ig(n)l2 anlfc(n)lz, by Cauchy-Schwarz inequality
n#0 n+#0
< ) [P+ ) nikn))
n=+#0 n#0
1 2
< (@ Y (R + 9P
eZ
T 4n

O

Exercise 6.4.4 (Lax-Milgram). The bilinear form T is called coercive if 3a > 0 such
that T(u,u) > alul? vYu € H. By exercise (6.4.1) we know that there exists T €
B(J() such that T(u,v) = (T(u),v). If T is given to be coercive.

(i) Show that T is one to one.
[Lecture Notes of P.S.Chakraborty]
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(ii) Let Ran be the range of T. Consider S : Ran — H given by S(u) = v where
u = T(v). Show that S is bounded. and using this show that fRan is closed.

(iii) Show that T is onto i.e., Ran = H.

(iv) Conclude given ¢ € K there exists unique u € H such that T(u,v) = ($p,v), Vv €
H.

Solution to Exercise[6.4.4 (i) The map T is one to one because if '~l'(u) =0, then
0 < afjul]® < |T(w,w)| = |(T(w),u)] = 0.
Thus u = 0.
(if) The map S is well defined because T is one to one.
0 < avl) < T, V) = KTE),v) = {w, ) < Jul V]l (6.1)

Therefore ||v|| = [|S(u)|| < 1/alfu[. So, S is a bounded linear map. Let {T(un)) be
a Cauchy sequence converging to w, then {S(T(u,))} is also Cauchy. That is {u,} is
Cauchy. Let u be the limit of {u,}. Then w = T(u) € fRan. This shows that fRan is
closed.

(iii) Let u be orthogonal to fRan, then

0 < afull® < IT(w,w) = |T(w),w) =0.
Thus 1 must be zero. This shows T must be onto.

(iv) Letu = S(¢), then T(u) = ¢ and

T(u,v) = (T(u),v) = ($,v).
[]

Exercise 6.4.5. Let (), S, ) be a probability space and &’ C & a sub-c-algebra.
Let f be a nonnegative measurable L; function. Let L,(&’) be the space of square
integrable &’ measurable functions. Then L,(&’) C L,(&) is a closed subspace. Let
P be the corresponding projection. Show that

1. If 0 < f < Cthen IN € &, u(N) = 0 and a & measurable g such that on
N¢,0 < g < Cand g = Pf a.e. Such a g will be called a version of Pf.

J fdu = J Pfdu, VA € &'
A A
[Lecture Notes of P.S.Chakraborty]
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3. Let f, = f/An, then AN € &', u(N) = 0 such that outside N, each Pf,, has
a version g, such that 0 < g, < nand g, < gny1,Vn > 1. Let g = lim g,,.
Show that

J fdu = J gdu, VA € &'. (6.2)
A A
Such a g is called the conditional expectation of f given &’ and is denoted by

E(f|&'). This is an &’ measurable integrable function unique upto a p null set.

Solution to Exercise[6.4.5] (2) We know that Pf € L,(Q, &', u). Therefore if A € &’
then

A A

(1) Let A,, ={w : Pf(w) < —1/n} € &, then
o<| f=| Praw<1/muAL <0

Therefore n(A,) = 0 and consequently p(w : Pf(w) < 0) = lim, o n(An) = 0.
Similarly considering P(C — f) we conclude that u(Pf < C) =1.

(3) fn < fny1 implies there exists N,, such that u(N,,) =0, N,, € &’ and outside
N,,Pf, < Pfq,Vn. Let N = NN, then N € &, u(N) = 0 and outside N, Pf,,
E(f|&’). To see (6.2) note that

J fdpzliml[ fndpzlimJ andp:J E(f|&'),VA € &'.
A noJA TN A A

The first and the last equality follows from the monotone convergence theorem. [
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Week 7

Compact Operators on Banach Spaces

7.1 Riesz Lemma

Lemma 7.1.1 (Riesz lemma).

Proposition 7.1.2. A normed linear space is finite dimensional provided it is locally
compact.

7.2 Compact Operators

Definition 7.2.1 (Compact operator).

Definition 7.2.2. A linear operator is called finite rank if its range is a finite dimen-
sional subspace.

Theorem 7.2.3. Let T € B(H), then T is a compact operator if and only if T is a norm limit
of finite rank operators.

Proof. Only if part: Let T be a compact operator. Therefore given € > 0, there exists
Y1, ,Yn, such that T(B(0,1)) C U]T:] B(yj, €). Let {eq}xca be an o.n.b for 3. Then
there exists a finite subset F of A such that

Y lyied < V=1, ,ne 7.1)
x&ZF

Let y be an element of the norm closure of T(B(0, 1)). Then there exists y; such that

D y—ypeadl’ < Y Iy —yj el = lly —y;)* < & (7.2)

x¢F xXEA
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Therefore,

D e’ < 4er. (7.3)

x&F

Let Pr be the orthogonal projection on the span of {ex : @ € F} and Tr = PT.

By proposition (8.1.1) Tr is a compact operator. Let x € B(0,1) and y = T(x) €
T(B(0,1)). By (7.3) we see that || T(x) — T¢(x)|| < 2e. Therefore | T — T¢|| < 2e.

If part: Let {T,,} be a sequence of finite rank operators such that ||T,,—T|| — 0. Let
{uq} be a weakly convergent net with u as its weak limit, i.e., (v, us) — (v,u), Vv €
H. The set {u,} is weakly bounded and hence by corollary is norm bounded
say by M > 1. Find N such that || T, — T[] < 33; whenever n > N. Lety be such that
[ Tnuo — Tnug|| < 357 provided «, B >~ y. Then for such o, §3,

Mue = Tup || < [ Tua — Tnwa || + [ Twg = Tnup ||+ [[Taita = Tnug || < e

Thus {T(uy)} is a Cauchy net hence convergent. O
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Week 8

Spectral Theorem for Compact
Operators on Hilbert Spaces

In this chapter we will begin with the spectral theorem for compact self adjoint oper-
ators. Learn singular value decomposition. We will also discuss the basic Fredholm
theory.

8.1 Spectral Theorem for Compact Operators

We have already encountered the definition of a compact operator and the spectral
theory of compact operators on Banach spaces. Now we focus on compact operators
on Hilbert spaces.

Proposition 8.1.1. Let T € B(J() then T is compact if and only if T converts weakly
convergent nets to norm convergent nets. That is

(v, ua) = (v, u), W € H) = || T(us) — T(u)|| — 0.

Proof. Let {uy}nca be a weakly convergent net with u as its limit. The net {T(u)}
weakly converges to T(u) because

(v, T(ua)) = (T*(v), ua) = (T (v),u) = (v, T(u)

In order to utilize the hypothesis that T is a compact operator note that the set
{uq : @ € A}is weakly bounded. Hence by corollary it is norm bounded. So
there exists M such that sup{||uy|| : « € A} < M. Since T is compact any subnet of
{T(uy)} has a convergent subnet and the limit must be T(u), because {T(uy)} weakly
converges to T(u). Since the limit of the convergent subnet of any given subnet does
not depend on the net the original net must be convergent with the same limit, i.e.,
IT(e) — Tw)]| — 0.
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Conversely, let {T(uy)} be a net in T(B(0,1)). By Banach-Aloglu theorem we
can conclude that {u} has a convergent subnet. Then the corresponding subnet
{T(uy)} converges. This shows that T(B(0, 1)) is relatively compact or equivalently
has compact closure. O

Theorem 8.1.2. Let I be an infinite dimensional Hilbert space and T € B(J{) be a nonzero
self-adjoint compact operator, then

Ay =sup{(u, Tu) : ||u]| =1} = sup{(u, Tu) : [u|| < 1}
A =inf{{(u, Tu) : ||u|| = 1} = inf{{(u, Tu) : [ju]| < 1}

are attained. Let w.,u_ be the vectors where A\, /A\_ are attained, then at least one of the
following holds,
Tui = /\iui.

Proof. Let F(u) = (u, Tu), then this is a real valued function because,

Flu) = (Tu,u) = (u, T"u) = (u, Tu) = Fu.

Also for |[ul| < 1, [F(w)] < |lul®|IT]| < || T||. Therefore Ay makes sense. Let {u,} be
a sequence such that ||u, || < 1 and F(u,) — A.. Since a Hilbert space is reflexive
by Banach-Alaoglu theorem its unit ball is weakly compact the sequence {u,} has
a weakly convergent subsequence. Without loss of generality we can assume that
u, — u,, weakly. Then,

[Flun) — Flu )]

[(Un, Tun) — (uy, Tuy )|

|<un/ il = Tu+>’ + ’<un — Uy, Tu+>|
[Tun — Tug || + Kun —uy, Tuy)

0.

YA

Since T is sompact the first term goes to zero and the second term goes to zero
because {u,} weakly converges to u,. Therefore F(u,) = limF(u,) = A;. Let
{en : 1 > 1} be an infinite orthonormal set. Then {e,} weakly converges to zero,
hence {T(e,)} converges to zero in norm. Therefore {F(e,, )} converges to zero. Thus
Ay 2 0.If ||luy|| < 1there exists € > Osuch that ||(1+€)ui || =1,and F((1+€)u;) =
(1+ e)F(uy) > F(uy). Similarly we obtain u_ such that F(u_) = A_.

A both can not be zero: Suppose that A, = A_ = 0. Then for any u of unit norm,
F(u) = 0. Thus for any u, we get (u, Tu) = 0. Then by polarization we get

2v, Tu) = (u+v, T(u+v)) +i{u+1iv, T(u+1iv)) = 0.

Therefore T = 0 a contradiction to T # 0! H

Without loss of generality we assume that Ay # 0. Then (u;, Tu,) = A, > 0.
Therefore, T(w, ) # 0.

Claim:ve X, |v|=1,v.Liu, = v L Tuy
[Lecture Notes of P.S.Chakraborty]
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Proof of Claim: Let vy = (Cos0)v + (Sinb)u, then ||ve|| < 1 and

F(vg) = Cos?0.F(v)+ Sin?0.F(u,) + CosBSind(v, Tu, )
+SinBCosO(u, Tv)
= Cos?0OF(v) + Sin?6F(u,) + Sin209R(v, Tu,)

We know that the function 0 — F(vg) attains its maximum at © = 7t/2. Therefore

dF(ve)
do

|e:ﬂ/2 = %<V, Tu+) =0.

Instead of v if we put v/—1v we obtain J(v, Tu,) = 0. Therefore (v, Tu,) = 0. O

Thus, Tu, € ur* = Cu,. Let Tu; = Au,, and
Av =Flug) = (uy, Tuy) = AJug || =
If A_ # 0 we similarly conclude that Tu_ = A_u_. O

Lemma 8.1.3. Let T be a self-adjoint operator on a Hilbert space 3. Then

:
Tl = sup '<‘H‘ H§‘> Jul £ 0% 8.1)

Proof. Let M be the right hand side of By Cauchy-Schwarz inequality we see
that M < ||T||. Let u,v € 3, then

(u+v, T(u+v)) = (u,Tu)+ (u, Tv) + (v, Tu) + (v, Tv)
(Wu—v, Tlu—v)) = (U Tu)—(u, Tv) — (v, Tu) + (v, Tv)

Subtracting and taking absolute values we get
2[(u, Tv) + (v, Tw)| = [(u+v, T(u+v)) — (u—v, T(u—v))| (8.2)

If T is the zero operator then clearly || T|| < M. So we can assume T # 0. Let ube an
arbitrary unit vector such that Tu # 0. Letv = Then, (u, Tv) = (Tu,v) = || Tul.
Putting these in[8.2l we get

Tu||

4| Tul|[=(u+v, T(u+v)) — (u—v, T(u—v))|
SM(Jlu+v]J* + [[u—v]*)
=M2(|[u)|® + []v]*) [ by parallelogram identity
—4M [since [uf = [v]| = T.

Therefore ||T|| < M, establishing the other inequality required to show (8.1). O

Notation: Given a pair of vectors u,v € 3, |u)(v| stands for the operator w —
(v, w)u. In particular P,, := [u)(ul is the orthogonal projection onto the span of u.

[Lecture Notes of P.S.Chakraborty]
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Theorem 8.1.4 (Spectral Theorem for Compact Self-adjoint Operator). Let T # O be
a compact self-adjoint operator on 3. Then there exists a sequence {Ay} of real numbers and
a sequence of mutually orthogonal vectors {ey} such that [A\| — 0, ||en || = 1Vn and

T=) Aulen)(enl, (8.3)

where the sum appearing in is norm convergent. The expansion (8.3)) is called a spec-
tral resolution of T.

Proof. Let T1® =T, = 3. Now we will successively define

1. Hilbert spaces H'™ for n > 0 such that H(™+1) C H(n),
2. Compact self-adjoint operators T(™) : (™) — F{(n),

3. Vectors e, 1 € H(™ orthogonal to H™*!) and scalars A,, 1 forn > 0.

This will be defined in a manner so that if Q™) denotes the orthogonal projection
onto H(™*1) then

Th+1) — T(n)Q(n) 4 Q(n)T(n) (8.4)
T — At1Pe, i + T+ forn >0, (8.5)
TN < Al (8.6)

This is achieved through repeated applications of theorem (8.1.2). Assume that we
have defined (T, ) for k < n. f T™ = 0 then T™+Y = 0,Any 1 = 0, en
an arbitrary unit vector in K™ and H(*1 = H™ N {e, 1}, Otherwise apply
theorem for the operator T(™).

(A (TM),uy (TM), i AL(TMY) > —A_(TM)

?\T‘L /eTl =
(Ant1,ent1) {(/\(T(“)),u(T(“)))OtherWise

Then T™e, 1 = A 11en11 and consequently A, 1P, ., = TP, | =P, T Let
QM =TIy — Pe,., and H™"1) be the range of Q™). If we take T(" 1) = T(M Q™)
then all the conditions will be met. To see observe that

[T < T = Ansal, by lemma (B.1).

Adding (8.5) for 0 < n < k we obtain,

K
T = ) AngiPe,,, + T (8.7)

n=0
Since {e,} converges to zero weakly [A,| = ||T(en)|| converges to zero. It follows
from the inequality that || T(™)|| converges to zero. This proves (8.3). O
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Definition 8.1.5. Let T € B(J{), then A is an eigenvalue of T with eigenvector u # 0
if Tu = Au. The subspace E, = {u € H : Tu = Au} is called the eigenspace
corresponding to the eigenvalue A.

Corollary 8.1.6. Let T # 0 be a compact operator with a spectral resolution given by
. Then A # 0 is an eigenvalue iff A equals one of the A,,’s. Also E) = span{e, :
An = AL

Proof. Let A be the orthonormal set consisting of e,,’s. Extend it to an orthonormal
basis A’. Let A # 0 be an eigenvalue with eigenvector u. Then by corollary (??)
u=) (en,wen+2 ,canal,u)o. Therefore Tu =3  Aq(en, u)en. On the other
hand Au = ) | Aen, wen + 3 cana (e, w)a. Using Tu = Au we obtain,

(,u) = 0,Vae A"\ A (8.8)
Alen,u) = An{en,u),vn. (8.9)

Equation (8.8) tells us u belongs to the closed linear span of e,,’s. Hence there exists
n such that (e,,, u) # 0. Using equation for that n we conclude A = A,,.

O

Corollary 8.1.7 (Singular Value Decomposition). Let T # 0 be a compact operator.
Then there exists countable orthonormal sets {e,}, {f,,} and a sequence of positive
scalars {An}, An \, 0, such that

where the sum is norm convergent.

Proof. Let S = T*T. Then S is compact and nonzero because if Tu # 0 then (u, Su) =
|Tu/|* > 0. Hence S is nonzero. 0
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Week 9

Harmonic Analysis on Compact
Groups

9.1 Haar Measure

Let G be a topological group with a compact metrisable topology. This means G
is a compact metrisable topological space and the group operations m : G x G 3
(gh) = ghe Gand G > g+— g ' € G are continuous.

Definition 9.1.1. A probability measure A on the Borel o-algebra of G is said to be
a left (right) Haar measure if A(gB) = A(B) (respectively A(Bg) = A(B)) for allBorel
sets B and for all g € G. Clearly this implies for a left Haar measure A, for every
bounded Borel measurable function f we have [f(gh)dA(h) = [f(h)dA(h). We
have a similar conclusion for a right Haar measure.

We are interested in showing existence of a left Haar measure. Let us introduce
few notations. Given f € C(G) and a signed measure p we define functions as
follows

(1® w)(4f)(g) = Jf(gh)du(h)
(k® D)(AP)(R) = Jf(gh)du(g)-

In this notation Ais a left (right) Haar measure if (I ® A)(Af)(g) = [f(h)dA(h
(T A)( = [f(g)dA(g)) for all f € C(G). Another way to state the left Haar
measure condltlon would be for all f € C(G), (I ® A)(Af) is a constant function.
So, to produce such a measure A let us have an alternative description of constant
functions.

Definition 9.1.2. A probability measure p is said to be faithful if p(U) > 0 for all
U > 0. If {x,,} is a countable dense subset of G then we can take 1 = )_ ;—néxn, where
dx,, is the Dirac mass at x,,.
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Proposition 9.1.3. Let p be a faithful measure on G. Then f € C(G) is a constant
function iff (I ® w)(Af) = fiff (L ® I)(Af) = 1.

Proof. Only if parts are trivial because if f is the constant function g — c, then
(I ® w)(Af) : g — cu(G). So, let us prove the if parts. I'll do that for the first
one. So let f € C(G) be such that (I ® u)(Af) = f. If f is not constant then there
is some € > 0 and some non trivial open set U such that f(g) < f(go) — € where
f(go) = maxgeg f(f). Using (I ® p)(Af) = f we get

f(go) = (I ® u)(Af)(go)

flgohdu(h) + | flgo)dutn)
9o

f(go) — €)plgo W) + f(go)u(G \ go ')
(go) — ep(gy'U)
(go)

This contradiction shows f must be constant. ]

In view of the previous proposition we have the following characterisation.

Proposition 9.1.4. Let u be a faithful probability measure. Then A is a left Haar
measure iff for all f € C(G) we have (I ® u)(A(I ® A)(Af)) = (I ® A)(Af).

Exercise 9.1.5. State the corresponding proposition for a right Haar measure.

Proposition 9.1.6. Let 1, A be probability measures on G and f € C(G), then

T W (A(I®A)(Af)) = (I® (kLxA)(Af).

Proof.

r

Teow(AIeA)(Af)(g) = [TeA)(Af)(gh)du(h)

— rJf(gm’)d?\(h')du(h)

= [ tgmdmsnm)

J

= (I® (nxA)(Af)(g).

In view of proposition (9.1.6) we can restate proposition (9.1.4) as follows.

Proposition 9.1.7. Let p be a faithful probability measure on G. Then A is a left Haar
measure iff Lx A = A.
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Theorem 9.1.8. Let G be a topological group with a compact metrisable topology. Then G
has a left Haar measure.

Proof. Let p be a faithful probability measure on G. We need to find a probability A
such that px A = A. Let P(G) = {¢ € C(G)* : $(1) = 1, ¢ is positive}. By Markov-
Kakutani-Riesz representation theorem we can identify P(G) with the collection of
Borel probability measures on G. We will intentionally use the same symbol ¢ to
denote the probability measure associated with the linear functional ¢ through this
identification. Consequently if ¢ € P(G) and f € C(G) then ¢(f) = [ fd.

Claim: P(G) is weak* closed: Let ¢ = ¢ be a convergent net from P(G). We
need to show ¢ € P(G). That amounts to showing two things, first ¢ is a positive
linear functional. That follows because if f € C(G) satisfies f > 0, then ¢(f) =
lim ¢ (f) > 0since ¢ (f) = 0 for all «. Also ¢(1) =lim (1) = 1.

Therefore by Banach Alaoglu theorem P(G) is a compact subset in the weak*
topology. Also P(G) is easily to be convex. Since P(G) 2 A — puxA € P(G) is
an affine map, we will be done by Markov-Kakutani fixed point theorem once we
show that P(G) 3 A — pu A € P(G) is weak* continuous. Let Ay — A. Then for all
f € C(G) we have limy [ fdA, = [ fA. Therefore

lim J Fd(pAg) = liinJ(Jf(gh)du(g))dAa(h) _ J(Jf(gh)du(g))dx(m - de(um

In other words (pt*Ay) =5 (u*A). Thus by Markov-Kakutani we obtain a probability
measure A such that pxA = A. In view of proposition (9.1.7) this establishes existence
of a Haar measure. O

Exercise 9.1.9. A left Haar measure is faithful.

Exercise 9.1.10. Let A be a left Haar measure. Then show that AxA = A and conclude
that A is a right Haar measure as well.

Exercise 9.1.11. Let Ay, A, be two left Haar probability measures. Show that A; = A,.

9.2 Finite Dimensional Representations

Henceforth unless otherwise stated G will stand for a compact Hausdorff topolog-
ical group. We have proved existence of Haar measure under the assumption of
metrisability. Here we will assume it exists even without that assumption. Refer-
ence for that would be Functional Analysis books of Rudin and Conway. They give
different proofs. We wish to understand strongly continuous unitary representa-
tions of G.
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9.3 Schur Orthogonality

Definition 9.3.1. (1) A finite dimensional representation of G in a complex vector
space V is a continuous homomorphism 7 from G to GL(V), the space of invertible
linear transformations of V. The vector space V is often referred as the representa-
tion space.

(2) A subspace W of V is called invariant if 7t(g)(W) C (W) forall g € G. Itis
called a reducing subspace if there exists another invariant subspace W’ such that
V =W & W' Clearly {0} and V are invariant subspaces.

(3) A representation is called irreducible if it has no other invariant subspace.

(4) Let W be an invariant subspace, then the restriction of 7t to W denoted 7t|yy is the
representation 7|y : G — GL(W) given by 7w (g) := 7t(g)lw.

(5) A finite dimensional representation is called unitarizable if V can be endowed
with an inner product such that each 7t(G) C U(V), the space of unitary operators.

(6) Given two representations 7; : G — G(V;),1 = 1,2, an intertwiner from m; to 7,
is a linear map T : V; — V, such that m,(g)T = T7t1(g), Vg € G. The representations
are called equivalent if there exists an invertible intertwiner from 7t; to 7.

(7) The direct sum of two representations 7; : G — GL(V;),1 = 1,2 is the represen-
tationt: G — GL(V) where V =V; @ V, and mt(g) = m;(g) & m2(g) € GL(V).

(8) A representation m : G — GL(V) is called completely reducible if there exists
invariant subspaces W1, - - - , W, such that V = @I'*W; and each nl\y, is irreducible.

Proposition 9.3.2. Let m: G — GL(V) be a finite dimensional representation. Then it
is unitarizable. In other words every finite dimensional representation is equivalent
to a unitary representation.

Proof. Let n be the dimension of V. Then V is isomorphic with C™. Using any inner
product on C™ we can define an inner product on V. Let (:,-) be one such. Let
(u,v) = IG(Tt(g)u,ﬂ( g)v)dg, where dg denotes the Haar measure normalized so
that measure of G is 1. Only thing we need to verify is (u,u) = 0 implies u = 0.
But that follows because g — (7t(g)u, t(g)u) is a nonnegative continuous function
whose integral fG(n(g)u,Tc(g)u)dg = (u, u) vanishes. Therefore (7t(g)u, 7t(g)u) =0
for all g € G. In particular taking g = e we get (u,u) = 0. Since (-,-) is an inner
product we get u = 0. O

Corollary 9.3.3. Let m : G — GL(V) and W be an invariant subspace then it is
reducing.

Proof. Fix an inner product on V such that 7t becomes a unitary representation. Let
W’ be the orthocomplement of W. Then V = W & W+, Only thing we need to show
is that W+ is invariant. Let g € G and u € W+, w € W, then using the invariance of
W we see that (g~ ')w € W. Thus,

(m(g)u, w) = (u,7m(g)"w) = (u, (g~ )w) = 0.

This shows that 7t(g)u € W+, in other words W+ is invariant. O
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Corollary 9.3.4. Every finite dimensional representation is completely reducible.

Proof. The proof is by induction on the dimension of the representation space. If
that is zero there is nothing to prove. Let us assume the that the result holds if the
dimension of the representation space is less tan or equal to n. Now letm: G —
GL(V) be a representation such that dimension of V is n + 1. If the representation
is ireducible there is nothing to prove, otherwise let W be an invariant subspace.
We have just seen that then W+ is also invariant. Clearly both W and W+ have
dimension less than n. By induction hypothesis there exists subspaces Wy, --- , Wy,
of Wand Wiy i1, , Win sk of W such that W = &\ W;, Wt = g™ ¥ | and ntlw,
is irreducible for 1 < i < m + k. Then V = @™'*W, and 7 becomes completely
reducible. O

Proposition 9.3.5 (Schur’s lemma). (1) Let ¢; : G — GL(V;),j = 1,2 be finite di-
mensional irreducible representations of G. Suppose there exists a nonzero linear
map T : Vi — V, such that Td1(g) = $2(g)T,Vg € G, then T is an isomorphism
and consequently ¢; and ¢, becomes equivalent. In particular there is no nonzero
intertwiner between inequivalent irreducible finite dimensional representations.
(2) Let ¢ : G — GL(V) be an irreducible representation and T : V — V be a nonzero
linear map such that Td(g) = $(g)T,Vg € G, then there exists a nonzero scalar
A € Csuch that T = AL

Proof. (1) Let W; = ker (T) then this is an invariant subspace of V;. Since ¢; is
irreducible there are two possibilities W; = 0 or V4. The second possibility is ruled
out because T is nonzero. Therefore T is one to one. Let W, = Image(T), then this
is an invariant subspace of V,. As before there are two possibilities W, = 0 or V,.
The first possibility is ruled out because T is nonzero. Therefore T is onto.

(2) By part one we know that T is an isomorphism. Let A be a nonzero eigenvalue
of T. Then (i) (T —A.)d(g) = (g)(T — AI)Vg € G, (ii) ker(T — A.I) is a nonzero
invariant subspace, hence must be whole of V. Therefore T = A.L O

Definition 9.3.6. Let ¢ : G — GL(V) be a finite dimensional representaion. Let (-, -)
be an inner product such that ¢ becomes unitary. Given a pair of vectors v,v' € V,
the continuous function 64 ../(g) = (v, $(g)V') is called a representation function.
The continuous function x4 : g — Tr(¢$(g)) is called the character of the represeta-
tion ¢. If we fix an orthonormal basis uy, - - - ,uq of V then x4 (g) = Z;; 0,151 (9)-

Proposition 9.3.7 (Schur Orthogonality Relations). (1) Let ¢;: G — GL(V;),j =1,2
be two inequivalent irreducible representations. Let v,v' € V;,w,w' € V,. Then
the L,(G) inner product of the associated representation functions 64, v, 04, ww’
vanishes. That is

Orvrs o) = J 0, &1 (@) (w, da(g)w')dg = 0 ©.1)

(2) Let ¢ : G — GL(V) be an ireducible representation, then given four vectors
v,vV,w,W' € V the L,(G) inner product of the associated representation functions
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Opvv's Op,ww 18 given by

<9¢/V/V'/ e¢/W,W'> = JG <V/ d)(g)\}/) <W/ ¢(g)wl>d9

] / /
— dimV<V'W> v, (9.2)

Proof. (1) Fixv € V;,w € V,. Consider the bilinear form

B:(vVow) o L (v, d1(g)v'){w, ba(g)w')dg.

Then

B(W, w) < "G ™, 1091V - 1w, b2(gIw)ldg

< GIIVIIII<1>1(g)v’llIIWII||<1>z(9)W’||<19

[VIHVIHwl Wl dg, by unitarity of d1, b2
Ja
= VIV HIwlw
By remark (6.4.2) we obtain a bounded linear map T : V; — V; such that B(v/,w') =
(T(V'),w'). Note that

T1 (W), d2(W)) = Bldr (WO, ba(h) (W)
_ j 0, 0191 ) (W, b2(g)da2 () (w'))dg

G
(v, d1(gh)v'){w, b2 (gh)w')dg

The fourth equality follows from the right invariance of Haar measure. It follows
that T intertwines ¢ and ¢;.

(1) If ¢y and ¢, are inequivalent then it follows from part (1) of proposition[9.3.5)
that T must be zero. That is B(v/,w’) = 0. This proves (9.1).

(2)If ¢1 = d2 = §, then by part (2) of proposition9.3.5) we conclude that T = A.I
for some complex number A. Thus,

| ®atavitm olgiwiag = A w). 93)
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Let d = dim(V) and u4,--- ,uq be an orthonormal basis of V. In we put v/ =
w' =1, and sum over j to obtain
> (w, ($(g)uy,v)dg

d?\:J
j=1

d
= J Zwvdgby (?2?)

j=1
= (w,v

d

Thus A = % and putting this in 1} we obtain 1) O

Corollary 9.3.8. Let ¢, ¢’ be inequivalent irreducible reresentations. Then (X4, X¢') =
0.

Definition 9.3.9. Let G be a compact hausdorff topological group and Gy, the space
of equivalence classes of finite dimensional irreducible representations. Let dg de-
note the dimension of the representation space of ¢. Let L G) be the completion of
the pre-Hilbert space @, M(C?) with respect to the inner product

1 k
<(TCD)/ (S¢)> Z d_TTT¢)S¢.
dEGrin d)
Corollary 9.3.10. Let F : L,(G) = Ly(G) be the map given by
Ei,j,¢ — e(b,-i_,j,q) S Ei,j,cb/i :j =1,--- ’d¢

where {Eij ¢4 : 1,j = 1,-++,dg} is the canonical basis of M(C% ). Then Fg is an
isometry.

Proof. Clearly {Eij¢ : ¢ € Gﬁn,i,j =1,---,dg} is an orthogonal basis of L,(G). It
suffices to show that (Ei; ¢, Exie) = (04,15, 00 k1, VI, d',1,,k, 1. But that follows
from the Schur orthogonality relations. O

9.4 The Banach-* Algebra of Square Integrable Func-
tions

The space of square integrable functions form an algebra under convolution. In this
section we will try to understand that.

Lemma 9.4.1. Let G be a locally compact Hausdorff topological group and f be a compactly
supported continuous function on G, then given € > 0 there exists a neighborhood U of
identity e € G such that

f(g) —f(g')l < e, forg 'g €U
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Proof. Let V be a relatively compact neighborhood of e. Then
W=VvnV'={geG:geV,g'eV}

is a relatively compact neighborhood of e such that g € W, implies g~' € W. Let
f': G x G — C be the continuous function given by f'(g, h) = [f(g) — f(g.h)|. Let C
be the support of f. Then D = CW is a compact subset of G. Note that given any
g € G, f'(g,e) = 0, therefore there exists open neighborhoods A4 of g and By C W
of e such that for each (g’,h) € (Ay x By), f'(g’,h) = [f(g') — f(g'.h)| < e. Let
gi1,---,gn besuchthat Ay, ,--- , Ay, covers D. Let B =NBy, and U =B N B—'. Let
us take g, g’ € G such that g~'g’ € U. There are two possibilities.

1. If g € D then there is some i such that g € Ag,. Since g~'g’ € U C By,, there

exists h € By, such that ¢’ = g.h and
[f(g) — f(g")l = If(g) — f(gh)| < e.

2. Ifg¢ Dtheng ¢ C. Then g’ = g.h ¢ C, because otherwise g = g'h™' € CU C
CW C D. Therefore |f(g) — f(g’)| = 0.
O

Proposition 9.4.2. Let G be a locally compact Hausdorff topological group and 1 <
p < oo. For each g € G consider the linear map Ly : L,(G) — L,(G) given by
(Ly(f))(h) = f(g~"h). Then

1. forall f € L,(G), [|[Lq4(f)|| = ||f]|, in other words L is an isometry.

2. Forall g,h € G,L4Ly = Ly and L. = Id where e is the identity of G.

3. Forall f € L,(G) the map g — L4(f) is a continuous map from G to L, (G).

Proof. (1) This follows from the left invariance of the Haar measure.
(2) This is also obvious.

(3) Note thatby (1) and (2) [|Lg (f) =Ln (f)|| = [[Lg(f=Lg-1Ln(F)]| = [If=Lg-1n ().
Therefore it is enough to show that g — L4(f) is continuous at e. Let us firs assume
that f € C.(G). Applying lemma for the compactly supported continuous
function g — f(g~') we obtain an open set U such that [f(g~" )—f(g’*1 | < e provided
g~ 'g’ € U. Substituting g~' =h, g’ = h’ we obtain

[f(h) — f(h)] < e, provided hh'~' e U (9.4)
Then givenany g e UNn U™,

= Lo = | 1£(h) = flg™" )" dh < 2e%lsupp(F)
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This shows that g — L4(f) is continuous. Now let us take an arbitrary f € L,(G),
then there exists f' € C.(G) such that ||f—f'|| < €/3. There is an open neighborhood
W of e such that g € W implies ||[f' — Ly(f')|| < €/3. Then,

If =L ()] < [If = I + It = Lo (F)] + Lo () = Lo()]| <e.
[]

Remark 9.4.3. If we take p = 2 then the resulting unitary representation is called the
left regular representation and we have already encountered this in proposition (??).
Instead of a left Haar measure if we had started with a right Haar measure A’ and
considered the Hilbert space L,(G,A’) then the R: G — L,(G,\’) given by Rg&(h) =
&(h.g) also gives a strongly continuous unitary representation. In case G is compact
then a left invariant measure is also right invariant therefore both left and right
regular representation acts on L,(G).

Lemma 9.4.4. Let f € C(G), then [, f(g~')dg = [, f(g)dg. If we define &* : g —
E(g") then & — &* extends to L,(G) as a conjugate linear involutive isometry. So, we
have |||, = [|&7], V& € 12(G).

Proof. If we denote by A the Haar measure then v : E +— A(E™") satisfies, v(g.E) =
AETg™ ") =A(E"") = v(E) for all g € G and every Borel set E. Also v(G) = 1. So,
by uniqueness of the Haar measure we get v = A. Thus,

L flo~)aN(g) = |

f(g)dv(g) =J £(g)dA(g).
G

G

Using this we see that

1E)2 = L E(g)PdN(g) = JG E(g™)PdA(g) = €712

Clearly (£*)" = & that is to say that the operation & — &* is involutive. O

Proposition 9.4.5. Let f € L,(G) then L : & — f x & defines a bounded linear map
from L,(G) to C(G). Image of the unit ball under this map is pointwise bounded
and equicontinuous.

Proof. Let & € L,(G). Since G is compact the Haar measure is finite and conse-
quently L,(G) C L;(G).

feen) = | flo)elg g
G
= J f(hg)&(g")dg, [ by a change of variable
G
= (&, Lyf) (9.5)
Using along with Cauchy Schwarz inequality we get,

5 £(h) — £ % £(0)] < ]|, Lnf — Ly £l (9.6)
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Since G is a topological group g +— ¢~ ' is continuous. Therefore, by proposi-

tion (9.4.2)3) for any given f the map g — L,-1f is continuous. That means given € >
0 there exists a neighborhood U of h’ such that h € U implies ||L},—1f — L1 f||, < €.
If we combine this with we see that

he U= [fx&(h) —fxEM)] < €&l

That shows the continuity of f x £. In fact it also shows equicontinuity of the family
{fx&:]|&|l, < 1} It remains to show the boundedness of £¢. That follows from (9.5)
once we note that

1£+(E)]] < sup [[E]|2Tn-1Fll, = 1Nl
heG

]

Corollary 9.4.6. Let L : [,(G) — L,(G) be the bounded linear map obtained by
composing L : [,(G) — C(G) with the inclusion C(G) — L,(G), then L; is a
compact operator.

Proof. Let{&,} be a sequence of unit vectors in L,(G). Then we know from proposi-
tion that the Arzela-Ascoli theorem (??) applies. Thus there exists a Cauchy
subsequence {&,,, } in C(G). The inclusion C(G) — L,(G) being continuous {&,, } is
Cauchy in L,(G). This shows that the image of the unit ball under L; is relatively
compact. H

Corollary 9.4.7. The Hilbert space L,(G) with convolution product is an involutive
Banach algebra.

Proposition 9.4.8. The linear map L; satisfies,

(L¢(E),m) = (&, L= (), VE,m € Ly(G).

In particular L; is self-adjoint provided f = f*.

Proof. Let f,&,m € L,(G), then

(Le(E),m) = Gf*&(h)n(h)dh
- [ [ ForEtemm(nydgan
unGJPG
= . Gé(h’)f(g)n(gh’)dh’dg g 'Th="H
— [ [ Ew)r (g mign)anag
JG JG
= <E/Lf*(n)>

O]
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9.5 The Peter-Weyl Theory
Proposition 9.5.1. Let f € C(G) and g € G, then LRy = RyL;.

Proof. Let & € L,(G), then

(LiRgE)(g") = (fx(RyE))(g)
f(h)(Rg&)(h~'g')dh

This shows that LRy = Rg4Ly. l
Proposition 9.5.2. Let f;,--- ,fi € C(G) then there exists a sequence of continuous

functions 4., such that f; x 6, converges to f; in C(G) forj =1,--- k.

Proof. It is enough to show that given € > 0 there exists a continuous function &
such that

Vg e G,|f; x0(g) —fj(g)l <e, for1 <j <k (9.7)
Using lemma (9.4.1) obtain an open set U such that

If;(g) — fi(g')l < e, for g'delj=1, -,k (9.8)

Let 8 € C(G) be a compactly supported positive function such that

{ge G:5(g) #0} C U, and Jé(g)dg =1.

f, % 5(g) — f;(g)] = |JGfj(gh—‘)s(h)dh—fj(g)L6(h)dh|

r

N

) [f;(gh™") —f;(g)I6(h)dh

r

— u|fj(gh_])—fj(9)|é(h)dh

P ed(h)dh, [by )
Ju

= €.

O]
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Theorem 9.5.3 (Peter-Weyl). Let G be a compact Hausdorff topological group and f &

C(G) be a function with f = f*. By corollary and proposition L¢ is a compact
self-adjoint operator. By the spectral theorem for compact operators A,the set of nonzero

eigenvalues of Ly is a discrete subset of nonzero real numbers. For A € A, let H(, ={§ €
L2(G) : L¢(&) = A&} be the eigenspace for the eigenvalue . Then

1. Each I, for A € Ais a finite dimensional invariant subspace for R the right reqular
representation.

2. £ €y, 0 € C(G) implies & x & € H,.

3. Let Ry be the representation on J(, obtained by restricting R to Hx. Then each
element of J(, is a representation function of R.

4. Given any € > 0 there exists a representation function h such that ||f —h|, < e.

5. Given any € > 0 there exists a representation function h such that ||f —h||« < €.

Proof. (1) Let & € JH,. To show R(g)(&) € FH, we must show L¢(R(g)(&)) =
AR(g)(&). Since LyR(g) = R(g)L; for all g we have

L¢(R(g)(&)) = R(g) (L&) = R(g)(AE) = AR(g)(&).

Thus 7, is an invariant subspace for R. By spectral theorem for compact selfadjoint
operators each J{, is finite dimensional.

(2) Since L¢(§) = A§, wehave Li(Exd) = fx (£%0) = (fx &) x5 = A& 6. Therefore
Ex b e H.

(3) Let & € H,. Then & € C(G) because & = %f*& and fx& € C(G) by proposition
(9.4.5). Therefore it mkes sense to evaluate & on an element of G. Let 1y,...,Maq,
be an orthonormal basis for H,. Then R)(g)& = Z]d 21(M;, Ra(g)é)n;. Evaluating
both sides on e, the identity element of G and using &(g) = (R(g)&)(e) we get
&(g) = (Zfi:ﬂ nj(e)n;, R(g)&) = a representation function of Rj.

(4) Given € > 0, by proposition obtain § € C(G) such that ||[f x & — f]|o <
€/2. Let{A; :1 =1,2,...} be an enumeration of elements of A in descending order
of their absolute values. If we denote by P; the orthogonal projection onto J,,,
then the spectral theorem gives Ly = }_; A;P;, where the right hand side is a norm
convergent sum. Therefore

fxd=1L¢(8) :hTanZAiPi(é). (9.9)
i=1

By (3) each P;(9) is a representation function because it is in J(,,. Also, represen-
tation functions form a linear space. Therefore, > i' ; A;P;(8) is a representation
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function. Thus by we have shown f % § is an L, limit of representation func-
tions. Therefore there is a representation function h such that ||[f x 6 — h||, < €/2.
Triangle inequality along with || - ||2 < || - ||« gives

If —hl2 <||f*0—Ff|l2+|[fx0—h|2 < |[f*xd—f|lw+€/2< €.
(5) Given € > 0, by proposition (9.5.2) obtain § € C(G) such that Hf* § — flloo <

€/2. By (4) obtain a representation functlon f" such that ||f — || < Then for
all g’ € G we have

2|I5H

(=) % 8)(g)] = |J(f—f’)(g'g)5(g—‘)dg|
< \/J((f—f')(g'gnzag\/ﬁ&gde
_ \/J((f—f')(g))ng\/J(S(g))ng
= =125
< €/2.

Therefore ||((f — f') x §)||oc < €/2. By triangle inequality
1% 8 = flloo < ((F =) % 8)[loo + [ %6 — flloo < €.

By (2) and (3) above ' x 6 is a representation function and we can take thatas h. [

9.6 Fourier Series on Compact Groups

Let G be a comact, Hausdorff topological group and A it’s unique Haar measure
normalized to have mass 1. We have already seen that representation functions are
dense in C(G). Now we seek to expand a function f € L,(G) in an abstract Fourier
series in terms of representation functions. So, let us fix notations. Recall we have
denoted by G the set of equivalence classes of finite dimensional irreducible unitary
representations of G. Let us fix a representative from each class. Given a represen-
tation ¢ we will denote the representation space by H. It is a finite dimensional
Hilbert space, say of dimension dy,. Fix an orthonormal basis ey, ..., eq, of 3. By
Schur orthogonality relations {,/d¢04,1; : 1 < 1,j < dg}is an orthonormal set. Let
us record the following corollary of the Peter-Weyl theorem.

Corollary 9.6.1. The family U, ,1ca{y/de0¢,15 1 1 < 1,j < dg} is an orthonormal
basis of L, (G).

Lemma 9.6.2. Let f € L,(G). Then the projection of f onto the span of {\/d¢0¢,1; : 1 <
1,j < dg}is given by d(f xXg ).
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Proof. We need to calculate } ; (0,1, )0,

D (8645, HBp15(M) = D (J (ei/¢(9)€j>f(9)d7\(9)) (e, d(h)e;)

ij ij

= Y [ ta)0(0)e;, el dlh)es) d(g)

- J

1)
= ) | f(9)(d(g)e;, d(h)e;)dA(g)

)

= > hf(9)<ejr¢(97]h)ej>d7\(9) [since ¢(g)" = d(g™")

=
f(9)xe (g~ Th)dA(g)
= fxxqe(h). ]

I
L—ﬁ

Theorem 9.6.3. Let G be a compact Hausdorff topological group and f € L,(G). Then
f=2 ,eca dof *Xo, where the sum converges in L, norm.

Proof. Corollary (9.6.1) and lemma (9.6.3) proves the result. O

Proposition 9.6.4. Let X be a compact Hausdorff space and V : X — £(H) be a map
such that Vv € JH{, x — V(x)(v) is continuous. Such maps will be referred as strongly
continuous maps. Let u be a probability measure on the Borel sigma-algebra of X.
Then

@i). sup,x [[V(X)|| = M < oo.

(ii). The map By : H x H — C given by B(u,v) = [(u, V(x)v)du(x) is conjugate
linear in u and linear in v. Also |B(u, v)| < |[ul||[v]|Mp(X).

(iii). There exists a bounded linear map to be denoted by [ V(x)du(x) such that
B(u,v) = (u, ([ V(x)du(x)) (v)).

Proof. (i) Strong continuity coupled with the continuity of nor implies that for all
v € H the map x — ||V(x)(Vv)]| is continuous. Therefore Vv, sup, ., [|[V(x) (V)| < oo,
and by the Uniform Boundedness Principle we get the result.

(ii)Cauchy-Schwarz inequality and (i) implies
[{w, VO < [ufl[[v][M.
From this (ii) immediately follows.

iii) Obvious. O
( )
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9.7 Projection Formulas

Let G be a compact, Hausdorff topological group and V : G — U(H) a unitary
representation which is also strongly continuous.
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Week 10

Spectral Theory for Bounded
Operators

10.1 Banach Algebras

Definition 10.1.1. A Banach algebra A is a Banach space along with an associative
and distributive multiplication denoted (a,b) — a.b such that ||a.b| < C||a||||b]|
for all a,b € A for some positive C.

Remark 10.1.2. Let A be a Banach algebra. Then there exists an equivalent norm ||.||’
on A such that forall a,b € A, ||a.b||" < ||a|||b]|".

Proof. Suppose ||a.b|| < Cl|a||||b||Va,b e A

Case 1: C < 1, take ||a|’ = ||a||

Case 2: C > 1, define || a|’ = C||a]

In view of the above remark given any Banach algebra we will assume that the
norm satisfies ||a.b|| < ||al|/||b|| forall a,b € A. O

Proposition 10.1.3. (1) Let A be a Banach algebra. Then A = A & C is a Banach
algebra provided,

(X,O().(y,ﬁ) = (xy+ocy—|—[5x,oc(5)
[l =[xl + ||

(2) x — (x,0) gives an isometric embedding of A in A as an ideal.

(3) e = (0, 1) satisfies (x, x).e = e.(x, &) = (x,«) and ||e|| = 1.

Definition 10.1.4. A Banach algebra A with an element e such that ex = x.e =
xVx € A, ||e|| =1 is called a unital Banach algebra.

Remark 10.1.5. The previous proposition says every Banach algebra can be isomet-
rically embedded into a unital Banach algebra. Henceforth unless otherwise stated
a Banach algebra means a unital Banach algebra.
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Example 10.1.6. Let K be a compact Hausdorff space. C(K) be the space of all con-
tinuous complex valued functions on K. For f, g € C(K), Define

(f+9g)p) = flp)+glp)
(f.9)(p) = f(p).gp)
[f] = suppexlf(p)l

C(K) is a commutative Banach algebra.

Example 10.1.7. Let E be a Banach space. Then £(E), the space of all bounded linear
maps from E to itself is a Banach algebra under operator norm.

Example 10.1.8. Let K be a compact subset of C or C™ with nonempty interior. Then
A ={f € C(K) : flipterior of k i holomorphic} is a Banach algebra.

Proposition 10.1.9. Let G be a locally compact group. Let p be a Haar measure on
G. Recall that u satisfies

| ftgmyaut) = [ ttmaucn.

Then A = L;(G, ) is a Banach algebra with multiplication defined by

(F1 % £2) = Jﬂ (9)f2(g~Th)dyx(g).

Proof. (1) f; xf, € Ly:
J!ﬂ « Fa(h)du(h)- < j j £1(g)If2(g™ " hidu(g)du(h)

_ J |f1(g)|du(9)J|fz(h)|du(h)
= il

Therefore we have proved

fixf, € L1(G)and
If1xf20l < [[fall][f2]l4

(2) (f1 *fz) *f3 =f; % (fz*fg,) :
(f1 % 2) xf3(u) = n(f1*f2)(\))f3(\)_1udv

r

= Jf1(w)f2(w1v)f3(v1u)dwdv

= "Jﬂ(w)fz(v)fg(\)]w]u)dwdv
= h*(fz*fs)(u)

O]
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Example 10.1.10. Let C'[0, 1] be the space of once continuously differentiable func-
tions. Define ||f|| = supxeio1If(x)] + supxeo,11/f’(x)|. Then under pointwise multi-
plication C'[0, 1] is a Banach algebra.

Example 10.1.11. Let A C B(H) be a norm closed subalgebra. D a densely defined
closed operator. D need not be bounded. Let

A ={ae A : a(Dom(D)) C Dom(D) and V& € Dom(D)
3C > O such that ||[D, al&|| < CJ[&||}

A is a Banach algebra with the norm ||a||'") = |a|| + ||[D, al||.

Proof. Suppose {a,} is a Cauchy sequence with respect to | - ||". Then a, —
a, and [D, a,,] — b For § € Dom(D) we have

Dan,& — b&+ aD§
aé — a

Since D is closed

(i)a¢, € Dom(D)
(il)Daé = aD& + b
Therefore [D,a] = b
So,a € AW

Therefore A" is complete. For a,b € A1),

lab]|"" = ||ab]| + [|[D, abl|
< lalllfoll+ 1D, a]b + a[D, bl||
< lall™p) .

]

Theorem 10.1.12. Assume that A is a Banach space as well as a complex algebra
with a unit element e # 0, in which multiplication is both left and right continuous.
Then there is a norm on A which induces the same topology as the given one and
makes A a Banach algebra.

Proof. Define : A — L(A) by, mt(x)(z) = xz. Clearly 7t(x) is linear. It is continuous
because multiplication is given to be right continuous. [|x|| = [|xe|| = [|mt(x)(e)|| <
|7t(x)||||e]|, So 7t is one to one. We also have ||7t(x)7t(y)|| < ||7t(x)||[|7(y)]], [|(e)|| = 1.
So m(A) is a Banach algebra provided it is complete. For that it is enough to show
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that 7t(A) is closed. For that suppose 7t(x,) — T in £(A). Then x,, = 7(x)(e) —
T(e) = x.
T(y) = imz(xn)(y) = Umxny = xy = 7nt(x)(y)

by continuity of left multiplication. So T = 7t(x). O

Definition 10.1.13. A linear map ¢ : A — B is called a homomorphism if

dxy) = d(xX)dbly), WxyecA
b)) < x| V¥x € A.

A nonzero homomorphism into the complex numbers is called a complex homo-
morphism

Proposition 10.1.14. If ¢ is a complex homomorphism on a Banach algebra A then
d(e) =1 and ¢p(x) # 0 for all invertible x € A.

Proof. For somey € A, d(y) #0, d(y) = d(y)d(e) gives dp(e) = 1.
d(x)p(x7") = d(e) =1 gives d(x) # 0. O

10.2 Spectrum

Proposition 10.2.1. Let x € A with ||x|| < 1 then (I — x) is invertible.

Proof. The series > ., x™ converges and is the inverse of (I — x). O

Corollary 10.2.2. Let G(A) be the set of invertible elements of a Banach algebra A.
Then G(A) is an open subset of A.

Proof. Letx € G(A). Fory € Awith |ly| < W, (x—y) = x~ ' (I—x""y) is invertible
by the previous proposition because |[x y|| < [x7'||[Jy]| < 1. O

Definition 10.2.3. Let A be a unital Banach algebra and x € A. Then the spectrum
of x is defined as {A € C: (A — x) is not invertible}. It is denoted by 04 (x). We often
drop the subscript A. For a nonunital Banach algebra A the spectrum of an element
x is defined as o ;(x) where A is the unitization defined before.

Definition 10.2.4. The spectral radius p(x) of x € A is defined as
p(x) = sup{lAl : A € o(x)}-

Definition 10.2.5 (The resolvent set). The complement of spectrum of x € A is called
the resolvent of x and is also denoted by p(x). We have also used same notation for
spectral radius. Both notations are standard. You have to make out from the context.
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Definition 10.2.6 (The resolvent function). Let x € A. Then for A € p(x), the func-
tion A — Ry (x) = (A4 —x) 7! is called the resolvent function.

Proposition 10.2.7. Let x be an element of a Banach algebra A. Then o(x) is a
nonempty closed and bounded subset of C.

Proof. o(x) is closed:

Enough to show that it's complement is open. Suppose A is such that (A — x) is
invertible. Then by the proof of the previous corollary the ball of radius
around A is contained in o(x)¢. Hence o(x)¢ is open.

o(x) is bounded:

If Ais such that [A| > [|x|| then (A—x) = A(I—3) is invertible. Hence o(x) is contained
in the ball of radius ||x||.

o(x) is nonempty:

If possible let o(x) be empty. Then f(A) = (A — x)~! is a holomorphic function
defined on the entire plane. For A > ||x||, we have

fa) = A (I—%)q

1
A=~

o X
= )\*‘E AT si - <1
Tl:Ox ,s1nce||7\|| <
So, [f)]] < [

1
<Y
Al = [Ix]

Al
Al = [Ix|

Hence f is a bounded entire function. Therefore it must be constant. From the
previous estimates we see that lim,_,f(A) = 0. Hence f is the constant function 0.
But 0 is not invertible so we get a contradiction. O

Theorem 10.2.8 (Gelfand-Mazur). Let A be a Banach algebra such that every nonzero
element is invertible then A = C.

Proof. Suppose A; # A, € o(x), then (x —A;) =0 = (x —A;). Hence, o(x) consists of
a single point say A(x), and x = A(x)I. x — A(x) gives an isomorphism between A
and C. O

Lemma 10.2.9. Let R be a commutative ring over C. Then ab is invertible iff a and
b are invertible.

Proof. Suppose ¢ = (ab)™! = (ba)~". Then a=' = bc because, (i) abc = 1 (ii)
bca = abc = 1, the first equality uses commutativity. O

Proposition 10.2.10. Let p be a polynomial. Then for any x € A, o(p(x)) = p(o(x)).
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Proof. Let A € C.

plz)—A = CH(Z—N), for somec #0,A;,--- ,Ap €C

(x) for some i

> >
&

_@ Mm
—~ Q

o(x)) since A = p(A;)

Aep(ox)) = A=p(u) for some p € o(x)
= p(x) —A = (x — pn)q(x) for some polynomial q
— A € o(p(x)) by the lemma above

O

Proposition 10.2.11. Let x be an element of the Banach algebra A. Then the spectral
radius satisfies p(x) = Lim||x™||s = inf|[x™||"/™

Proof. By the previous lemma p(x™) = p(x)™,¥n > 1, also p(x) < ||x]|. So, p(x)™
p(x™) < |Ix||™ implying p(x) < inf|x™|"/™ < Lﬁl”Xan. To Complete the proof it
suffices to show Lim|[x™||= < p(x). Let ¢ be a continuous linear functional on A.
Then the resolvent

fAN)=A—=x)""T=A"T1=A"Tx)"!
is holomorphic outside the disk of radius p(x). So, g(A) = A(1 —Ax)~! is analytic
1n51de the disk of radius 5. For Al < ||x|| we have the power series expansion

g =Y A™tIx™ The functlon A — (¢ o g)(A) is holomorphic in the disk of radius

p Hence it’s Taylor series ) ¢(x™)A™"! converges in this disk. Thus

[p(A™X")] — 0 if Alp(x) < 1.
For each fixed ¢ and A we have some constant C(A, ¢) such that
Sup,|d(A™x™)| < C(A, ).

For each |A| < ( ) consider the family of linear functionals on A* givenby T,, : ¢ —
d(A™X™). We know

Supn[Ta(d)l < C(A, d).

By the uniform boundedness principle we get

sup || Tn || < C(A) for some constant C(A).
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Clearly || T, || = []A™x™]|, so
_ 1
Ix™M| < CAA)A™™ for |]A| < —
p(x)
1

= |x™|"™ < CN)VMAITT for A < —
p(x)

I 1
— Tim|x™|"™ < A7 for A| < —
p(x)

= Lim|x™"™ < p(x)

10.3 Holomorphic Function Calculus

Let x € A and Q an open neighborhood of o(x). Let f : O — C be a holomorphic
function. Let " be a contour in Q surrounding o(x). Then define

f(x) 1 J FA) dA.
r

T 2mi A —x
Note that on the resolvent set A — % is holomorphic. Hence the integral is well

defined and does not depend on T".

Proposition 10.3.1. The mapping f — f(x) is a homomorphism from the algebra of
functions holomorphic in a neighborhood of o(x) to A. Moreover if f, : QO — Cis
given by fy(z) = z* then fi(x) = x*.

Proof. Let f and g be holomorphic functions defines in a neighborhood of o(x). Let
Cy, C, be curves surrounding o(x) such that C; lies inside C;. Then,

A f(A) 1 g()
f(X)g(X) a (Z_MJC1 }\_Xd]\> (EJ'CZ u_xdu)

10
= 1 fA)G()A —x) ' (p—x) "' dAdp
Tt JCi1 JC,

I I B I (O [ AR
47-[2JC1JC2 }\_H l‘L_X }\_X'
T fA)gw) 1

- dAd
47TZJC]JC2 }\_I"L H_X u

1 1 f(A) g(p)
N ZﬂiJCZ ZniJC ?\—ud?\> u—xdu

) dAdp
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Here the fourth equality follows from 715 [ (fcz — dp.) fA) — 0. This is so be-

cause 1s holomorphic inside C; if A lies in Cj.
To show fk( ) =x5,let C ={A: || = ||x|| + €} for some € > 0.
1 2 XAk
f = — A
O = J ATk
== Xk

O

Proposition 10.3.2 (Spectral Mapping Theorem). Let x € A and f be a holomor-
phic function in a neighborhood of o(x). Then o(f(x)) = f(o(x)). Moreover if g is
holomorphic in a neighborhood of f(o(x)), then we have (g o f)(x) = g(f(x)).

Proof. Let y = f(x) and p &f(o(x)). Since f(o(x)) is compact FU open with u
compact f(o(x)) € U C U C {u}¢. On f~'(U) define a holomorphic function h(A) =
f(T Put z = h(x), then by the previous proposition (y — )z = (f(x) — p)h(x) =
(h(f—u))(x) =1, hence u ¢o(f(x)). On the other hand if 1 € f(o(x)), then u = f(Ag)
for some Ay € o(x). Then there exists holomorphic h around o(x) such that

f(A) —u = (A—=2Ao)h(A)
so, (y—u) = (x—Ao)h(x)

Since (x — Ag) is not invertible neither is (y — @). Thus u € o(f(x)). Now choose
simple closed curves C; and C, in such a way that C; encloses f(o(x) and is in the
domain of g and C, encloses the inverse image of C; under f and is contained in
the domain of f.

(gof)ix) = zldL 9o DN 4
ol g(w) 1
= ). c (J —f(?\)d”) A=
= 1
- o] () ) @
1 u) d
- u

10.4 Abelian Banach Algebras

In this section unless otherwise stated we are dealing with a not necessarilly unital
commutative Banach algebra A.
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Definition 10.4.1. An ideal m of A is called regular the quotient ring A/m is unital.
In other words if there exists e € A such that Vx € A, ex—x cm.

Proposition 10.4.2. Let m be a proper regular ideal of A. If e is an identity modulo
m, then we have
inf{lle—x||:xem >1.

n

Proof. Suppose |le—x|| < 1for some x € m. Then the power seriesy = _; (e —x)
converges. Since (e —x)y = anz (e —x)"™, we have

y = (e—x)+(e—x)y
= ey—Xxy+e—x.

Hencee=y—ey+xy+xecm Foranyac A, a=ea+ (a—ea) € m. Thusm = A,
a contradiction! O

Corollary 10.4.3. The closure of any regular proper ideal of an abelian Banach alge-
bra A is proper and regular. In particular any maximal regular ideal is closed.

Proposition 10.4.4. Any proper regular ideal is contained in a maximal regular
ideal.

Proof. Let e be an identity modulo m. Then any ideal containing m is regular. Now
apply Zorn’s lemma to ideals containing m and not containing e. O

Proposition 10.4.5. Let m be a closed ideal of a possibly noncommutative Banach
algebra A. The quotient algebra A/m is a Banach algebra.

Proof. Let m: A — A/m be the quotient map. From the definition of the quotient
norm it follows that ||7t(x)|| = inf{||x + m|| : m € m}. Given € > 0 get m,n from m
such that [|x + m| < ||(x)|| + €, [[y + n|| < ||7t(y)]| + €.

In(x)(y)l] = [ImOy)|| = [|m((x +m)(y +n))|
< Jlx+m)(y +n)|
< (IO 4 e)(lm(y)|| + €)

Since e is arbitrary ||7t(x)7t(y)|| < ||7e(x)]|]|7e(y)]]- O

Proposition 10.4.6. Let A be a unital Banach algebra. If an element x € A is not
invertible then x is contained in some maximal ideal.

Proof. Ax is a proper regular ideal. Hence there exists a maximal ideal containing
this. O

[Lecture Notes of P.S.Chakraborty]



[78]

Proposition 10.4.7. Let ¢ : A — C be a nonzero complex homomorphism. Then
¢$~1(0) is a regular maximal ideal. ¢ — ¢~ '(0) gives a bijection between nonzero
complex homomorphisms and regular maximal ideals of A.

Proof. Since A/Ker(¢) is isomorphic with a field ker(¢) is a regular maximal ideal.
To show that the correspondence is bijective observe that for a regular maximal
ideal m, A/m is a Banach algebra with every nonzero element being invertible. This
is so because otherwise by the above proposition we will get a contradiction to the
maximality of m. Now by the Gelfand-Mazur theorem A/m = C. Hence m = ker(¢)
where, ¢ : A — A/m is the quotient map. O

Proposition 10.4.8. Let w be a nonzero complex homomorphism of A. Then ||w|| <
1.

Proof. We have,
W)l = lw ™)™ < ol ™"

Now taking limit as n goes to infinity we get [w(x)| < p(x) < ||x||. Therefore ||w|| <
1. O

Proposition 10.4.9. (i) Let (Q(A) be the set of all nonzero complex homomorphisms.
Then under weak* topology Q)(.A) is a locally compact Hausdorff space.

(ii) If A is unital, then Q(A) is compact.

(iii) For x € A, X : Q(A) — C defined by X(w) = w(x) gives a homomorphism
F: A — Co(Q(A)), called Gelfand transform.

(iv) For A unital we have o(x) = {X(w) : w € Q(A)}. For A nonunital o(x) = {X(w) :
w e Q(A)}u{o}

(V) [[x]| = p(x).

Proof. (i) Let Q" = Q U{0} and w; be a convergent net in ()’. Suppose w; — w in
weak* topology. Then w(xy) = limw;(xy) = limw; (x)wi(y) = w(x)w(y). There-
fore w is a homomorphism. It may be the zero homomorphism. Being a weak*
closed subset of the unit ball of A* ()’ is compact. Clearly {0} is closed. Hence Q(A)
is locally compact. Suppose w; # w, € Q(A). Then there exists x € A such that
lwq(x) — wa(x)] > € for some € > 0. Note that {w : |w;(x) — w(x)| < €/3} and
{w : |wy(x) — w(x)| < €/3} are disjoint neighborhoods of w; and w,. Hence )’ is
Hausdorff.

(ii) If A is unital then {0} is an isolated point in Q' because for any other w €
Q'w(1) = 1. Hence Q is compact.

(iii) X € Co(Q(A)) because for any € > 0,{w : [x(w)| > €} is compact. Clearly F is a
homomorphism.

(iv) Case 1 A Unital : If A € o(x) then (x — A) is not invertible. Hence there exists
w € Q(A) such that w(x —A) = 0 or equivalently A = X(w). So, A € Range of x.
Conversely suppose A = X(w) = w(x), then w(x —A) = 0. Hence A € o(x).

(v) Follows from (iv). Note that this implies that the Gelfand transform is contrac-
tive. O
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Definition 10.4.10. Let A be a commutative Banach algebra then QO(A) is called the
space of characters of A or the spectrum of A.

10.5 Characters of [(G)

Let G be a locally compact abelian group and , a left invariant Haar measure. Then
we have seen the abelian Banach algebra L; (G, ). We wish to identify its space of
characters.

Theorem 10.5.1. Let w be a character of L1 (G), that is to say that it is a nonzero homo-
morphism from Ly (G) to the complex numbers. Then there is a continuous homomorphism
¢ : G — Tsuch that w(f) = [ f(g)d(g)dg.

Proof. In particular w is a bounded linear functional on L;(G), hence there exists
¢ € Lo(G) such that w(f) = [ f(g)d(g)dg.

Wit 512) = | (f1 % f2)(Wo(h)dh
JG

_ J f1(g)f2(g""h)d(h)dgdh
GJG

_ ﬁ(g)(j Ly(f2) ()b (h)dh)dg
unG G

On the other hand

w(fixf2) = w(fi)w(fz)

Therefore ,
Lw(fz)ﬁ(g)(b(g)dg - Lfl(g)w(Lg(fz))dngfhfz€L1(G)- (10.1)

Since w is a nonzero homomorphism there exists f, such that w(f,) # 0. It follows

from (10.1)) that
blg) = —— < ae (10.2)

Note that ¢ is determined upto a set of measure zero. However Part (3) of propo-
sition (9.4.2) along with (10.2)shows that ¢ is almost everywhere equal to a contin-
Lg(f2

uous function namely w#fz)” and we will take this representative. In particular
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¢d(e) = 1. To see that ¢ is multiplicative note that given arbitrary f;,f, € L;(G),
0 = w(fyxf)—w(f)w(f,)

- [ f1(9)fz(91h)¢(h)d9dh—(J f1(9)¢(9)d9)(J f,(h)d(h)dh)
JG G G

- [ f1(9)fz(91h)¢(991h)dhd9—J J £1(g)f2(N)d(g)p(h)dgdh
thuG GJG

~ [ ﬂ(g)fz(h’w(gh’)dh'dg—j j f1(g)f2(M)b(g)b(h)dgdh,
JG JG GJG

[ substituiting g '"h="n,]

= f1(g)f2()(d(gh) — d(g)db(h))dgdh.

JGJG

Since ¢ is continuous this shows that ¢ is a homomorphism, that is

¢(gh) = d(g)p(h), Vg, h € G.

It remains to show that [p(g)| = 1,Vg € G. Suppose there exists « > 1 such that the
openset Ay ={g € G : |p(g)| > o} is non-empty. Fix a compact subset K of A of
positive measure. Define

d(g)
f(g) = { (9] ifg €K
0, otherwise

Then ||f||; = [K|, where |K| denotes Haar measure of K. Let f = ﬁ By proposition
(10.4.8) we have
: 2 $(g) ¢(9)
12 ||wl.|Ifl| = lw(f)l = J —=——="d
[[ewl]-[[£]] (f) oo K49
b (9]l
= ———dg > o> 1!
L KO

This contradiction shows that A, must be empty. That is |p(g)| < 1 forall g € G.
Similarly considering cb(g)fl we conclude that |p(g)| > 1 forall g € G. Thus we get
range of ¢ is contained in{z € C : |z| = 1}.

]

10.6 Cr-algebras

Definition 10.6.1. A Banach algebra A is called involutive if there exists a map * :
A — A such that a — a* satisfies

(a+Ab)* = a*+ Ab%,
(ab)* = b*a¥,
(a®)" = gq,

Il =l
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An involutive Banach algebra A is called a C*-algebra if ||x*x|| = ||x||* for all x € A.

x € A is called hermitian or selfadjoint if x = x*, normal if xx* = x*x, unitary if
x*x = xx* = I, projection if x = x* = x°.

Proposition 10.6.2. Let A be a C*-algebra. If x € A is normal then ||x|| = p(x)
Proof. ||X*]|* = |(x*)*x?|| = || (x*x)?|| = |[x*x||* = ||x||*. Therefore we have, ||x?| =
Ix[|?, implying ||Xz || = [Ix[I*". So p(x) = [Ix]I- O

Proposition 10.6.3. Let A be a unital C*-algebra.

1. o(u) C{A:|A|| =1} for all unitary u.

2. o(h) C R for all hermitian h.

Proof. (1) ||[u||* = |lwu| = |1|| =1 :> |u|| = 1. Therefore o(u) is contained in the
unit disc. Also u is invertible with u™' = u*. Therefore 0 does not belong to o(u).
Therefore by the spectral mapping theorem we have o(u™') C {z € C : [z] > 1}.
On the otherhand |[u™'|| = ||[u*|| = 1, hence o(u™') C {z € C : |z| < 1}. Therefore
o(u™") C{z € C: |z] = 1}. Now by the spectral mapping theorem we are done.

(2)u = e'" is a unitary. Hence by the spectral mapping theorem we have e'°") C
{z € C:|z| = 1}. The only way this can happen is o(h) C R. O

Theorem 10.6.4. Let A be an abelian C*-algebra. If Q) is the spectrum of A, then the
Gelfand transformation is an isometric isomorphism of A onto Co(Q), preserving the x-
operation.

Proof. We know |[[X|| = p(x). On the other hand since A is abelian every element is
normal. So, ||x|| = p(x). Therefore the Gelfand transform x +— X is isometric. Take
w e O, forh € Ay, w(h) € o(h) € R. x can be expressed as x = h + ik, with
hk € An. w(x*) = wh—ik) = w(h) —iw(k) = w(x). Hence x X preserves
*-operation.

Let F: A — Co(Q), F(x) =X, then F(A) separates points because if w; # w, € Q,
then there exists x € A such that w;(x) # w,(x). Hence X(w;) # X(wz). By the
Stone-Weirstrass theoremJFA = Cy(Q). H

Proposition 10.6.5. Let Q) be a locally compact Hausdorff space and A = C,(Q).
The map w € Q — @ € Q(A) given by @(x) = x(w) is a homeomorphism of Q
onto Q(A).

Proof. Let us assume Q) to be compact. Then Q(A) is compact and w +— @ is contin-
uous because if wy, — w then x(wy) — x(w)Vx € A, or equivalently @(x) — w(x).
w — @ is one to one: Suppose w; # w,, then by Tietze extension theorem 3f such
that f(w;) = 0and f(w,) = 1. w;(f) # w;(f).
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w — @ is onto: Let m be a maximal ideal of A. Then Jw such that m = {x : x(w) =
0}. Let ¢ be the homomorphism corresponding tom,ie., ¢ : A — A/m, d(x) = x(w).
Then @ = ¢. So w — @ is a bijective map between compact Hausdorff spaces.
Hence it is a homeomorphism.

If O is locally compact and not compact then argue through one point compact-
ification. O

Proposition 10.6.6. Let B C A be a C*-subalgebra of a unital C*-algebra containing
the identity. Then Vx € Bog(x) = 04(x).

Proof. Case 1: Let x be self adjoint.

Clearly 04(x) € og(x). Suppose A € R\ 04(x) we want to show A ¢ o5 (x). For
€ > 0,Ac = A +ie ¢ op(x), hence (x —A.)~" € B. Using continuity of inverse in
G(A), we get (x—Ac)™ " — (x—A)""in G(A). Since B is closed, (x—A)~' € B, hence
A& ogp(x).

Case 2: If x € B is invertible in A then x*x is invertible in A and so in B (By the pre-
vious case). Hence x is left invertible in B. Similarly using xx* x is right invertible
in B. Hence x is invertible in B. So, A ¢ 0.4(x) iff (x —A) is invertible in A iff (x — A)
is invertible in B iff A € o5(x). ]

Proposition 10.6.7. Let A be a unital C*-algebra. If x € A is normal then there exists
a unique isomorphism ¢ : C(o(x)) — C*(x), the C*-algebra generated by x and 1
such that ¢(i) =1, (1) = x where ¢ : o(x) — Cis the function ((A) = A.

Proof. Let B = C*(x) and P = polynomials in x and x*. P is dense in B. Let O
= space of all complex homomorphisms from B to C. Define P : QO — o(x) by
M) =n(x).

P(n) € o(x): n(x —n(x)) = 0, hence x — n(x) is not invertible.

1 is continuous: Suppose 1, — 1 in weak”, then n(x) — n(x) in C.

1 is one to one: Suppose 1n; and 1, are two homomorphisms such that n;(x) =
N2(x), then n1|p = n2|p. Since P is dense in B, 1 = 1>.

P is onto: Suppose A € o(x), then 3n such that A =n(x). Pp(n) = A.

1 is a bijective continuous map between compact Hausdorff spaces and hence a
homeomorphism. 1 induces an isomorphism between C(Q) and C(o(x)). This iso-
morphism composed with the inverse of the Gelfand transform gives the required
isomorphism. In other words ¢(f) = F~'(f o) is the isomorphism. H

Definition 10.6.8 (Continuous Function Calculus). Let x € A be a normal element.
Let f be a complex valued continuous function on o(x). Then ¢(f) with ¢ as in the
previous proposition is denoted by f(x).

Proposition 10.6.9. Let A be a unital C*-algebra. Then every element of A is a linear
combination of 4 unitary elements.

Proof. Let x € A be selfadjoint and ||x|| < 1. u = x+1i(1 — x2)'"%isa unitary and

x = Z(u+ur). O
[Lecture Notes of P.S.Chakraborty]



[83]

Proposition 10.6.10. Let K C C be compact. Ax = {x € Alx is normal and o(x) C K}.
If f: K — Cis continuous then x € A1 — f(x) € A is continuous.

Proof. By Stone-Weirstrass there ixists a polynomial p(z,z) such that
Sup.cklp(z,z) — f(z)| < €

There exists a constant M such that ||x|| < M for x € Ax. Also, since p is a polyno-
mial 38 > 0 such that

PO, x™) = ply, Y7l < eif [x —yll <&, [Ix[l, [yl < M.

Now if x,y € Ax and ||[x—y|| < §, then ||f(x)—f(y)|| < [|[f(x)—p(x, x*)||+|p(x,x*)—
Py, Yy + [If(y) — Py, y*|| < 3e. -

Theorem 10.6.11 (Not Done in Class). For a selfadjoint element x in a C* algebra A, the
following are equivalent.

(i) o(x) € [0, 00).

(ii) x = y*y for somey € A.

(iii) x = h? for some h € A.

The set of all selfadjoint elements satisfying any of the above is a closed convex cone P in A
with PAp(—P) = {0}
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