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Preface

These are my planned course notes on Functional Analysis offered to MMath 1st
year students.
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Week 0

Agenda

0.1 Things we need to decide

Already decided marks distribution.

0.2 What do we do in this course?

Linear algebra coupled with topology.
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Week 1

Normed Linear Spaces

Definition 1.0.1. Let E be a real or complex vector space. A norm on E is a function
‖ · ‖ : E→ R such that

1. ∀v ∈ E, ‖v‖ > 0 with equality iff v = 0.

2. ∀v ∈ E, ∀λ ∈ R, ‖λv‖ = |λ|‖v‖.

3. ∀v,w ∈ E, ‖v+w‖ 6 ‖v‖+‖w‖. This property is also called triangle inequality.

Definition 1.0.2 (Normed Linear Space). A Normed Linear Space (V , ‖ · ‖) consists
of a real or complex vector space V along with a norm ‖ · ‖ on V . If the norm is clear
from the context we may drop it from notation.

Exercise 1.0.3. Let (V , ‖ · ‖) be a Normed Linear Space. Then d‖·‖(v,w) := ‖v −w‖
is a metric called the metric induced by the norm.

Proposition 1.0.4. Let (E, ‖ · ‖E), (F, ‖ · ‖F) be normed linear spaces. A linear map
T : E→ F is continuous iff it is continuous at 0.

Proof. Only if part is obvious we only need to show the if part. To establish con-
tinuity at w, given ε > 0 we need to find δ > 0 such that d‖·‖E(w,w′) < δ =⇒
d‖·‖F(T(w), T(w

′)) < ε. Since T is continuous at zero given ε > 0, there exists
δ > 0 such that ‖T(v)‖F < ε whenever ‖v‖E < δ. This δ works because if δ >
d‖·‖E(w,w′) = ‖w−w′‖E then

ε > ‖T(w) − T(w′)‖F
= d‖·‖F(T(w), T(w

′)).

Proposition 1.0.5. Let (E, ‖ · ‖E), (F, ‖ · ‖F) be normed linear spaces. A linear map
T : E→ F is continuous iff there exists C > 0 such that ‖T(v)‖F 6 C‖v‖E, ∀v ∈ E.
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Proof. If part: We know it is enough to show continuity at zero and that follows
because ‖v‖E < ε/C =⇒ ‖T(v)‖F < ε.

Only if part: Since T is continuous at zero we know ∃δ > 0 such that (∗) ‖v‖E <
δ =⇒ ‖T(v)‖F < 1.

Claim: ‖T(v)‖F 6 2
δ
‖v‖E.

If not then ∃w such that ‖T(w)‖F > 2
δ
‖w‖E. Let w′ = 2δ

3‖w‖E
w. Then ‖w′‖E =

2δ
3
< δ. Therefore by (∗)

1 > ‖T(w′)‖F =
2δ

3‖w‖E
‖T(w)‖F

>
2δ

3‖w‖E
2‖w‖E
δ

> 1,

a contradiction!

Definition 1.0.6. Let (E, ‖ · ‖E), (F, ‖ · ‖F) be normed linear spaces. A linear map T :

E→ F is said to be bounded if there exists C > 0 such that ∀v ∈ E, ‖T(v)‖F 6 C‖v‖E.
The set of bounded linear maps from E to F is denoted by L(E, F) and L(E,E) is
denoted by L(E). In general L(E, F) is a subset of L(E, F).

Definition 1.0.7 (The Dual of a Normed Linear Space). Let E be a normed linear
space over the field K where K could be R or C. Then the space L(E, K) of bounded
linear functionals is called the dual space of E and is denoted by E∗.

1.1 Hahn Banach Theorems: Analytic Forms

Theorem 1.1.1 (Hahn Banach: Analytic Form). Let E be a real normed linear space and
F ⊆ E be a subspace. Let φ ∈ F∗. Then there exists φ̃ ∈ E∗ such that ‖φ̃‖ = ‖φ‖.

Proof. Step 1: Let F1 = F + Rx0, where x0 ∈ E \ F. Let us denote a prospective
candidate for φ̃(x0) by φ0. Then we must have

|φ(x) + λφ0| 6 ‖φ‖‖x+ λx0‖,∀x ∈ F, λ ∈ R. (1.1)

These inequalities are equivalent to the following system of inequalities.

φ(x) + λφ0 6 ‖φ‖‖x+ λx0‖, ∀x ∈ F, λ ∈ R (1.2)
−(φ(x) + λφ0) 6 ‖φ‖‖x+ λx0‖, ∀x ∈ F, λ ∈ R (1.3)

Since −(φ(x)+λφ0) = φ(−x)+(−λ)φ0 and ‖x+λx0‖ = ‖−(x+λx0)‖ the system of
inequalities given by (1.3) and (1.2) are equivalent. So, we can say that the system
of inequalities given by (1.1) is equivalent with (1.2). Considering the cases λ ≶ 0 in
(1.2) we get

φ(y) − ‖φ‖‖y− x0‖ 6 φ0 6 ‖φ‖‖x+ x0‖− φ(x),∀x,y ∈ F (1.4)

[Lecture Notes of P.S.Chakraborty]
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So, we must show supy∈F(φ(y) − ‖φ‖‖y − x0‖) 6 infx∈F(‖φ‖‖x + x0‖ − φ(x)) or
equivalently

φ(y) − ‖φ‖‖y− x0‖ 6 ‖φ‖‖x+ x0‖− φ(x),∀x,y ∈ F. (1.5)

But this follows fromφ(x)+φ(y) = φ(x+y) 6 ‖φ(x+y)‖ 6 ‖φ‖‖x+y‖ 6 ‖φ‖(‖x+
x0‖+‖y−x0‖) and we can take any element from the closed interval [supy∈F(φ(y)−
‖φ‖‖y − x0‖), infx∈F(‖φ‖‖x + x0‖ − φ(x))] as φ0. Thus we have established the
existence of an extension φ1 of φ to F1. Also from (1.1) we conclude that ‖φ1(x)‖ 6
‖φ‖‖x‖,∀x ∈ F1. In other words ‖φ1‖ 6 ‖φ‖. Also ‖φ1‖ = supx∈F1:‖x‖=1 ‖φ1(x)‖ >
supx∈F:‖x‖=1 ‖φ1(x)‖ = ‖φ‖. Therefore φ1 is a norm preserving extension of φ.

Step 2: Let P = {(F1,φ1) : F ⊆ F1,φ1 ∈ F∗1,φ1|F = φ, ‖φ1‖ = ‖φ‖}. This is
a POset with partial order given by (F′1,φ

′
1) � (F1,φ1). Every chain in P has an

upper bound and therefore by Zorn’s lemma P has a maximal element, say (F̃, φ̃).
We claim that F̃ must be E else by applying step 1 to F̃ we can obtain a further
extension contradicting the maximality.

An analysis of the argument: First thing to note is, in the above argument step 1
is the real step. If you notice the argument carefully you will see whenever we have
used ‖ · ‖ it is actually ‖φ‖‖ · ‖. So, it makes sense to rewrite the argument using the
notation p(x) = ‖φ‖‖x‖ and observe which properties of this function actually goes
into the argument.

Proof of 1.1.1 in new notation. Step 1: Let F1 = F + Rx0, where x0 ∈ E \ F. Let us
denote a prospective candidate for φ̃(x0) by φ0. Then we must have

φ(x) + λφ0 6 p(x+ λx0), ∀x ∈ F, λ ∈ R. (1.2′)

Considering the cases λ ≶ 0 in (1.2′) we get

φ(y) − p(y− x0) 6 φ0 6 p(x+ x0) − φ(x), ∀x,y ∈ F (1.4′)

Here we have used one property of the function p, called positive homogeneity,
meaning p(λx) = λp(x),∀λ > 0, x ∈ E. To show 1.4′we must show that supy∈F(φ(y)−
p(y− x0)) 6 infx∈F(p(x+ x0) − φ(x)) or equivalently

φ(y) − p(y− x0) 6 p(x+ x0) − φ(x),∀x,y ∈ F. (1.5′)

But this follows from φ(x) + φ(y) = φ(x + y) 6 p(x + y) 6 p(x + x0) + p(y −

x0) because p satisfies triangle inequality and we can take any element from the
interval [supy∈F(φ(y) − p(y − x0)), infx∈F(p(x + x0) − φ(x))] as φ0. Thus we have
established the existence of an extension φ1 of φ to F1. Also from (1.2′) we conclude
that φ1(x) 6 p(x),∀x ∈ F1.

Step 2: Let P = {(F1,φ1) : F ⊆ F1,φ1 ∈ F∗1,φ1|F = φ,φ1(x) 6 p(x),∀x ∈ F1}.
This is a POset with partial order given by (F′1,φ

′
1) � (F1,φ1). Every chain in P

has an upper bound and therefore by Zorn’s lemma P has a maximal element, say
(F̃, φ̃). We claim that F̃must be E else by applying step 1 to F̃we can obtain a further
extension contradicting the maximality.

[Lecture Notes of P.S.Chakraborty]
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Let us note that we have used two properties of the function p and those are

1. Triangle inequality/ subadditivity: p(x+ y) 6 p(x) + p(y).

2. Positive homogeneity: p(λx) = λp(x),∀λ ∈ R>0, x ∈ E.

Look and behold just by changing notation we have proved.

Theorem 1.1.2 (Hahn Banach, analytic version 2). Let E be a real vector space and
p : E → R a positively homogeneous subadditive function. Let F ⊆ E be a subspace and
φ : F→ R a linear map satisfying φ(x) 6 p(x), ∀x ∈ F. Then φ admits an extension φ̃ to
E satisfying φ̃(x) 6 p(x),∀x ∈ E.

In fact this is stronger than theorem (1.1.1) in the sense that it implies theorem
(1.1.1). Let us see that.

Proof of theorem (1.1.1) using theorem(1.1.2). Let p(x) = ‖φ‖‖x‖. Thenφ(x) 6 |φ(x)| 6
p(x),∀x ∈ F. By theorem (1.1.2) we get an extension φ̃ of φ such that φ̃(x) 6
p(x),∀x ∈ E. Note that −φ̃(x) = φ̃(−x) 6 p(−x) = p(x),∀x ∈ E. Therefore
|φ̃(x)| 6 p(x) = ‖φ‖‖x‖. In other words ‖φ̃‖ 6 ‖φ‖. The other inequality required
to show ‖φ̃‖ = ‖φ‖ follows from

‖φ̃‖ = sup
x:x∈E,‖x‖61

|φ̃(x)| > sup
x:x∈F,‖x‖61

|φ̃(x)| = sup
x:x∈F,‖x‖61

|φ(x)| = ‖φ‖.

Is this version/generalisation of any use? This question could be annoying but
we won’t hesitate to ask this. Later we will define topologies on vector spaces using
seminorms. Those will be locally convex spaces. Using this version we can show
existence of continuous linear functionals on locally convex spaces. But before do-
ing any of that let us obtain versions of these results in the complex case. To be able
to apply this result to complex vector spaces we need a simple observation that
relates a complex linear functional with its real part, a real linear map.

Lemma 1.1.3. Let E be a vector space over C.

(i) If f : E → R is an R linear functional, then f̃(x) = f(x) − if(ix) is a C linear
functional and f = <f̃.

(ii) If g : E→ C is C linear f = <g and f̃ is defined as above then f̃ = g.

(iii) If E is a normed space and f, f̃ are as in (i) then ‖f‖ = ‖f̃‖.

Proof. (iii) Suppose |f̃(x)| 6 ‖f̃‖‖x‖, then

f(x) = <f̃(x) 6 |f̃(x)| 6 ‖f̃‖‖x‖.
[Lecture Notes of P.S.Chakraborty]
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Also
−f(x) = <f̃(−x) 6 |f̃(−x)| 6 ‖f̃‖‖x‖.

Hence |f(x)| 6 ‖f̃‖‖x‖.

Now assume |f(x)| 6 ‖f‖‖x‖. Choose θ such that f̃(x) = eiθ|f̃(x)|. Hence

|f̃(x)| = f̃(e−iθx) = <f̃(e−iθx) = f(e−iθx) 6 ‖f‖‖e−iθx‖.

Definition 1.1.4. A real valued sub-additive function p defined on a vector space E
is called a seminorm if p(α · x) = |α|p(x),∀α ∈ K, x ∈ E.

Lemma 1.1.5. Let p be a seminorm on a vector space E, then (a) p(0) = 0; (b) |p(x) −
p(y)| 6 p(x− y),∀x,y ∈ E; (c) p(x) > 0.

Proof. (a) This follows from, p(0) = p(0 · x) = |0| · p(x) = 0.
(b) Note that

p(x) − p(y) = p(x− y+ y) − p(y) 6 p(x− y) + p(y) − p(y) = p(x− y).

Interchanging x and ywe obtain the other inequality p(y)−p(x) 6 p(x−y) needed
to complete the proof.
(c) We have p(x) = p(x− 0) > |p(x) − p(0)| = |p(x)| > 0.

Theorem 1.1.6. Suppose E is a subspace of a vector space F, p is a seminorm on F and
φ : E → K a linear map such that |φ(x)| 6 p(x), ∀x ∈ E. Then there is a linear functional
φ̃ defined on F such that φ̃|E = φ and |φ̃(x)| 6 p(x).

Proof. Case 1 (K = R): We have p(−x) = p(x) and we are done by theorem (1.1.2).

Case 2 (K = C): Let φ1 = <φ, then there exists real linear φ̃1 on F such that
φ̃1|E = φ1 Let φ̃(x) = φ̃1(x)− iφ̃1(ix), then φ̃|E = φ. Finally given any x ∈ F,∃λ ∈ C
such that |λ| = 1, λφ̃(x) = |φ̃(x)|. We have,

|φ̃(x)| = φ̃(λx) = φ̃1(λx) 6 p(λx) = p(x).

Corollary 1.1.7 (Hahn-Banach Theorem). Let E ⊆ F be normed linear spaces and
φ : E → C a continuous linear functional then there exists a continuous linear
functional φ̃ : F→ C such that φ̃|E = φ and ‖φ̃‖ = ‖φ‖.

Proof. Take p(x) = ‖φ‖‖x‖ and obtain φ̃ such that |φ̃| 6 p(x). This means ‖φ̃‖ 6
‖φ‖. We have argued the other inequality required to prove equality several times.

[Lecture Notes of P.S.Chakraborty]
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Week 2

Applications of Hahn-Banach theorem

Corollary 2.0.1 (Corollary to Hahn-Banach Theorem). Let E be a normed linear
space and x ∈ E. Then there exists x∗ ∈ E∗ such that x∗(x) = ‖x‖, ‖x∗‖ = 1.

Proof. Let F be the span of x and φ : F→ K be the linear functional given by φ(λx) =
λ‖x‖,∀λ ∈ K. Then ‖φ‖ = 1. Let x∗ be a norm preserving extension of φ.

Corollary 2.0.2 (Corollary to Hahn-Banach Theorem). Let E be a normed linear
space and E∗ it’s dual. Then the norm of x ∈ E satisfies,

‖x‖ = sup{| < x∗, x > | : ‖x∗‖ 6 1},

where < x∗, x > denotes x∗(x).

Proof. Let x ∈ E, then for any x∗ ∈ E∗ with ‖x∗‖ 6 1, we have | < x∗, x > | 6
‖x∗‖‖x‖ 6 ‖x‖. This shows that

‖x‖ 6 sup{| < x∗, x > | : ‖x∗‖ 6 1}.

For the other inequality using the Hahn Banach theorem obtain x∗ of norm one such
that x∗(x) = ‖x‖.

Now that we have shown that E∗ is a nontrivial space it makes sense to recognise
one crucial property enjoyed by duals of normed linear spaces, namely complete-
ness. Stefan Banach initiated systematic study of these spaces and he called them
B spaces. Frechet started calling them Banach spaces. Let us officially record the
definition.

Definition 2.0.3 (Banach Space). A complete normed linear space is called a Banach
space

Proposition 2.0.4. Let E be a normed linear space and F be a Banach space. Then
L(E, F) is a Banach space. In particular E∗ is a Banach space.
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Proof. Let {Tn} be a Cauchy sequence in L(E, F). Then ∀ε > 0,∃N such that ‖Tn −

Tm‖ < ε,∀n,m > N. Then for any x ∈ E,

‖Tnx− Tmx‖ < ε‖x‖ for n,m > N. (2.1)

Using completeness of Fwe get lim Tnx = Tx. Also

T(αx+ βy) = lim Tn(αx+ βy) = limαTn(x) + βTn(y) = αT(x) + βT(y).

Therefore T is linear and it is bounded because

‖T(x)‖ = lim ‖Tn(x)‖ = lim ‖TN(x) + (Tn(x) − TN(x))‖ 6 (ε+ ‖TN‖)‖x‖.

Letting m tend to infinity in (2.1) we get ‖Tn − T‖ 6 ε,∀n > N. Thus T = lim Tn ∈
L(E, F) showing completeness of L(E, F).

Proposition 2.0.5. Let E be a Banach space. A subspace F ⊆ E is complete iff it is
closed.

Proof. If part: Let {xn} ⊆ F be a Cauchy sequence. Then using completeness of E
we know lim xn = x for some x ∈ E. Since F is closed lim xn = x ∈ F. Thus F is
complete.

Only if part: Let {xn} ⊆ F be converging to x. As F is complete x ∈ F. Therefore
F is closed.

Exercise 2.0.6. Show that a finite dimensional subspace of a normed linear space is
always closed. Hint: Any two norms on a finite dimensional space are equivalent.

2.1 Canonical embedding into second dual

Definition 2.1.1. Let jE : E→ E∗∗ be the map defined by jE(x)(x∗) =< x∗, x >. Then

‖jE(x)‖ = sup
x∗:‖x∗‖=1

| < x∗, x > | = ‖x‖.

Therefore jE is an isometric embedding of E into E∗∗, often referred as the canonical
embedding of E into E∗∗. The norm closure of jE(E) is the completion of E. We say
E is reflexive if j is an isomorphism.

Proposition 2.1.2. Let E be a normed linear space. Then the completion of E is a
Banach space.

Proof. The norm closure of jE(E) is the completion of E. Being closure of a subspace
it is a complete normed linear space or which is same as a Banach space.

[Lecture Notes of P.S.Chakraborty]
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Remark 2.1.3. Can there be a non-reflexive normed linear space E such that there is
an isometric isomorphism T ∈ L(E,E∗∗), i.e., an isomorphism T satisfying ‖T(x)‖ =
‖x‖, ∀x ∈ E? A counter example was given by Robert James. It is in his honour we
denote the canonical embedding by j.

Definition/Proposition 2.1.4. Let E, F be Banach spaces and T ∈ L(E, F). Then T∗ :

F∗ → E∗ defined by T∗(φ)(x) = (φ ◦ T)(x) defines a bounded linear map, called the
adjoint of T with ‖T∗‖ = ‖T‖. Also I∗E = IE∗ , where IE, IE∗ be the identity mappings
of E,E∗ respectively. If S ∈ L(F,G) then (S ◦ T)∗ = T∗ ◦ S∗.

Proof. Let φ ∈ F∗ then

‖T∗(φ)‖ = sup{|T∗(φ)(x)| : x ∈ E, ‖x‖ 6 1}
= sup{|φ(T(x))| : x ∈ E, ‖x‖ 6 1}
6 ‖φ‖‖T‖.

Therefore ‖T∗‖ 6 ‖T‖. We give two proofs of the other inequality ‖T‖ 6 ‖T∗‖.

First proof.

‖T‖ = sup{‖T(x)‖ : x ∈ E, ‖x‖ 6 1}
= sup{|φ(T(x))| : x ∈ E,φ ∈ F∗, ‖x‖, ‖φ‖ 6 1}
6 sup{‖T∗(φ)‖ : φ ∈ F∗, ‖φ‖ 6 1}
6 ‖T∗‖.

Second proof. Let x ∈ E,φ ∈ F∗. Then we have

T∗∗(jE(x))(φ) = jE(x)(T
∗φ) = T∗(φ)(x) = φ(T(x)) = jF(T(x))(φ).

In other words
T∗∗ ◦ jE = jF ◦ T . (2.2)

In categorical parlance this means j is a natural transformation. (Soon we will elab-
orate on this.) Therefore,

‖T‖ = sup
x∈BE

‖T(x)‖ = sup
x∈BE

‖j(T(x))‖ = sup
x∈BE

‖T∗∗(j(x))‖ 6 sup
x∗∗∈BE∗∗

‖T∗∗(x∗∗)‖ = ‖T∗∗‖

Using ‖T∗‖ 6 ‖T‖ for T∗ we get ‖T∗∗‖ 6 ‖T∗‖. Thus ‖T‖ 6 ‖T∗‖.

Let us look back and reflect on what have we done just now. To any normed
linear space E we have associated a normed linear space, namely E∗. Also to any
T ∈ L(E, F) we have associated a T∗ ∈ L(F∗,E∗). This association satisfies two
more properties, (i) I∗E = IE∗ and (ii) S ∈ L(F,G) then (S ◦ T)∗ = T∗ ◦ G∗. Now in
mathematics whenever some structure occurs frequently we introduce terminology
so that we can talk about the structure and investigate its properties. In this case
the relevant structure is of categories and functors.

[Lecture Notes of P.S.Chakraborty]
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2.2 Categories and functors

Definition 2.2.1 (Locally small category). A locally small category C consists of
a class Ob(C) called objects of C and given any two objects A,B ∈ Ob(C), a set
MorC(A,B) called morphisms of C. When there is no scope for confusion we will
drop C from the notationMorC. If f ∈Mor(A,B), then we may also write f : A→ B

or A f→ B. We will denote Mor(A,A) by Mor(A). Given A,B,C ∈ Ob(C), there
is a map ◦ : Mor(A,B) × Mor(B,C) → Mor(A,C) called composition and for
each A ∈ Ob(C) a morphism IA ∈ Mor(A), called the identity morphism of A
such that ∀f ∈ Mor(A,B),g ∈ Mor(B,C), ∀h ∈ Mor(C,D) we have ◦(◦(f,g),h) =
◦(f, ◦(g,h)) and ◦(IA, f) = f = ◦(f, IB). We denote ◦(f,g) by g ◦ f. In this notation
the conditions become associativity h ◦ (g ◦ f) = (h ◦ g) ◦ f and f ◦ IA = f = IB ◦ f.

Example 2.2.2. The category Sets has sets as objects and functions as morphisms.

Example 2.2.3. The category Gp has groups as objects and group homomorphisms
as morphisms. The usual composition of functions define composition.

Example 2.2.4. Let G be a group. Then we can define a category with only one
object ∗ and Mor(∗) = G. The identity element of G plays the role of I∗ while
the group multiplication defines the composition. This example shows morphisms
may not be functions. Also in a sense the notion of category generalises the notion
of groups.

Example 2.2.5. The category NlsK the category of normed linear spaces over K has
normed K vector spaces as objects and bounded linear maps as mrphisms.

Example 2.2.6. The category Ban has Banach spaces as objects with Mor(E, F) =

L(E, F).

Example 2.2.7. The category Ban1 has Banach spaces as objects with Mor(E, F) =
{T ∈ L(E, F) : ‖T‖ 6 1}.

Definition 2.2.8. Let C,D be categories. A covariant (contravariant) functor F : C→
D associates to an object A ∈ Ob(C) an object F(A) ∈ Ob(D) and to a morphism
f ∈MorC(A,B) an element F(f) ∈MorD(F(A), F(B))(F(f) ∈MorD(F(B), F(A)) such
that

1. For all f,g so that the composition g ◦ f is defined we have F(g) ◦ F(f) = F(g ◦
f)(F(f) ◦ F(g) = F(g ◦ f)).

2. For all A ∈ Ob(C), F(IA) = IF(A).

Covariant functors are often called functors.

In this terminology we can state what we have already proved.
[Lecture Notes of P.S.Chakraborty]
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Example 2.2.9. The dualization functor ∗ : NlsK → NlsK is the contravariant functor
sending E ∈ Ob(NlsK) to E∗ and T ∈ L(E, F) to T∗. Since dualization is contravariant
applying it twice we get the covariant functor second dual.

Definition 2.2.10. Let F,G : C → D be functors. Then a natural transformation
η : F → G associates a morphism ηA ∈MorD(F(A),G(A)) for each object A of C so
that for each f ∈ MorC(A,B) we have ηB ◦ F(f) = G(f) ◦ ηA. This is also expressed
by saying the following diagram commutes.

F(A)

F(f)

��

ηA // G(A)

G(f)

��
F(B)

ηB // G(B)

Example 2.2.11. The James map gives a natural transformation j : Id → ∗∗. We
have verified the relevant condition in (2.2).

2.3 Reflexive Banach spaces

Proposition 2.3.1. A closed subspace of a reflexive Banach space is reflexive.

Proof. Let F ⊆ E be a closed subspace with i : F ↪→ E the inclusion map. Let
y∗∗ ∈ F∗∗. We have to exhibit y ∈ F such that jF(y) = y∗∗. Since E is reflexive there
is x ∈ E such that i∗∗(y∗∗) = jE(x). It is enough to show that x ∈ F. In other words
i(x) = x. Because then i∗∗(y∗∗) = jE(x) = jE ◦ i(x) = i∗∗(jF(x)). If we can show i∗∗

is one to one then we will get y∗∗ = jF(x). So we need to show two things, (i) x ∈ F
and i∗∗ is one to one.

Proof of x ∈ F. Suppose x /∈ F. Then by Hahn-Banach there exists x∗ ∈ E∗ such that
x∗(F) = 0 or equivalently i∗(x∗) = 0 and x∗(x) = 1. We have the following chain of
equalities

1 = 〈x∗, x〉 = 〈jE(x), x∗〉 = 〈i∗∗(y∗∗), x∗〉 = 〈y∗∗, i∗(x∗)〉 = 0!

This contradiction shows x ∈ F.

Injectivity of i∗∗.Let y∗ ∈ F∗ be arbitrary and x∗ be a norm preserving extension of y∗,
in other words 〈x∗, i(y)〉 = 〈y∗,y〉,∀y ∈ F. So, 〈i∗(x∗)−y∗,y〉 = 〈x∗, i(y)〉− 〈y∗,y〉 =
0, ∀y ∈ F. Thus y∗ = i∗(x∗). In other words i∗ is onto. Suppose i∗∗(z∗∗) = 0 for some
z∗∗ ∈ F∗∗. Then for all x∗ ∈ E∗ we have 〈z∗∗, i∗(x∗)〉 = 0. Since i∗ is onto, this means
z∗∗ = 0

Proposition 2.3.2. Let E be a Banach space. Then E is reflexive iff E∗ is reflexive.
[Lecture Notes of P.S.Chakraborty]
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Proof. Only if part: Let E be reflexive. We have to show every x∗∗∗ ∈ E∗∗∗ is of the
form jE∗(x

∗). So, given x∗∗∗ define x∗ by

〈x∗, x〉 = 〈x∗∗∗, jE(x)〉,∀x ∈ E. (2.3)

Claim: jE∗(x∗) = x∗∗∗.

Proof of claim. We have to show 〈x∗∗∗, x∗∗〉 = 〈jE∗(x∗), x∗∗〉,∀x∗∗ ∈ E∗∗. So, let x∗∗ ∈
E∗∗ be arbitrary. Then using reflexivity of E we get x∗∗ = jE(x) for some x ∈ E. The
following chain of equalities

〈jE∗(x∗), x∗∗〉 = 〈x∗∗, x∗〉 = 〈jE(x), x∗〉 = 〈x∗∗∗, jE(x)〉 = 〈x∗∗∗, x∗∗〉

show x∗∗∗ = jE∗(x
∗).

If part: If E∗ is reflexive then by the only if part E∗∗ is reflexive. By proposition
(2.3.1), jE(E) is reflexive. Therefore so is E.

Proposition 2.3.3. Let E, F be isomorphic Banach spaces. Then E is reflexive iff F is
reflexive

Proof. It is enough to show one of the implications because the other follows by
symmetry. We will show the only if part. Let T : E → F be an isomorphism. Then
T∗∗ : E∗∗ → F∗∗ is an isomorphism. Since James map is a natural transformation
we have T∗∗ ◦ jE = jF ◦ T . The left hand side is surjective because E is reflexive.
Therefore the right hand side must be surjective as well. Since T is an isomorphism
this implies jF is surjective.

2.4 Duals of some Banach spaces

Proposition 2.4.1. Let c0 = {{xn} ⊆ R : lim xn = 0} be the space of sequences of real
numbers converging to zero. This is a Banach space with sup-norm. The dual of c0
is linearly isometrically isomorphic with `1.

Proof. Let e(n) = {e
(n)
k } ∈ c0 where e(n)k = δnk is the Kronecker delta. These e(n)’s do

not form a Hamel basis however an arbitrary x = {xn} ∈ c0 can always be expressed
as x =

∑∞
n=1 xne

(n) = limk

∑k
n=1 xne

(n). Here the limit converges in the topology
of c0. Any bounded linear functional φ ∈ c∗0 satisfies

φ(x) = lim
k

k∑
n=1

xnφ(e
(n)) = lim

k

k∑
n=1

xnφn

where φn = φ(e(n)).

Claim: {φn} ∈ `1, ‖φ‖ =
∑
n |φn|.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

[15]

Proof of claim. We denote by sgn the signum function given by sgn(x) = 1 for x > 0,
sgn(x) = −1 for x < 0. For eachN let x(N) ∈ Bc0 , the unit ball of c0, be the sequence

x(N)
n =

{
sgn(φn) if 1 6 n 6 N

0 otherwise
.

Then for all N we have

N∑
n=1

|φn| = φ(x
(N)) = |φ(x(N)| 6 ‖φ‖‖x(N)‖ = ‖φ‖.

Since this happens for all N we get {φn} ∈ `1 and
∑
n |φn| 6 ‖φ‖. On the other

hand

|φ(x)| = | lim
k

k∑
n=1

xnφn| 6 lim
k∑
n=1

|xn||φn| 6 ‖x‖
∑
n

|φn|

shown ‖φ‖ 6
∑

|φn| the other inequality required to show ‖φ‖ =
∑

|φn|.

We have established a linear isometry Φ : c∗ 3 φ 7→ {φn} ∈ `1. Only thing that
remains to be shown is this is onto. But that is obvious because given any {φn} ∈ `1
we can define φ ∈ c∗ as φ(x) = (lim xn)φ0 +

∑∞
n=1 xnφn. This series converges

because {xn} is bounded and
∑

|φn| <∞. Clearly Φ(φ) = {φn}.

Proposition 2.4.2. Let c = {{xn} ⊆ R : lim xn exists } be the space of convergent
sequences of real numbers. This is a Banach space with sup-norm. The dual of c is
linearly isometrically isomorphic with `1.

Proof. Let e(n) = {e
(n)
k } ∈ c0 where e(n)k = δnk is the Kronecker delta and 1 be the

constant sequence 1. Then an arbitrary x = {xn} ∈ c can always be expressed as
x = x01 +

∑∞
n=1(xn − x0)e

(n) = x01 + limk

∑k
n=1(xn − x0)e

(n) where x0 = lim xn.
Here the limit converges in the topology of c because lim |xn−x0| = 0. Any bounded
linear functional φ ∈ c∗ satisfies

φ(x) = x0φ(1 + lim
k

k∑
n=1

(xn − x0)φ(e
(n)) = x0φ(1 + lim

k

k∑
n=1

(xn − x0)φn

where φn = φ(e(n)). Since c0 ⊆ c,φ|c0 is a bounded linear functional. Therefore
{φn}

∞
n=1 ∈ `1 and we can legitimately rearrange terms to write

φ(x) = x0(φ(1) −
∞∑
n=1

φn) +
∑

xnφn = x0φ0 +
∑

xnφn,

where φ0 = φ(1) −
∑∞
n=1φn. Therefore |φ(x)| 6 ‖x‖(|φ0|+

∑∞
n=1 |φn|).

Claim: ‖φ‖ =
∑∞
n=0 |φn|.

[Lecture Notes of P.S.Chakraborty]
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Proof of claim. We denote by sgn the signum function given by sgn(x) = 1 for x > 0,
sgn(x) = −1 for x < 0. For eachN let x(N) ∈ Bc0 , the unit ball of c0, be the sequence

x(N)
n =

{
sgn(φn) if 1 6 n 6 N

sgnφ0 otherwise
.

Then for all N we have

|

N∑
n=0

|φn|+ (sgnφ0)

∞∑
n=N+1

φn| = |φ(x(N)| 6 ‖φ‖‖x(N)‖ = ‖φ‖.

Since this happens for all N and limN

∑∞
n=N+1φn = 0, we get

∑∞
n=0 |φn| 6 ‖φ‖.

We already have shown ‖φ‖ 6
∑∞
n=0 |φn|. Therefore ‖φ‖ =

∑
|φn|.

We have established a linear isometry Φ : c∗0 3 φ 7→ {φn} ∈ `1. Only thing that
remains to be shown is this is onto. But that is obvious because given any {φn} ∈ `1
we can define φ ∈ c∗0 as φ(x) =

∑
n xnφn. This series converges because {xn} is

bounded and
∑

|φn| <∞. Clearly Φ(φ) = {φn}.

Proposition 2.4.3. The spaces c and c0 cannot be linearly isometrically isomorphic.

Proof. Let a be a real number less than 1/2 in absolute value. Then a = 1
2
((a+ 1

8
) +

(a− 1
8
)). By doing this for each component for sufficiently large nwe can conclude

that every x ∈ c0 of norm less than or equal to one can always be expressed as
x = 1

2
(y + z) with ‖y‖, ‖z‖ 6 1, y, z ∈ c0 different from x. But 1 cannot be written

as 1
2
(a + b) with a 6= 1 6= b, |a|, |b| 6 1. Therefore 1 cannot be expressed as 1

2
(y + z)

with ‖y‖, ‖z‖ 6 1, y, z ∈ c different from 1. Now in case we had a linear isometric
isomorphism T : c0 → c then from a decomposition of T−1(1) we would have
obtained one for 1!

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

Week 3

Geometric Formulation/Meaning of
Hahn-Banach Theorems

3.1 The Minkowski functional

Definition 3.1.1. Let E be a vector space and A ⊆ E a subset. We say A is absorbing
if every x ∈ E lies in some t · A for some t = t(x) > 0. Note that an absorbing set
always contains zero. We say that A is balanced if x ∈ A, |λ| 6 1 implies λx ∈ A.

Definition 3.1.2. The Minkowski functional of an absobing set A is defined by

pA = inf{t > 0 : t−1x ∈ A}.

Theorem 3.1.3. Let p be a seminorm on a vector space E. Then A = {x : p(x) < 1} is a
convex, balanced, absorbing set and p = pA.

Proof. Only thing we need to verify is p = pA. If x ∈ E and s > p(x) then s−1x ∈ A.
Therefore pA(x) 6 p(x). On the other hand if 0 < t 6 p(x), then t−1x /∈ A. Hence
p(x) 6 pA(x).

Definition 3.1.4. A vector space E endowed with a topology is called a topological
vector space if it is Hausdorff and the operations of addition and scalar multiplica-
tion are continuous.

Theorem 3.1.5. LetA be a convex absorbing subset of a vector space E and pA its Minkowski
functional. Then

1. pA is subadditive, i.e., pA(x+ y) 6 pA(x) + pA(y), ∀x,y ∈ E.

2. pA is positively homogeneous.

3. If A is balanced then pA is a seminorm.
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4. If E is a topological vector space and A is open then A = {x ∈ E : pA(x) < 1}.

Proof. (1)For all ε > 0 we have λ,µ such that pA(x) 6 λ < pA(x) + ε,pA(y) 6 µ <

pA(y) + ε and x
λ

, y
µ
∈ A. The convexity of A implies

x+ y

λ+ µ
=

λ

λ+ µ

x

λ
+

µ

λ+ µ

y

µ
∈ A.

Therefore pA(x + y) 6 λ + µ < pAx) + pA(y) + 2ε. Since ε is arbitrarily small, we
obtain subadditivity.

(2), (3) Easily follows from the definition.

(4) Let x ∈ A. There exists an open neighborhood V of origin such that x+V ⊆ A.
Since scalar multiplication is continuous there exists ε > 0 such that ε.x ∈ V . Then
(1 + ε)x ∈ A. Therefore pA(x) 6 (1+ ε)−1 < 1. Conversely suppose that x ∈ E
satisfies pA(x) < 1. Then there exists ε > 0 such that x

p(x)+ε
∈ A and pA(x) + ε < 1.

Exploiting the convexity ofAwe get x = (p(x)+ε) x
p(x)+ε

+(1−p(x)−ε).0 ∈ A.

Theorem 3.1.6. Let E be a topological vector space over R and A be a convex open neigh-
borhood of the origin. Let x0 /∈ A, then there is a hyperplane separating x0 from A, in other
words there is a continuous linear functional ` ∈ E∗ such that

`(x0) = 1 and `(x) < 1, ∀x ∈ A.

Proof. In a TVS scalar multiplication is continuous andA contains the origin. There-
fore given any x ∈ E, the sequence x/n converges to 0, hence eventually enters the
open neighborhood A. This shows that A is absorbing. Let pA be the Minkowski
functional of A. Then by theorem (3.1.5) we know that pA is subadditive, pos-
itively homogeneous and A = {x ∈ E : pA(x) < 1}. Since x0 /∈ A, we have
pA(x0) > 1. On the one dimensional space spanned by x0 define `(λx0) = λ. Then
for λ > 0, `(λx) = λ 6 pA(λx0). If λ 6 0, then `(λx0) = λ 6 0 6 pA(λx0). In
any case for any x from the subspace spanned by x0 we have `(x) 6 pA(x). By
theorem (1.1.2) we can extend ` to a linear map denoted by the same symbol ` on E
such that `(x) 6 pA(x),∀x ∈ E. Then ` is continuous because if x ∈ (−A) ∩ A, then
−1 < `(x) < 1.

Theorem 3.1.7. SupposeA and B are disjoint nonempty convex sets in a topological vector
space E. If A is open there exists φ ∈ E∗ and γ ∈ R such that

<φ(x) < γ 6 <φ(y),∀x ∈ A,∀y ∈ B.

If the scalar field is R then <φ := φ.

Proof. We will first do the case where the scalar field is R. Fix a0 ∈ A and b0 ∈ B.
Put x0 = b0−a0 andC = A−B+x0. ThenC is open because it is a union of open sets
A−b+ x0,b ∈ B. Clearly C is convex and contains the origin. Also x0 ∈ C, because
A and B are disjoint. Using theorem (3.1.6) obtain a continuous linear functional φ

[Lecture Notes of P.S.Chakraborty]
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such that φ(x0) = 1 and φ(x) < 1, ∀x ∈ C. If a ∈ A,b ∈ B, then φ(a − b + x0) =

φ(a) − φ(b) + 1 < 1. Therefore, φ(a) < φ(b). Let γ = inf{φ(b) : b ∈ B}. Then
φ(a) 6 γ, ∀a ∈ A. Since A is open we must have φ(a) < γ,∀a ∈ A.

If the scalar field is C, there is a continuous real linear map φ1 satisfies the asser-
tion. If φ is the associated complex linear map whose real part is φ1, then φ ∈ E∗
and does the job.

Definition 3.1.8. A topological vector space is said to be locally convex if every
point or equivalently origin has a neighborhood basis consisting of convex open
sets.

Corollary 3.1.9. Let B be a closed and convex subset of a locally convex space E and
x0 /∈ B then there exists φ ∈ E∗ such that φ(x0) < inf{φ(x) : x ∈ B}.

Proof. Let A be a convex neighborhood of x0 disjoint from B. Now apply theo-
rem (3.1.7)

Lemma 3.1.10 (Topological lemma). Let E be a topological vector space, C ⊆ E be a
compact set and D ⊆ E be a closed set. Then C+D is closed.

Proof. Since you are familiar with nets we will prove this using nets. Let {xα +

yα}α∈A ⊆ C+D be a convergent net with limα(xα+yα) = z. SinceC is compact there
exists a subnet {xβ} converging to some x ∈ C. Then limβ yβ = limβ(xβ+yβ−xβ) =

z− x ∈ D. So, we have z = x+ y ∈ C+D.

Theorem 3.1.11. Let E be a locally convex space. Suppose A,B ⊆ E are convex sets with
A compact and B closed, A ∩ B = ∅. Then there exists a linear continuous map φ : E→ K
and α,β ∈ R such that

<φ(x) 6 α < β 6 <φ(y), ∀x ∈ A, ∀y ∈ B.

Proof. Consider the convex set C = B − A. By the topological lemma C is closed
and 0 /∈ C, because A ∩ B = ∅. Since E is locally convex there exists a convex open
D ⊆ E \ C containing the origin. In particular C ∩D = ∅. By theorem (3.1.7) we get
a continuous linear map φ ∈ E∗ and γ ∈ R such that

<φ(d) < γ 6 <φ(c),∀d ∈ D,∀c ∈ C.

Since 0 ∈ D,γ > 0. The inequality <φ(c) > γ,∀c ∈ C gives <φ(b) −<φ(a) > γ >

0,∀b ∈ B, ∀a ∈ A. Let β = infb∈B<φ(b),α = supa∈A<φ(a). Then β > α + γ and
we are done.
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3.2 Markov-Kakutani fixed point theorem

As a cute application of theorem (3.1.11) we discuss a proof of Markov-Kakutani
fixed point theorem for locally convex spaces due to Dirk Werner.

Theorem 3.2.1 (Markov-Kakutani fixed point theorem). Let C be a compact convex
set in a locally convex space E. A continuous map T : C → C is said to be affine if
T(λx+(1− λ)y) = λT(x)+ (1− λ)T(y),∀x,y ∈ C, ∀λ ∈ [0, 1]. Every commuting family
{Ti}i∈I of continuous affine endomorphisms of C has a common fixed point.

Lemma 3.2.2. Let C be a compact convex set in a locally convex Hausdorff space E and let
T : C→ C be a continuous affine transformation. Then T has a fixed point.

Proof. Let ∆ = {(x, x) : x ∈ C} be the diagonal in C and Γ = {(x, Tx) : x ∈ C}. If T has
no fixed point then ∆ ∩ Γ = ∅. Both ∆ and Γ are compact convex sets in E × E. By
the Hahn-Banach theorem (3.1.11) we get continuous linear functionals φ1,φ2 and
α,β ∈ R,α < β such that

<(φ1(x) + φ2(x)) 6 α < β 6 <(φ1(y) + φ2(Ty)).

Consequently <(φ2(Tx) − φ2(x)) > β − α > 0. Iterating this inequality we get
<(φ2(T

nx) −φ2(x)) > n(β−α)→∞ for arbitrary x ∈ C. This makes the sequence
{<φ2(T

n(x))}n unbounded contradicting the compactness of <φ2(C).

Proof of Markov-Kakutani fixed point theorem. Let Ci be the fixed points of Ti. Then
Ci 6= ∅,Ci is compact and convex. We need to show ∩Ci 6= ∅. But that will follow
once we establish finite intersection property. Since TiTj = TjTi, Ti(Cj) ⊆ Cj. Hence
Ti|Cj has a fixed point by lemma. In other words Ci ∩Cj 6= ∅. An obvious induction
shows ∩i∈FCi 6= ∅,∀ finite F ⊆ I.

3.3 Weak topology

Definition 3.3.1 (Weak topology determined by a family). Let {Xα}α∈A be a collec-
tion of topological spaces and X a set. Suppose we have a collection of functions
{fα : X → Xα}α∈A. Then the weak topology determined by this data is the weakest
topology on X that makes all the fα’s continuous.

Remark 3.3.2. The collection {∩ni=1f−1αi (Uαi |n ∈ N,α1. . . . ,αn ∈ A,Uαi ⊆ Xαi is open ∀i}
is a basis for the weak topology on X.We have the following characterisation of net
convergence in weak topology. A net {xβ} converges in weak topology to x ∈ X iff
∀α ∈ A, limβ fα(xβ) = fα(x). A function f : Y → X from another topological space
Y to X is continuous iff fα ◦ f : Y → fα is continuous for all α ∈ A.
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Example 3.3.3 (Product topology:). Let {Xα}α∈A be a collection of topological spaces
and

X =
∏

Xα := {x : A→ ∪α∈AXα|∀α ∈ A, x(α) ∈ Xα}.

This set exists by axiom of choice. Let πα : X→ Xα be the map πα : x 7→ x(α). Then
the weak topology determined by the family {πα : X→ Xα}α∈A is called the product
topology on

∏
Xα. A net {xγ}γ∈Γ ⊆

∏
Xα converges to x iff xγ(α)→ x(α), ∀α ∈ A.

Exercise 3.3.4 (Characterization of products by universal properties). The product
topological space X satisfies two properties.

1. Suppose Y is a topological space and for each α ∈ A we have a continuous
function gα : Y → Xα. Then there is a continuous function g : Y → X such that
πα ◦ g = gα,∀α.

2. Let Z be a topological space so that for each α ∈ A we have continuous maps
pα : Z → Xα and whenever we have continuous maps gα : Y → Xα,∀α,
there exists unique g : Y → Z satisfying pα ◦ g = gα, ∀α ∈ A. Then Z is
homeomorphic with X. In other words this property characterises product
topology.

Definition 3.3.5. Let E be a K-vector space and A ⊆ L(E;K) a collection of linear
maps. Then the weak topology on E determined by this family is denoted by
σ(E;A). So whenever we talk about the space σ(E;A) we mean E endowed with
the weak topology determined by A. In particular if E is a topological vector space
and E∗ is the collection of continuous linear functionals on E then σ(E;E∗) is called
the weak topology on E. Also each x ∈ E determines a linear map φx on E∗ given
by φx : x∗ 7→ x∗(x). Then σ(E∗; {φx : x ∈ E}) is called the weak* topology on E∗.

Remark 3.3.6. If E is a normed linear space then σ(E∗; jE(E)) is E∗ with weak* topol-
ogy.

Theorem 3.3.7 (Mazur). Let E be a locally convex space and K a convex subset of E. Then
K is weakly closed if and only if it is closed.

Proof. An arbitrary subset of E is closed provided it is weakly closed. So, we only
need to show that K is weakly closed assuming it is closed. If possible let x0 be a
point in the weak closure of Kwhich is not in K. Then there is a net xα ∈ K such that
∀ψ ∈ E∗,ψ(xα) → ψ(x0). At the same time by corollary (3.1.9) there exists φ ∈ E∗
such that φ(x0) < inf{φ(x) : x ∈ K}. Clearly these two contradict each other because
{φ(xα)} can not converge to φ(x0).

Theorem 3.3.8 (Banach-Alaoglu Theorem). Let E be a Banach space, then BE∗ the closed
unit ball in E∗ is weak* compact.

Proof. For x ∈ E let Bx = {z ∈ C : |z| 6 ‖x‖}. Then by Tychonoff’s theorem B =∏
x∈E Bx is compact. It suffices to show that the unit ball in E∗ can be embedded

in B. Let φ : BE∗ → B be given by φ(x∗) = (< x∗, x >). Then clearly φ is one to
[Lecture Notes of P.S.Chakraborty]
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one. To show BE∗ is compact it suffices to show thatφ−1 is continuous andφ(BE∗) is
closed. φ−1 is continuous because by definition of weak* topology if φ(x∗α) is a net
converging in weak* topology to x∗, then the x-th coordinate of φ(x∗α) is converging
to the x-th coordinate of φ(x), i.e., φ(x∗α) is converging to φ(x∗). Clearly φ is one to
one.

Corollary 3.3.9. Let E be a reflexive Banach space. Then the unit ball of E is weakly
compact.

Proof. By reflexivity the weak topology of E coincides with the weak* topology of
E∗∗.

Remark 3.3.10. The converse is also true but we are not proving that now. One way
to see it is through Goldstine’e theorem.

3.4 Stone-Weirstrass Theorem

Theorem 3.4.1 (Weirstrass Theorem). Polynomials are dense in C[a,b].

Proof. Enough to prove for the interval [0, 1]. LetΩ = {0, 1} and PΩ be the power set
ofΩ. Consider the probability space (Ω,PΩ,Pp) where Pp({1}) = p,Pp({0}) = 1−p.
Let (Ωn,Sn,Pn,p) be the n-fold product of (Ω,PΩ,Pp). Then Ωn = Ωn, the n-fold
cartesian product of Ω. Consider the random variables Xj : (Ωn,Sn) → (R,BR),
given by Xj : ω 7→ ωj where ω = (ω1, . . . ,ωn) ∈ Ωn. Note that for all η1, . . . ,ηn ∈
Ω,

Pn,p({ω : Xj(ω) = ηj, 1 6 j 6 n}) =
n∏
j=1

Pn,p({ω : Xj(ω) = ηj}) = p
∑
ηj(1− p)n−

∑
ηj .

If we denote 1
n

∑n
j=1 Xj by Xn then

EpXn :=

∫
Ωn

XndPn,p =
∑
ω∈Ωn

Xn(ω)Pn,p({ω}) = p

and

Varp(Xn) :=
∫
Ωn

(Xn − EpXn)
2dPn,p =

∑
ω∈Ωn

(Xn(ω) − EpXn)
2Pn,p({ω}) =

p(1− p)

n
.

By Chebychev’s inequality

Pn,p({ω : |Xn(ω) − EpXn| > δ}) 6
Varp(Xn)

δ2
=
p(1− p)

nδ2
6

1

4nδ2
.

With this background we are now ready to approximate f by polynomials. Idea
of the proof is as follows: Xn is close to p with high probability. Therefore we
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expect that Epf(Xn) should be close to f(p). So, let us try to estimate the difference
|Epf(Xn) − f(p)| or equivalently |Ep(f(Xn) − f(p))|. Since f ∈ C[0, 1], it is uniformly
continuous. Therefore given ε > 0 there is δ > 0 such that

|x− y| < δ =⇒ |f(x) − f(y)| < ε/2.

Let N ∈ N be such that ‖f‖
2εδ2

< N. Then for n > N,

|Ep(f(Xn) − f(p))| = |

∫
(f(Xn) − f(p))dPn,p|

6
∫
|(f(Xn) − f(p))|dPn,p

=

∫
|(f(Xn) − f(p))|I(|Xn − p| < δ)dPn,p +∫

|(f(Xn) − f(p))|I(|Xn − p| > δ)dPn,p

<
ε

2
+
2‖f‖Varp(Xn))

δ2

<
ε

2
+
‖f‖
2nδ2

< ε

We are done once we note that

Bn(f)(p) = Epf(Xn) =
n∑
k=0

(
n

k

)
f

(
k

n

)
pk(1− p)n−k

is a polynomial in p and we have proved

‖Bn(f) − f‖ < ε.

Corollary 3.4.2. Let X be a compact topological space and A ⊆ C(X, R) a closed
unital subalgebra, then

• if f ∈ A, then |f| ∈ A.

• A is a lattice, that is f,g ∈ A =⇒ f∧ g, f∨ g ∈ A.

Proof. (i) There is a sequence of polynomials pn(t) such that on the interval [−‖f‖, ‖f‖]
pn(·) uniformly converges to t 7→ |t|. Clearly pn(f) ∈ A and uniformly converges to
|f|. Since A is closed |f| ∈ A.

(ii) For this just note that

f∧ g =
1

2
(f+ g− |f− g|)

f∨ g =
1

2
(f+ g+ |f− g|)
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Theorem 3.4.3 (Stone-Weirstrass Theorem). Let X be a compact topological space andA
a closed unital subalgebra of C(X, R) which separates points. Then A = C(X, R).

Proof. Let f ∈ C(X, R). We will show that f ∈ A. Let s, t ∈ X. Since A separates
points there is g ∈ A such that g(s) 6= g(t). For some λ,µ ∈ R let

g̃(v) = µ+ (λ− µ)
g(v) − g(t)

g(s) − g(t)
.

Then g̃ ∈ A and g̃(s) = λ, g̃(t) = µ. Thus for s 6= t, there exists fs,t ∈ A such that

fs,t(s) = f(s)

fs,t(t) = f(t).

Let Ut = {v ∈ X : fs,t(v) < f(v) + ε}. Then t ∈ Ut and Ut is open. Since X is compact
there is t1, · · · , tn such that X = ∪iUti . Define

gs = min
16i6n

fs,ti .

Then,

gs ∈ A

gs(s) = f(s)

gs < f+ ε.

Now define
Vs = {v ∈ X : gs(v) > f(v) − ε}.

Note that Vs is open and s ∈ V . Thus X = ∪s∈XVs and there is s1, · · · , sm such that
X = ∪mi+1Vsi . Put

g = max
16i6m

gsi .

Then g ∈ A and
f− ε < g < f+ ε.

That is ‖f− g} < ε. Since A is closed f ∈ A.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

Week 4

Baire Category Theorem and its
Consequences

This week we discuss the other basic tools of functional analysis.

4.1 Baire Category Theorem

Theorem 4.1.1 (Baire Category Theorem). Let X be a complete metric space. If Un is a
sequence of open dense sets in X then ∩Un is also dense in X.

Proof. Let d be a distance defining the topology of X. Let B be an open ball and
we want to show that B ∩ Un 6= φ. Clearly it suffices to show that for any closed
ball B̄ ∩ Un 6= φ. Replacing X by B̄ it suffices to show that ∩Un 6= φ. We shall
define a sequence xn and positive real numbers rn such that (i) B ′(xn, rn) ⊆ Un ∩
B(xn−1, rn−1) and (ii) rn < 1/n. Here B ′(u, r) denotes the closed ball with center
u and radius r. Start with x1 ∈ U1 and r1 < 1 such that B ′(x1, r1) ⊆ U1. After
defining X1, · · · , xn−1 choose xn ∈ Un ∩ B(xn−1, rn−1) and rn < 1/n such that (ii)
holds. One can do this because Un is dense andUn∩B(xn−1, rn−1) is open. Clearly
d(xn, xn+p) < rn < 1/n for each n > 1 and p. Hence xn is a Cauchy sequence and
by hypothesis it converges to some x ∈ E. Since xn+p ∈ B ′(xn, rn) for all p > 1 ,
x ∈ B ′(xn, rn) ⊆ Un for each n. Therefore x ∈ ∩Un.

Corollary 4.1.2. Let X be a complete metric space and Cn a sequence of closed sets
such that X = ∪Cn. Then at least one of them has nonempty interior.

Proof. On the contrary suppose every Cn has empty interior. Let Un = X \Cn, then
Un’s are dense open subsets of X and by Baire’s theorem ∩Un is dense. On the other
hand

∩Un = ∩(X \ Cn) = X \ (∪Cn) = X \ X = φ

a contradiction.
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4.2 The uniform boundedness principle and an appli-
cation

Theorem 4.2.1 (Uniform Boundedness Principle). Let {Tα : E → F}α∈A be a family of
continuous linear maps such that for each x ∈ E there existsMx such that supα ‖Tα(x)‖ 6
Mx‖x‖, then there existsM such that supα ‖Tα‖ 6M.

Proof. Let Cn = {x ∈ E : ∀α, ‖Tα(x)‖ 6 n‖x‖}. Then clearly each Cn is closed
and they cover E. Therefore at least one of them say Ck contains a ball of radius
r around x0 for some r and x0. Hence ‖Tα(x‖ 6 k‖x‖ whenever ‖x − x0‖ < r and
consequently for xwith ‖x− x0‖ 6 r using ‖x‖ 6 ‖x0‖+ rwe get

‖Tα(x− x0)‖ 6 ‖Tα(x)‖+ ‖Tα(x0)‖ 6 k‖x‖+ k‖x0‖ 6 k(2‖x0‖+ r).

Therefore supα ‖Tα‖ 6
k(2‖x0‖+r)

r
.

Corollary 4.2.2. Let E be a Banach space. Let X be a weakly bounded subset of E.
That means for allφ ∈ E∗,φ(X) is a bounded subset of K. Then X is a norm bounded
subset of E.

Proof. Let j : E→ E∗∗ be the canonical embedding. Then by hypothesis

∀φ ∈ E∗, ∃Mφ such tat sup
x∈X
‖j(x)(φ)‖ < Mφ.

By the uniform boundedness principle there existsM such that

sup
x∈X
‖x‖ = sup

x∈X
‖j(x)‖ < M.

4.3 A typical application

Let 1 < p <∞ and {αn} be a sequence of scalars such that
∑
αnβn converges for all

{βn} ∈ `p. Then {αn} ∈ `q. To see this consider the linear functional TN ∈ `∗p given
by TN({βn}) =

∑N
n=1 αnβn. From convergence of

∑
αnβn we conclude that the

hypothesis of UBP is met. Therefore UBP gives us M such that M > supN ‖TN‖ =

supN
q

√∑N
n=1 |αn|

q. Therefore
∑∞
n=1 |αn|

q 6M <∞.
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4.4 Quotient spaces

Now that we have some idea about bounded linear maps on normed linear spaces
we can ask how about extending some of the results of linear algebra to normed
linear spaces. The first theorem we learnt was the first isomorphism theorem. Recall
that first isomorphism theorem says if T is a linear map from a linear space E onto
another linear space F then T induces an isomorphism qT : E/ ker T → F. Now if
we want to extend this to normed linear spaces first thing we need is the notion of
quotients.

Definition/Proposition 4.4.1. Let E be a normed linear space and F ⊆ E a closed sub-
space. Then ‖[x]‖ := inf{‖x+ y‖ : y ∈ F} defines a norm on the vector space E/F.

Proof. Let x1, x2 ∈ E. Then ∀y1,y2 ∈ Fwe have

‖x1 + y1 + x2 + y2‖ 6 ‖x1 + y1‖+ ‖x2 + y2‖.

Taking infimum over both sides as y1,y2 varies over Fwe get ‖[x1+ x2]‖ 6 ‖[x1]‖+
‖[x2]‖. Similarly we get ‖[λx]‖ = |λ|‖[x]‖. Finally note that ‖[x]‖ = 0 iff x = limyn
for some sequence {yn} ⊆ F. Since F is closed, this happens iff x ∈ F. In other words
[x] = 0 ∈ E/F.

Lemma 4.4.2. Let E be a normed linear space. Then E is complete iff convergence of
∑
‖xn‖

implies convergence of
∑
xn.

Proof. Only if part is easy and we only show the if part. Let {xn} be a Cauchy se-
quence in E. Then we can extract a subsequence {xnk} such that ‖xnk+1 − xnk‖ <
1
2k

,∀k. Then the series
∑
‖xnk+1 − xnk‖ converges. By our hypothesis

∑N
k=1(xnk+1 −

xnk) converges. That means xnk − xn1 converges. In other words the subsequence
{xnk} converges. Since the original sequence is Cauchy from the convergence of a
subsequence we conclude convergence of the whole sequence.

Proposition 4.4.3. Let E be a Banach space and F ⊆ E is a closed subspace. Then
E/Fwith the quotient norm is a Banach space.

Proof. Let
∑
‖[xn]‖ < ∞ to show completeness of E/F it is enough to show con-

vergence of
∑

[xn]. For each n obtain yn ∈ F such that ‖xn + yn‖ 6 ‖[xn]‖ + 1
2n

.
Then

∑
‖xn + yn‖ < ∞ and using completeness of E we conclude convergence of∑

(xn+yn) say to x0. In other words ‖
∑N
n=1(xn+yn)−x0‖→ 0. Since

∑N
n=1 yn ∈ F

we have

‖
N∑
n=1

[xn] − [x0]‖ 6 ‖
N∑
n=1

(xn + yn) − x0‖→ 0.

Thus we have established lim
∑N
n=1[xn] = [x0].
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4.5 An application of UBP to complex analysis

We briefly recall the basic concepts of Banach space valued holomorphic functions.

Definition 4.5.1. (1) LetΩ be an open subset of C and E a Banach space. A function
f : Ω → E is called weakly holomorphic if given any bounded linear functional φ
on E, the function φ ◦ f : Ω→ C is holomorphic.
(2) The function f is called strongly holomorphic if for all z ∈ Ω

Limw→z f(w) − f(z)
w− z

exists .

Proposition 4.5.2. If f : Ω→ E is weakly holomorphic then f is norm continuous.

Proof. Suppose 0 ∈ Ω, and we will show that f is norm continous at zero. Let φ be
a linear functional on E. Since φ ◦ f is holomorphic,

φ(f(z)) − φ(f(0))

z
=

1

2πi

∫
Γ

φ(f(w))

(w− z)w
dw,

where Γ is the positively oriented circle of radius 2r for some small enough r and
0 < |z| < 2r. For |z| < r the right hand side is bounded by r−1C(φ) for some constant
C(φ) dependent on φ. So

|φ

(
f(z) − f(0)

z

)
| 6 r−1C(φ) for 0 < |z| < r.

By the uniform boundedness principle, there is some constant c such that for 0 <
z < r, ‖f(z)−f(0)

z
‖ 6 c. Therefore f is norm continuous at 0.

4.6 Open mapping theorem and its main corollary

Theorem 4.6.1 (Open Mapping Theorem). Let T : E → F be a continuous surjection,
then T is an open mapping theorem.

Lemma 4.6.2. Let T : E → F be a bounded operator from a Banach space E to another
Banach space F. Let BE and BF be the unit balls of E and F respectively. Suppose that T(BE)
closure contains rBF for some r > 0, then T(BE) contains rBF.

Proof. Let y ∈ rBF and δ ∈ (0, 1) such that y ′ = δ−1y ∈ rBF. By the assumption,
there exists x1 ∈ BE such that ‖y ′ − T(x1)‖ < (1 − δ)r. Since T((1− δ)BE) contains
(1 − δ)rBF, there exists x2 ∈ (1 − δ)BE such that ‖y − T(x1) − T(x2)‖ < r(1− δ)2.
Since T((1− δ)2BE) contains (1− δ)2rBF, there exists x3 ∈ (1− δ)2BE such that ‖y−
T(x1) − T(x2) − T(x3)‖ < r(1− δ)3. Continuing this process we get a sequence
xn ∈ (1− δ)n−1BE such that

‖y− T(x1) − T(x2) − · · ·− T(xn)‖ < r(1− δ)n.
[Lecture Notes of P.S.Chakraborty]
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Since
∑
‖xn‖ converges and E is complete the series

∑
xn converges to x ′ say. Since

T is continuous T(x ′) = y ′ and ‖x ′‖ <
∑

(1− δ)−1 = δ−1. Put x = δx ′, then clearly
x ∈ BE and T(x) = δy ′ = y.

Open Mapping Theorem. We have to show that the image of an open ball around zero
under T contains an open ball around zero. Since T is surjective, F = ∪T(nBE). But
by the corollary to the Baire theorem we get closure of T(mBE) contains an open
ball V = y + εBF. Put r = ε

2m
and take z ∈ rBF. Since y,y + 2mz ∈ V , there

exists sequences yn,y ′n ∈ T(mBE) such that limyn = y, limy ′n = y+ 2mz. Hence
zn = yn − y ′n ∈ T(2mBE) converges to 2mz, and thus 1

2m
zn ∈ T(BE) converges to

z. Thus we can apply the previous lemma and conclude the proof.

Remark 4.6.3 (A typical application). Let ‖ · ‖1, ‖ · ‖2 be two norms on a linear
space E turning E into a Banach space. Suppose there exists C > 0 such that
‖x‖1 6 C‖x‖2, ∀x ∈ E. Then there exists C′ such that ‖x‖2 6 C′‖x‖1,∀x ∈ E. To
see this just observe that the identity map from (E, ‖ · ‖2) to (E, ‖ · ‖1) is a bijective
continuous surjection. By the open mapping theorem this mapping has a continu-
ous or equivalently bounded inverse. We can take C′ to be the norm of the inverse.

Theorem 4.6.4 (Closed Graph Theorem). Let E, F be Banach spaces and T : E → F a
linear map such that the graph of T , Γ = {(x, T(x)) : x ∈ E} is a closed subset of E×F. Then
T is continuous.

Proof. The vector space E×F is a Banach space with the norm ‖(x,y)‖ = ‖x‖E+‖y‖F.
By hypothesis Γ is a closed subspace of a Banach space, hence Γ becomes a Banach
space. Define π1 : Γ → E as π1((x, T(x))) = x and π2 : E × F → F, as π2((x,y)) = y.
By the open mapping theorem π−1

1 is a continuous linear map from X to Γ . But
T = π2 ◦ π−1

1 , hence continuous.

Proposition 4.6.5. Let ‖ · ‖N be a norm on C([0, 1]) turning it into a Banach space.
Also ‖fn − f‖N → 0 implies lim fn(x) = f(x), ∀x ∈ [0, 1]. Then ‖ · ‖N must be
equivalent with the sup norm.

Proof. Because of remark (4.6.3) it is enough to show that the identity mapping from
(C([0, 1]), ‖ · ‖sup) to (C([0, 1]), ‖ · ‖N) is continuous. We can appeal to closed graph
theorem provided we show that the graph of identity mapping is closed. In other
words if lim ‖fn − f‖sup = 0, lim ‖fn − g‖N = 0 then we must show g = f. But that
follows from g(x) = lim fn(x) = f(x).
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Week 5

Hilbert Spaces

We briefly introduce Hilbert spaces and classify them.

5.1 Hilbert Spaces

Definition 5.1.1. Let H be a vector space. A pre-inner product on H is a sesquilinear
map 〈·, ·〉 : H ×H→ K such that

1. 〈u, v〉 = 〈v,u〉,∀u, v ∈ H.

2. 〈u,αv+ βw〉 = α〈u, v〉+ β〈u,w〉, ∀α,β ∈ K, ∀u, v ∈ H.

3. 〈u,u〉 > 0 ∀u ∈ H.

Definition 5.1.2. A Pre-Hilbert Space or a pre-inner product space is a pair consist-
ing of vector space along with a pre-inner product.

Proposition 5.1.3 (Cauchy-Schwarz Inequality). Let H be a vector space equipped
with a pre-inner product, then

| < u, v > | 6
√
〈u,u〉

√
〈v, v〉,∀u, v ∈ H.

Proof. Let 〈u, v〉 = reiθ, r > 0. Note that if the scalar field is R then θ ∈ {π, 0}. We
will divide the proof in cases. The first one is〈u,u〉 = 〈v, v〉 = 0.

0 6 〈u− e−iθv,u− e−iθv〉
= 〈u,u〉+ 〈v, v〉− e−iθ〈u, v〉− eiθ〈v,u〉
= −2r 6 0.
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Thus we get r = 0 proving the inequality in this case. Next case is both 〈u,u〉 and
〈v, v〉 are not simultaneously zero. Without loss of generality we can assume that
〈v, v〉 6= 0. Let t = − 〈u,v〉√

〈v,v〉
, then,

0 6 〈u+ tv,u+ tv〉

= 〈u,u〉+ |t|
2〈v, v〉− 2|〈u, v〉|2

〈v, v〉

= 〈u,u〉+ |〈u, v〉|2

〈v, v〉
−
2|〈u, v〉|2

〈v, v〉

= 〈u,u〉− |〈u, v〉|2

〈v, v〉
.

Now transferring |〈u,v〉|2
〈v,v〉 to the other side and multiplying both sides by 〈v, v〉 we

get the result.

Corollary 5.1.4. We have 〈u, v〉 = 0 whenever 〈v, v〉 = 0.

Corollary 5.1.5. N = {v ∈ H : 〈v, v〉 = 0} is a subspace.

Proof. Clearly N is closed under scalar multiplication. Only thing we need to show
that it is closed under addition. Let u, v ∈ N. Then by the C-S inequality we get
〈u, v〉 = 0. Thus 〈u+ v,u+ v〉 = 0.

Corollary 5.1.6.
√
〈u,u〉 = supv:〈v,v〉=1 |〈u, v〉|

Proof. If 〈u,u〉 = 0 then both sides are zero. Otherwise by the C-S inequality left
hand side is less than or equal to right hand side and taking v = u/

√
〈u,u〉 we get

the other inequality.

Definition 5.1.7. Let H be a vector space. An inner product on H is a sesquilinear
map 〈·, ·〉 : H ×H→ K such that

1. 〈·, ·〉 is a pre-inner product.

2. Positive definiteness: 〈u,u〉 = 0 =⇒ u = 0.

An inner product space (H, 〈·, ·〉) is a pair consisting of a vector space H along with
an inner product on H

Definition/Proposition 5.1.8. Let (H, 〈·, ·〉) be an inner product space, then the map
‖ · ‖ : H→ R+ given by

‖v‖ =

{√
〈v, v〉, v 6= 0

0, for v = 0.

is a norm on H. This norm is referred as the norm associated with the inner product
〈·, ·〉.
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Proof. Let u, v ∈ H. Only thing we need to verify is ‖u + v‖ 6 ‖u‖ + ‖v‖. That
follows from,

‖u+ v‖2 = 〈u+ v,u+ v〉 = ‖u‖2 + ‖v‖2 + 2<(〈u, v〉)
6 ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖ = (‖u‖+ ‖v‖)2

Definition 5.1.9. An inner product space (H, 〈·, ·〉) is called a Hilbert space if H is
complete with respect to the norm associated with the inner product.

Definition 5.1.10. Let H1,H2 be Hilbert spaces. A linear mapU : H1 → H2 is called
unitary if it is one-to-one, onto and preserves inner products that is, 〈Ux,Uy〉 =
〈x,y〉, for all x,y ∈ H1. The Hilbert spaces H1,H2 are called unitarily equivalent if
there is a unitary U from H1 to H2.

Proposition 5.1.11. Let H1,H2 be Hilbert spaces with dense subspaces S1,S2 re-
spectively. Let U : S1 → S2 be a bijection such that 〈Ux,Uy〉 = 〈x,y〉, for all
x,y ∈ S1, then U extends to a unitary map denoted by the same symbol U from
H1 to H2.

Proof. Observe that ‖U(x)‖ = ‖x‖, for all x ∈ S1. Therefore U converts Cauchy
sequences to Cauchy sequences. If x is an element in H1 there is a sequence {xn} of
elements of S1 converging to x. Now {U(xn)} is also Cauchy and therefore converges
to some limit. Define Ux as this limit. Clearly this is well defined. By playing
the same game with U−1 we conclude that the extended map is bijective as well.
Continuity of the innerproduct combined with the density of Si’s give 〈Ux,Uy〉 =
〈x,y〉, for all x,y ∈ H1.

Definition/Proposition 5.1.12. Let (Hpre, (·, ·)) be a pre-Hilbert space. Let N = {v ∈
Hpre : (v, v) = 0}. Then 〈u+N, v+N〉 = (u, v) defines an inner product on Hpre/N.
Completion of Hpre/N with respect to the associated norm is called the Hilbert
space associated with the pre-Hilbert space Hpre.

Proof. By corollary (5.1.4) the sesquilinear form 〈·, ·〉 is well defined. Only thing we
need to verify is positive definiteness. Let u ∈ Hpre be such that 〈u +N,u +N〉 =
(u,u) = 0. Then u ∈ N and consequently u+N = N.

Proposition 5.1.13. Let H be a Hilbert space and C ⊆ H be a closed convex set.
Then for all x /∈ C there exists unique z̃ ∈ C such that ‖x− z̃‖ = inf{‖x− z‖ : z ∈ C}.
Verbally this means C has a unique point closest to x.

Proof. Uniqueness: Let z1, z2 ∈ C be equidistant from x. In other words ‖x − z1‖ =
‖x− z2‖. Then by the parallelogram identity

‖(x− z1) + (x− z2)‖2 + ‖(x− z1) − (x− z2)‖2 = 2(‖x− z1‖2 + ‖x− z2‖2)
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Therefore
‖x− z1 + z2

2
‖2 + 1

4
‖z1 − z2‖2 = ‖x− z1‖2 = ‖x− z2‖2.

So, either z1 = z2 or else their midpoint z1+z2
2

is a point from C closer to x.

Existence: Let c = inf{‖x − z‖2 : z ∈ C}. Then there exists a sequence {zn} ⊆ C
such that c 6 ‖x− zn‖2 6 c+ 1

n
. Then using parallelogram identity we get

‖zn − zm‖2 = 2(‖x− zn‖2 + ‖x− zm‖2) − 4‖x−
z1 + z2
2
‖2

6 2(c+ 1/n+ c+ 1/m) − 4c = 2(1/n+ 1/m).

Since H is complete and C is closed {zn} converges to some z̃ ∈ C. Using continuity
of corm we conclude

‖x− z̃‖ = lim ‖x− zn‖ = c = inf{‖x− z‖2 : z ∈ C}.

Proposition 5.1.14. Let H0 ⊆ H be a closed subspace and x /∈ H0. Let z̃ be the
unique solution to the minimization problem min{‖x−z‖ : z ∈ H0}. Then 〈x−z̃, z〉 =
0,∀z ∈ H0.

Proof. We do it for complex scalars. The real case is easier. Let λ ∈ C and z ∈ H0.
Then

‖x− z̃‖2 6 ‖x− z̃− λz‖2

So, for all such λ and z

−2<〈x− z̃, λz〉+ |λ|2‖z‖2 > 0.

Write λ = |λ|eiθ, fix θ, divide by |λ| and let |λ| go to zero to conclude

−2<〈x− z̃, eiθz〉 > 0.

Since θ is arbitrary we must have 〈x− z̃, z〉 = 0.

Definition 5.1.15. Let S ⊆ H be a subset. Then S⊥ := {x ∈ H : 〈x,y〉 = 0,∀y ∈ S}.

Proposition 5.1.16. Let S ⊆ H be a subset. Then the following holds.

1. S⊥ is a closed subspace.

2. S⊥⊥ := (S⊥)⊥ is the closure of linear span of S.

3. S ∩ S⊥ ⊆ {0}. If 0 ∈ S then S ∩ S⊥ = {0}.

Proof. Obvious.

Theorem 5.1.17 (Projection theorem). Let H0 ⊆ H be a closed subspace. Then every
x ∈ H can be written uniquely as y+z where y ∈ H0, z ∈ H⊥0 . The mapping PH0

: x 7→ y

is a bounded linear map from H to itself so that P2H0
= PH0

.
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Proof. Let y = argmin{‖x−u‖ : u ∈ H0} and z = x−y ∈ H⊥0 by proposition (5.1.14).
To see uniqueness of the decomposition note that if x = y1 + z1 = y2 + z2 with
y1,y2 ∈ H0, z1, z2 ∈ H⊥0 , then y1 − y2 = z2 − z1 ∈ H0 ∩ H⊥0 = {0}. Clearly
PH0

: x 7→ y is linear. To see it is bounded let us calculate ‖x‖2, keeping in mind
〈y, z〉 = 0.

‖x‖2 = 〈y+ z,y+ z〉 = 〈y,y〉+ 〈z, z〉 = ‖y‖2 + ‖z‖2 > ‖y‖2 = ‖PH0
(x)‖2.

Therefore PH0
is bounded with norm bounded by 1. If H0 6= {0} then ‖PH0

‖ = 1.

Theorem 5.1.18 (Riesz Representation Theorem). Let φ ∈ H∗, then there is unique
uφ ∈ H so that φ(v) = 〈uφ, v〉. Moreover ‖φ‖ = ‖uφ‖. The mapping φ 7→ uφ gives a
conjugate linear isometry from H∗ to H.

Proof. Let H0 = kerφ. Note that φ = 0 if and only if kerφ = H. So, if φ = 0we can
take uφ = 0. Let us now consider the case φ 6= 0. Then H0 is a proper subspace. So
there exists v ∈ H⊥0 satisfying φ(v) = 1. By the first isomorphism theorem of linear
algebra H⊥0 = Cv. Let uφ = v

‖v‖2 , then

〈uφ,w〉 =

{
0, if w ∈ H0

1, if w ∈ H⊥0 .

Thus φ(w) = 〈uφ,w〉, ∀w. An application of Cauchy-Schwarz inequality yields
‖φ‖ = ‖uφ‖.

Definition 5.1.19. Let H be a Hilbert space.

1. Orthogonal set: A subset S ⊆ H is said to be orthogonal if every element of S
is nonzero and v,w ∈ S, v 6= w implies 〈v,w〉 = 0.

2. Orthonormal set: A subset S ⊆ H is said to be orthonormal if it is orthogonal
and every element of S has norm one.

3. Orthonormal basis: A maximal with respect to inclusion orthonormal set is
called an orthonormal basis to be abbreviated as O.N.B. It exists by a simple
application of Zorn’s lemma.

4. An orthonormal set S is said to be complete if H = SpanS.

Definition 5.1.20. Let X be a set and f : X → R>0 be a function. Let F := {F ⊆
X : F is a finite set }. This is directed by inclusion. The limit of the net {sF :=∑
x∈F f(x)}F∈F if exists is denoted by

∑
x∈X f(x).

Theorem 5.1.21 (Bessel’s inequality). Let B be an orthonormal set. Then for all v ∈ H

we have
∑
u∈B |〈u, v〉|2 6 ‖v‖2.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

[36]

Proof. Let F ⊆ B be a finite subset. Then {〈u, v〉u : u ∈ F} ∪ {v −
∑
u∈F〈u, v〉u} is an

orthogonal set and by exercise (5.1.22) we have∑
u∈F

‖〈u, v〉u‖2 + ‖v−
∑
u∈F

〈u, v〉u‖2 = ‖v‖2.

Therefore
∑
u∈F ‖〈u, v〉u‖2 6 ‖v‖2. The net F 7→ ∑u∈F ‖〈u, v〉u‖2 is a montone net

bounded by ‖v‖2. Hence it converges to
∑
u∈B |〈u, v〉|2 6 ‖v‖2.

Exercise 5.1.22. Let S be a finite orthogonal set. Then ‖
∑
u∈S u‖2 =

∑
u∈S ‖u‖2.

Proposition 5.1.23. Every orthonormal set can be extended to a orthonormal basis.

Proof. Let B be an orthonormal set. Consider the partially ordered set P := {B′ :

B′ ⊃ B,B′ is an O.N.B } ordered by inclusion. Clearly every chain in this partially
ordered set has an upper bound it has a maximal element B′. This gives an or-
thonormal basis containing B.

Lemma 5.1.24. Let S be an orthonormal set and x ∈ H, then the orthogonal projection of
x on span of S is given by

∑
v∈S〈v, x〉v.

Proof. Note that 〈x−
∑
v∈S〈v, x〉v,w〉 = 0,∀w ∈ S. Therefore

‖x−
∑
v∈S

λvv‖2 = ‖x−
∑
v∈S

〈v, x〉v+
∑
v∈S

(λv + 〈v, x〉)v‖2

= ‖x−
∑
v∈S

〈v, x〉v‖2 +
∑
v∈S

|(λv + 〈v, x〉)|2 [By pythagoras

> ‖x−
∑
v∈S

〈v, x〉v‖2 (5.1)

Thus
∑
v∈S〈v, x〉v = argmin{‖x− u‖ : u ∈ SpanS}.

Proposition 5.1.25. Let S ⊆ H be an orthonormal set then the following are equiv-
alent.

1. S is an orthonormal basis.

2. S is complete.

3. Parseval’s relation: For all x ∈ H, ‖x‖2 =
∑
v∈S |〈v, x〉|2

Proof. (1) =⇒ (2) : Let H0 be the closed linear span of S. If H0 ( H, then choose
v ∈ H \ H0. The vector w := v − PH0

v must be non-zero because otherwise v =

PH0
v ∈ H0. Since w ∈ H⊥0 ,S ∪ { w‖w‖ } is an orthonormal basis properly containing S.

This contradicts maximality of S!
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(2) =⇒ (3) : Let x ∈ H. Then for any finite set F ⊆ S, (x−
∑
v∈F〈v, x〉v) ⊥ v,∀v ∈

F. Therefore by pythagoras’ theorem

‖x‖2 =
∑
v∈F

|〈v, x〉|2 + ‖x−
∑
v∈F

〈v, x〉v‖2 (5.2)

Using completeness of S, for each ε > 0we get v1, . . . , vn(ε) ∈ S and scalars λ1, . . . , λn(ε)
so that ‖x−

∑n(ε)
j=1 λjvj‖ < ε. If we call the finite set {v1, . . . , vn(ε)}, Fε then by (5.1)

‖x−
∑
v∈Fε

〈v, x〉v‖2 6 ‖x−
n(ε)∑
j=1

λjvj‖2 < ε2 (5.3)

Therefore the net F 7→ x −
∑
v∈Fε〈v, x〉v defined on the directed set of finite subsets

of S converges to 0. In other words the second term in (5.2) converges to 0. This
proves ‖x‖2 = limF

∑
v∈F |〈v, x〉|2.

(3) =⇒ (1) : If possible let x ∈ H \ S be such that {x} ∪ S be orthonormal.
Then 〈v, x〉 = 0, ∀v ∈ S. Therefore ‖x‖2 =

∑
v∈S |〈v, x〉|2 = 0, a contradiction to

orthonormality of {x} ∪ S.

Corollary 5.1.26 (Abstract Fourier Expansion). Let S be an orthonormal basis. Then
for all x ∈ H we have x =

∑
v∈S〈v, x〉v.

Proof. Since ‖x‖2 = limF

∑
v∈F |〈v, x〉|2, from (5.2) we have limF ‖x−

∑
v∈F〈v, x〉v‖ = 0

or equivalently x = limF

∑
v∈F〈v, x〉v =:

∑
v∈S〈v, x〉v.
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Week 6

Problems

6.1 Monday, 13th February 2023

Exercise 6.1.1. Let E be a Banach space and F a finite dimensional subspace. Show
that F is closed.

Exercise 6.1.2. Let E be a finite dimensional Banach space. Can you give a dense
proper subspace of E?

Exercise 6.1.3. Let E be an infinite dimensional Banach space. Give a dense proper
subspace of E.

Exercise 6.1.4. Let E be a Banach space and F a closed subspace. We say F is alge-
braically complemented if there is another closed subspace F′ such that F ⊕ F′ = E.
Suppose F is finite dimensional. Then show that F is algebraically complemented.

Exercise 6.1.5. Let E be a Banach space and F a closed subspace. We say F is topo-
logically complemented if it is algebraically complemented and the norm on E is
equivalent to the norm on the `1-sum of F and F′ where F, F′ are endowed with
norms obtained from E as its subspaces. Show that if a closed subspace is alge-
braically complemented then it is topologically complemented.

Exercise 6.1.6. Let E be a Banach space and φ : E → K be an unbounded linear
functional then show that kerφ is dense in E.

Exercise 6.1.7. Let E be a Banach space and φ : E → K be a linear map. If kerφ is a
dense proper subspace then show that φmust be unbounded.

Exercise 6.1.8. Let E be a Banach space and φ : E → K. Then kerφ is closed iff φ is
continuous.

Solution. We only need to show the only if part. Let q : E→ E/ kerφ be the quotient
map. Let φ̃ : E/ kerφ → K be the induced map. It is continuous because E/ kerφ
is one dimensional and any linear map on a finite dimensional space is continuous.
Then being a composition of continuous maps φ = φ̃ ◦ q is continuous.
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Exercise 6.1.9. Show that there is a bounded linear map L : `∞ → R such that

1. lim inf x 6 L(x) 6 lim sup x.

2. L(x) = lim xn if L(x) = {xn} is a convergent sequence.

3. L(x) = L(S(x)) where S : `∞ → `∞ is the shift operator given by S(x)n =

(x)n+1.

Exercise 6.1.10. Let E, F be Banach spaces and Tn ∈ L(E; F) be such that for all x ∈ E,
the sequence {Tn(x)} is convergent. Then show that supn ‖Tn‖ < ∞. Let T(x) :=

lim Tn(x). Then show that T ∈ L(E; F). If xn → x, then show that Tn(xn)→ T(x).

6.2 Wednesday, 15th February 2023

Exercise 6.2.1. Show that for each n,k there exists Cn,k > 0 such that for all poly-
nomials P of degree less than or equal to n, in k variables with K coefficients we
have

sup
x∈B(0;r)⊆Rk

|P(x)| 6 Cn,k

∫
B(0;r)

|P(x)|

Vol(B(0; r))
dx.

Exercise 6.2.2. Given any two isomorphic Banach spaces E, F define their Banach
Mazur distance as

δBM(E, F) := {‖T‖.‖T−1‖ : T ∈ L(E, F) is invertible with T−1 ∈ L(F,E)}

Then show that δBM(E, F) > 1 and δBM(E, F) = 1 along with dimE <∞ implies E, F
are linearly isometrically isomorphic.

Solution. First note that since ‖λ.T‖‖(λ.T)−1‖ = ‖T‖‖T−1‖we have

δBM(E, F) = {‖T−1‖ : ‖T‖ = 1, T ∈ L(E, F) is an isomorphism}.

Let δBM(E, F) = 1. Then there exists a sequence Tn ∈ L(E, F) of norm 1 such that
‖T−1n ‖ → 1. Since E is finite dimensional the unit ball of L(E, F) is compact. There-
fore along a subsequence Tn converges to some T . By passing to this subsequence
we can assume Tn → T .

Claim T must be one to one:

Proof of claim. Suppose Tx = 0. Then using lim Tn = T we get Tx = lim Tnx = 0.
Using x = lim T−1n Tn(x) we get

‖x‖ = lim ‖T−1n Tnx‖ 6 lim sup ‖T−1n ‖‖Tnx‖ 6M lim ‖Tnx‖ = 0

whereM = lim sup ‖T−1n ‖ <∞ because ‖T−1n ‖→ 1.
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Therefore T is an isomorphism. Since S 7→ S−1 is a continuous map from L(E, F)
to L(F,E) and norm is a continuous map we must have ‖T−1n ‖ → ‖T−1‖. But
lim ‖Tn−1‖ = 1. Therefore ‖T−1‖ = 1 as well. So we have both ‖T‖ = 1 = ‖T−1‖. In
other words T is the required isometry between E and F.

Exercise 6.2.3. Let E be a separable, then E is a quotient of `1.

6.3 Friday, 17th February

Exercise 6.3.1. Let F ⊆ E be a closed subspace of a Banach space. Show that Φ :

(E/F)∗ → F⊥ := {x∗ ∈ E∗ : 〈x∗, x〉 = 0,∀x ∈ F} given by Φ(φ)(x) = φ([x]) is a linear
isometric one to one onto map.

Exercise 6.3.2. Let F ⊆ E be a closed subspace of a Banach space. Define Ψ : F∗ →
E∗/F⊥ as follows: givenφ ∈ F∗ by Hahn Banach obtain a norm preserving extension
φ̃. Define Ψ(φ) = [φ̃]. Show that Ψ is a linear isometric isomorphism.

Exercise 6.3.3. Let E be a reflexive Banach space. Show that for all x∗ ∈ E∗,∃x ∈
E, ‖x‖ = 1, x∗(x) = ‖x∗‖.

Exercise 6.3.4. Goal of this exercise is showing the collection of continuous nowhere
differentiable functions is a dense Gδ subset of C[0, 1]. This exercise is from Peder-
sen’s Analysis Now.

1. Let Fn = {f ∈ C[0, 1] : ∃xf ∈ [0, 1], such that ∀y ∈ [0, 1], |f(y) − f(xf)| 6 n|y −

xf|, }. Then show that Fn is closed.

2. Let f ∈ C[0, 1] be differentiable at x. Then show that f ∈ ∪nFn.

3. Finally show that Fn has empty interior.

4. Conclude that no where differentiable continuous functions form a dense Gδ
subset of C[0, 1].

6.4 Monday, 20th February

Exercise 6.4.1. Let H be a Hilbert space and T : H ×H → K be a sesquilinear form.
If there exists a positive constant C such that

|T(u, v)| 6 C‖u‖‖v‖,∀u, v ∈ H.

Then there is a unique bounded linear map T̃ ∈ B(H) such that ‖T̃‖ 6 C and

T(u, v) = 〈T̃(u), v〉, ∀u, v ∈ H.
[Lecture Notes of P.S.Chakraborty]
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Exercise 6.4.2. If we have Hilbert spaces H1,H2, and a sesquilinear map B : H1 ×
H2 → K such that

|B(u, v)| 6 C‖u‖‖v‖, ∀u ∈ H1, ∀v ∈ H2

where C is a positive constant then there exists a bounded linear map T : H1 → H2
of norm less than or equal to C and

B(u, v) = 〈T(u), v〉,∀u ∈ H1,∀v ∈ H2.

Exercise 6.4.3. Let x,y : [0, 1] → R be C1-functions such that ‖dx
dt
‖2
2
+ ‖dy

dt
‖2
2
= `2,

then |
∫1
0
y(t)dx

dt
dt| 6 `2

4π
.

Solution to Exercise 6.4.3. Let x′(t) = dx
dt

and y′(t) = dy
dt

. Then

x̂′(n) =

∫1
0

e−2πint
dx

dt
dt

= e−2πintx(t)|t=1t=0 + 2πin

∫1
0

e−2πintx(t)dt

= 2πinx̂(n).

Similarly ŷ′(n) = 2πinŷ(n). Therefore

`2 = ‖dx
dt
‖
2

+ ‖dy
dt
‖
2

= 4π2
∑

n2(|x̂(n)|2 + |ŷ(n)|2).

∣∣∣∣∫1
0

y
dx

dt
dt

∣∣∣∣ = |〈y, x′〉|

= |
∑
n

2πnŷ(n)x̂(n)|

6 2π

√∑
n 6=0

|ŷ(n)|2
√∑
n 6=0

n2|x̂(n)|2, by Cauchy-Schwarz inequality

6 π(
∑
n 6=0

|ŷ(n)|2 +
∑
n 6=0

n2|x̂(n)|2)

6
1

4π
(4π2

∑
n2(|x̂(n)|2 + |ŷ(n)|2))

=
`2

4π

Exercise 6.4.4 (Lax-Milgram). The bilinear form T is called coercive if ∃a > 0 such
that T(u,u) > a‖u‖2, ∀u ∈ H. By exercise (6.4.1) we know that there exists T̃ ∈
B(H) such that T(u, v) = 〈T̃(u), v〉. If T is given to be coercive.

(i) Show that T̃ is one to one.
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(ii) Let Ran be the range of T̃ . Consider S : Ran → H given by S(u) = v where
u = T̃(v). Show that S is bounded. and using this show that Ran is closed.

(iii) Show that T̃ is onto i.e., Ran = H.

(iv) Conclude givenφ ∈ H there exists uniqueu ∈ H such that T(u, v) = 〈φ, v〉,∀v ∈
H.

Solution to Exercise 6.4.4. (i) The map T̃ is one to one because if T̃(u) = 0, then

0 6 a‖u‖2 6 |T(u,u)| = |〈T̃(u),u〉| = 0.

Thus u = 0.

(ii) The map S is well defined because T̃ is one to one.

0 6 a‖v‖2 6 |T(v, v)| = |〈T̃(v), v〉| = |〈u, v〉| 6 ‖u‖‖v‖. (6.1)

Therefore ‖v‖ = ‖S(u)‖ 6 1/a‖u‖. So, S is a bounded linear map. Let {T̃(un)} be
a Cauchy sequence converging to w, then {S(T̃(un))} is also Cauchy. That is {un} is
Cauchy. Let u be the limit of {un}. Then w = T(u) ∈ Ran. This shows that Ran is
closed.

(iii) Let u be orthogonal to Ran, then

0 6 a‖u‖2 6 |T(u,u)| = |〈T̃(u),u〉| = 0.

Thus umust be zero. This shows T̃ must be onto.

(iv) Let u = S(φ), then T̃(u) = φ and

T(u, v) = 〈T̃(u), v〉 = 〈φ, v〉.

Exercise 6.4.5. Let (Ω,S,µ) be a probability space and S′ ⊆ S a sub-σ-algebra.
Let f be a nonnegative measurable L1 function. Let L2(S′) be the space of square
integrable S′ measurable functions. Then L2(S′) ⊆ L2(S) is a closed subspace. Let
P be the corresponding projection. Show that

1. If 0 6 f 6 C then ∃N ∈ S′,µ(N) = 0 and a S′ measurable g such that on
Nc, 0 6 g 6 C and g = Pf a.e. Such a gwill be called a version of Pf.

2. ∫
A

fdµ =

∫
A

Pfdµ,∀A ∈ S′.

[Lecture Notes of P.S.Chakraborty]
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3. Let fn = f ∧ n, then ∃N ∈ S′,µ(N) = 0 such that outside N, each Pfn has
a version gn such that 0 6 gn 6 n and gn 6 gn+1, ∀n > 1. Let g = limgn.
Show that ∫

A

fdµ =

∫
A

gdµ, ∀A ∈ S′. (6.2)

Such a g is called the conditional expectation of f given S′ and is denoted by
E(f|S′). This is an S′ measurable integrable function unique upto a µ null set.

Solution to Exercise 6.4.5. (2) We know that Pf ∈ L2(Ω,S′,µ). Therefore if A ∈ S′

then ∫
A

Pfdµ = 〈1A,Pf〉 = 〈1A, f〉 =
∫
A

fdµ.

(1) Let An = {ω : Pf(ω) 6 −1/n} ∈ S′, then

0 6
∫
An

f =

∫
An

Pfdµ 6 (−1/n)µ(An) 6 0.

Therefore µ(An) = 0 and consequently µ(ω : Pf(ω) < 0) = limn→∞ µ(An) = 0.
Similarly considering P(C− f) we conclude that µ(Pf 6 C) = 1.

(3) fn 6 fn+1 implies there exists Nn such that µ(Nn) = 0,Nn ∈ S′ and outside
Nn,Pfn 6 Pfn+1, ∀n. Let N = ∩Nn, then N ∈ S′,µ(N) = 0 and outside N, Pfn ↗
E(f|S′). To see (6.2) note that∫

A

fdµ = lim
n

∫
A

fndµ = lim
n

∫
A

Pfndµ =

∫
A

E(f|S′),∀A ∈ S′.

The first and the last equality follows from the monotone convergence theorem.

[Lecture Notes of P.S.Chakraborty]
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Week 7

Compact Operators on Banach Spaces

7.1 Riesz Lemma

Lemma 7.1.1 (Riesz lemma).

Proposition 7.1.2. A normed linear space is finite dimensional provided it is locally
compact.

7.2 Compact Operators

Definition 7.2.1 (Compact operator).

Definition 7.2.2. A linear operator is called finite rank if its range is a finite dimen-
sional subspace.

Theorem 7.2.3. Let T ∈ B(H), then T is a compact operator if and only if T is a norm limit
of finite rank operators.

Proof. Only if part: Let T be a compact operator. Therefore given ε > 0, there exists
y1, · · · ,ynε such that T(B(0, 1)) ⊆ ∪nεj=1B(yj, ε). Let {eα}α∈A be an o.n.b for H. Then
there exists a finite subset F of A such that∑

α/∈F

|〈yj, eα〉|2 < ε2,∀j = 1, · · · ,nε. (7.1)

Let y be an element of the norm closure of T(B(0, 1)). Then there exists yj such that∑
α/∈F

|〈y− yj, eα〉|2 6
∑
α∈A

|〈y− yj, eα〉|2 = ‖y− yj‖2 < ε2 (7.2)
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Therefore, ∑
α/∈F

|〈y, eα〉|2 < 4ε2. (7.3)

Let PF be the orthogonal projection on the span of {eα : α ∈ F} and TF = PFT .
By proposition (8.1.1) TF is a compact operator. Let x ∈ B(0, 1) and y = T(x) ∈
T(B(0, 1)). By (7.3) we see that ‖T(x) − TF(x)‖ < 2ε. Therefore ‖T − TF‖ < 2ε.

If part: Let {Tn} be a sequence of finite rank operators such that ‖Tn−T‖→ 0. Let
{uα} be a weakly convergent net with u as its weak limit, i.e., 〈v,uα〉 → 〈v,u〉,∀v ∈
H. The set {uα} is weakly bounded and hence by corollary (4.2.2) is norm bounded
say byM > 1. FindN such that ‖Tn− T‖ < ε

3M
whenever n > N. Let γ be such that

‖TNuα − TNuβ‖ < ε
3M

provided α,β � γ. Then for such α,β,

‖Tuα − Tuβ‖ 6 ‖Tuα − TNuα‖+ ‖Tuβ − TNuβ‖+ ‖TNuα − TNuβ‖ 6 ε.

Thus {T(uα)} is a Cauchy net hence convergent.

[Lecture Notes of P.S.Chakraborty]
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Week 8

Spectral Theorem for Compact
Operators on Hilbert Spaces

In this chapter we will begin with the spectral theorem for compact self adjoint oper-
ators. Learn singular value decomposition. We will also discuss the basic Fredholm
theory.

8.1 Spectral Theorem for Compact Operators

We have already encountered the definition of a compact operator and the spectral
theory of compact operators on Banach spaces. Now we focus on compact operators
on Hilbert spaces.

Proposition 8.1.1. Let T ∈ B(H) then T is compact if and only if T converts weakly
convergent nets to norm convergent nets. That is

(〈v,uα〉→ 〈v,u〉, ∀v ∈ H) =⇒ ‖T(uα) − T(u)‖→ 0.

Proof. Let {uα}α∈A be a weakly convergent net with u as its limit. The net {T(uα)}
weakly converges to T(u) because

〈v, T(uα)〉 = 〈T∗(v),uα〉→ 〈T∗(v),u〉 = 〈v, T(u)
In order to utilize the hypothesis that T is a compact operator note that the set
{uα : α ∈ A} is weakly bounded. Hence by corollary (4.2.2) it is norm bounded. So
there exists M such that sup{‖uα‖ : α ∈ A} < M. Since T is compact any subnet of
{T(uα)} has a convergent subnet and the limit must be T(u), because {T(uα)} weakly
converges to T(u). Since the limit of the convergent subnet of any given subnet does
not depend on the net the original net must be convergent with the same limit, i.e.,
‖T(uα) − T(u)‖→ 0.
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Conversely, let {T(uα)} be a net in T(B(0, 1)). By Banach-Aloglu theorem we
can conclude that {uα} has a convergent subnet. Then the corresponding subnet
{T(uα)} converges. This shows that T(B(0, 1)) is relatively compact or equivalently
has compact closure.

Theorem 8.1.2. Let H be an infinite dimensional Hilbert space and T ∈ B(H) be a nonzero
self-adjoint compact operator, then

Λ+ = sup{〈u, Tu〉 : ‖u‖ = 1} = sup{〈u, Tu〉 : ‖u‖ 6 1}

Λ− = inf{〈u, Tu〉 : ‖u‖ = 1} = inf{〈u, Tu〉 : ‖u‖ 6 1}
are attained. Let u+,u− be the vectors where Λ+,Λ− are attained, then at least one of the
following holds,

Tu± = Λ±u±.

Proof. Let F(u) = 〈u, Tu〉, then this is a real valued function because,

F(u) = 〈Tu,u〉 = 〈u, T∗u〉 = 〈u, Tu〉 = Fu.

Also for ‖u‖ 6 1, |F(u)| 6 ‖u‖2‖T‖ 6 ‖T‖. Therefore Λ± makes sense. Let {un} be
a sequence such that ‖un‖ 6 1 and F(un) → Λ+. Since a Hilbert space is reflexive
by Banach-Alaoglu theorem its unit ball is weakly compact the sequence {un} has
a weakly convergent subsequence. Without loss of generality we can assume that
un → u+, weakly. Then,

|F(un) − F(u+)| = |〈un, Tun〉− 〈u+, Tu+〉|
6 |〈un, Tun − Tu+〉|+ |〈un − u+, Tu+〉|
6 ‖Tun − Tu+‖+ |〈un − u+, Tu+〉|→ 0.

Since T is sompact the first term goes to zero and the second term goes to zero
because {un} weakly converges to u+. Therefore F(u+) = lim F(un) = Λ+. Let
{en : n > 1} be an infinite orthonormal set. Then {en} weakly converges to zero,
hence {T(en)} converges to zero in norm. Therefore {F(en)} converges to zero. Thus
Λ+ > 0. If ‖u+‖ < 1 there exists ε > 0 such that ‖(1+ε)u+‖ = 1, and F((1+ε)u+) =

(1+ ε)F(u+) > F(u+). Similarly we obtain u− such that F(u−) = Λ−.

Λ± both can not be zero: Suppose that Λ+ = Λ− = 0. Then for any u of unit norm,
F(u) = 0. Thus for any u, we get 〈u, Tu〉 = 0. Then by polarization we get

2〈v, Tu〉 = 〈u+ v, T(u+ v)〉+ i〈u+ iv, T(u+ iv)〉 = 0.

Therefore T = 0 a contradiction to T 6= 0!

Without loss of generality we assume that Λ+ 6= 0. Then 〈u+, Tu+〉 = Λ+ > 0.
Therefore, T(u+) 6= 0.

Claim: v ∈ H, ‖v‖ = 1, v ⊥ u+ =⇒ v ⊥ Tu+

[Lecture Notes of P.S.Chakraborty]
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Proof of Claim: Let vθ = (Cosθ)v+ (Sinθ)u+, then ‖vθ‖ 6 1 and

F(vθ) = Cos2θ.F(v) + Sin2θ.F(u+) + CosθSinθ〈v, Tu+〉
+SinθCosθ〈u+, Tv〉

= Cos2θF(v) + Sin2θF(u+) + Sin2θ<〈v, Tu+〉

We know that the function θ 7→ F(vθ) attains its maximum at θ = π/2. Therefore

dF(vθ)

dθ
|θ=π/2 = <〈v, Tu+〉 = 0.

Instead of v if we put
√
−1v we obtain =〈v, Tu+〉 = 0. Therefore 〈v, Tu+〉 = 0.

Thus, Tu+ ∈ u⊥⊥+ = Cu+. Let Tu+ = λu+, and

Λ+ = F(u+) = 〈u+, Tu+〉 = λ‖u+‖2 = λ.

If Λ− 6= 0 we similarly conclude that Tu− = Λ−u−.

Lemma 8.1.3. Let T be a self-adjoint operator on a Hilbert space H. Then

‖T‖ = sup{
|〈u, Tu〉|
‖u‖2

: ‖u‖ 6= 0}. (8.1)

Proof. Let M be the right hand side of 8.1. By Cauchy-Schwarz inequality we see
thatM 6 ‖T‖. Let u, v ∈ H, then

〈u+ v, T(u+ v)〉 = 〈u, Tu〉+ 〈u, Tv〉+ 〈v, Tu〉+ 〈v, Tv〉
〈u− v, T(u− v)〉 = 〈u, Tu〉− 〈u, Tv〉− 〈v, Tu〉+ 〈v, Tv〉

Subtracting and taking absolute values we get

2|〈u, Tv〉+ 〈v, Tu〉| = |〈u+ v, T(u+ v)〉− 〈u− v, T(u− v)〉| (8.2)

If T is the zero operator then clearly ‖T‖ 6M. So, we can assume T 6= 0. Let u be an
arbitrary unit vector such that Tu 6= 0. Let v = Tu

‖Tu‖ . Then, 〈u, Tv〉 = 〈Tu, v〉 = ‖Tu‖.
Putting these in 8.2 we get

4‖Tu‖=|〈u+ v, T(u+ v)〉− 〈u− v, T(u− v)〉|
6M(‖u+ v‖2 + ‖u− v‖2)
=M2(‖u‖2 + ‖v‖2) [ by parallelogram identity
=4M [since ‖u‖ = ‖v‖ = 1.

Therefore ‖T‖ 6M, establishing the other inequality required to show (8.1).

Notation: Given a pair of vectors u, v ∈ H, |u〉〈v| stands for the operator w 7→
〈v,w〉u. In particular Pu := |u〉〈u| is the orthogonal projection onto the span of u.

[Lecture Notes of P.S.Chakraborty]
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Theorem 8.1.4 (Spectral Theorem for Compact Self-adjoint Operator). Let T 6= 0 be
a compact self-adjoint operator on H. Then there exists a sequence {λn} of real numbers and
a sequence of mutually orthogonal vectors {en} such that |λn|→ 0, ‖en‖ = 1∀n and

T =
∑

λn|en〉〈en|, (8.3)

where the sum appearing in (8.3) is norm convergent. The expansion (8.3) is called a spec-
tral resolution of T .

Proof. Let T (0) = T ,H(0) = H. Now we will successively define

1. Hilbert spaces H(n) for n > 0 such that H(n+1) ⊆ H(n).

2. Compact self-adjoint operators T (n) : H(n) → H(n).

3. Vectors en+1 ∈ H(n) orthogonal to H(n+1) and scalars λn+1 for n > 0.

This will be defined in a manner so that if Q(n) denotes the orthogonal projection
onto H(n+1) then

T (n+1) = T (n)Q(n) = Q(n)T (n) (8.4)

T (n) = λn+1Pen+1 + T
(n+1), for n > 0, (8.5)

‖T (n+1)‖ 6 |λn+1|. (8.6)

This is achieved through repeated applications of theorem (8.1.2). Assume that we
have defined (T (k),H(k)) for k 6 n. If T (n) = 0 then T (n+1) = 0, λn+1 = 0, en+1
an arbitrary unit vector in H(n) and H(n+1) = H(n) ∩ {en+1}

⊥,. Otherwise apply
theorem (8.1.2) for the operator T (n).

(λn+1, en+1) =

{
(Λ+(T

(n)),u+(T
(n))), if Λ+(T

(n)) > −Λ−(T
(n))

(Λ−(T
(n)),u−(T

(n))) otherwise.

Then T (n)en+1 = λn+1en+1 and consequently λn+1Pen+1 = T (n)Pen+1 = Pen+1T . Let
Q(n) = IH(n) − Pen+1 and H(n+1) be the range of Q(n). If we take T (n+1) = T (n)Q(n)

then all the conditions will be met. To see (8.6) observe that

‖T (n+1)‖ 6 ‖T (n)‖ = |λn+1|, by lemma (8.1).

Adding (8.5) for 0 6 n 6 k we obtain,

T =

k∑
n=0

λn+1Pen+1 + T
(k+1) (8.7)

Since {en} converges to zero weakly |λn| = ‖T(en)‖ converges to zero. It follows
from the inequality (8.6) that ‖T (n)‖ converges to zero. This proves (8.3).

[Lecture Notes of P.S.Chakraborty]
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Definition 8.1.5. Let T ∈ B(H), then λ is an eigenvalue of T with eigenvector u 6= 0
if Tu = λu. The subspace Eλ = {u ∈ H : Tu = λu} is called the eigenspace
corresponding to the eigenvalue λ.

Corollary 8.1.6. Let T 6= 0 be a compact operator with a spectral resolution given by
(8.3). Then λ 6= 0 is an eigenvalue iff λ equals one of the λn’s. Also Eλ = span{en :

λn = λ}.

Proof. Let A be the orthonormal set consisting of en’s. Extend it to an orthonormal
basis A′. Let λ 6= 0 be an eigenvalue with eigenvector u. Then by corollary (??)
u =
∑
n〈en,u〉en +

∑
α∈A′\A〈α,u〉α. Therefore Tu =

∑
n λn〈en,u〉en. On the other

hand λu =
∑
n λ〈en,u〉en +

∑
α∈A′\A〈α,u〉α. Using Tu = λu we obtain,

〈α,u〉 = 0,∀α ∈ A′ \A (8.8)
λ〈en,u〉 = λn〈en,u〉,∀n. (8.9)

Equation (8.8) tells us u belongs to the closed linear span of en’s. Hence there exists
n such that 〈en,u〉 6= 0. Using equation (8.9) for that nwe conclude λ = λn.

Corollary 8.1.7 (Singular Value Decomposition). Let T 6= 0 be a compact operator.
Then there exists countable orthonormal sets {en}, {fn} and a sequence of positive
scalars {λn}, λn ↘ 0, such that

T =
∑
n

λn|fn〉〈en| (8.10)

where the sum is norm convergent.

Proof. Let S = T∗T . Then S is compact and nonzero because if Tu 6= 0 then 〈u,Su〉 =
‖Tu‖2 > 0. Hence S is nonzero.

[Lecture Notes of P.S.Chakraborty]
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Week 9

Harmonic Analysis on Compact
Groups

9.1 Haar Measure

Let G be a topological group with a compact metrisable topology. This means G
is a compact metrisable topological space and the group operations m : G × G 3
(g,h) 7→ gh ∈ G and G 3 g 7→ g−1 ∈ G are continuous.

Definition 9.1.1. A probability measure λ on the Borel σ-algebra of G is said to be
a left (right) Haar measure if λ(gB) = λ(B) (respectively λ(Bg) = λ(B)) for allBorel
sets B and for all g ∈ G. Clearly this implies for a left Haar measure λ, for every
bounded Borel measurable function f we have

∫
f(gh)dλ(h) =

∫
f(h)dλ(h). We

have a similar conclusion for a right Haar measure.

We are interested in showing existence of a left Haar measure. Let us introduce
few notations. Given f ∈ C(G) and a signed measure µ we define functions as
follows

(I⊗ µ)(∆f)(g) =
∫
f(gh)dµ(h)

(µ⊗ I)(∆f)(h) =
∫
f(gh)dµ(g).

In this notation λ is a left (right) Haar measure if (I ⊗ λ)(∆f)(g) =
∫
f(h)dλ(h)

((I ⊗ λ)(∆f)(h) =
∫
f(g)dλ(g)) for all f ∈ C(G). Another way to state the left Haar

measure condition would be for all f ∈ C(G), (I ⊗ λ)(∆f) is a constant function.
So, to produce such a measure λ let us have an alternative description of constant
functions.

Definition 9.1.2. A probability measure µ is said to be faithful if µ(U) > 0 for all
U > 0. If {xn} is a countable dense subset ofG then we can take µ =

∑
1
2n
δxn , where

δxn is the Dirac mass at xn.
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Proposition 9.1.3. Let µ be a faithful measure on G. Then f ∈ C(G) is a constant
function iff (I⊗ µ)(∆f) = f iff (µ⊗ I)(∆f) = f.

Proof. Only if parts are trivial because if f is the constant function g 7→ c, then
(I ⊗ µ)(∆f) : g 7→ cµ(G). So, let us prove the if parts. I’ll do that for the first
one. So let f ∈ C(G) be such that (I ⊗ µ)(∆f) = f. If f is not constant then there
is some ε > 0 and some non trivial open set U such that f(g) < f(g0) − ε where
f(g0) = maxg∈G f(f). Using (I⊗ µ)(∆f) = fwe get

f(g0) = (I⊗ µ)(∆f)(g0)

=

∫
f(g0h)dµ(h)

=

∫
g−1
0 U

f(g0h)dµ(h) +

∫
G\g−1

0 U

f(g0h)dµ(h)

6 (f(g0) − ε)µ(g
−1
0 U) + f(g0)µ(G \ g−10 U)

= f(g0) − εµ(g
−1
0 U)

< f(g0)!

This contradiction shows fmust be constant.

In view of the previous proposition we have the following characterisation.

Proposition 9.1.4. Let µ be a faithful probability measure. Then λ is a left Haar
measure iff for all f ∈ C(G) we have (I⊗ µ)(∆(I⊗ λ)(∆f)) = (I⊗ λ)(∆f).

Exercise 9.1.5. State the corresponding proposition for a right Haar measure.

Proposition 9.1.6. Let µ, λ be probability measures on G and f ∈ C(G), then

(I⊗ µ)(∆(I⊗ λ)(∆f)) = (I⊗ (µ ? λ)(∆f).

Proof.

(I⊗ µ)(∆(I⊗ λ)(∆f))(g) =

∫
(I⊗ λ)(∆f)(gh)dµ(h)

=

∫ ∫
f(ghh′)dλ(h′)dµ(h)

=

∫
f(gh)d(µ ? λ)(h)

= (I⊗ (µ ? λ)(∆f)(g).

In view of proposition (9.1.6) we can restate proposition (9.1.4) as follows.

Proposition 9.1.7. Let µ be a faithful probability measure onG. Then λ is a left Haar
measure iff µ ? λ = λ.

[Lecture Notes of P.S.Chakraborty]
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Theorem 9.1.8. Let G be a topological group with a compact metrisable topology. Then G
has a left Haar measure.

Proof. Let µ be a faithful probability measure on G. We need to find a probability λ
such that µ ? λ = λ. Let P(G) = {φ ∈ C(G)∗ : φ(1) = 1,φ is positive}. By Markov-
Kakutani-Riesz representation theorem we can identify P(G) with the collection of
Borel probability measures on G. We will intentionally use the same symbol φ to
denote the probability measure associated with the linear functional φ through this
identification. Consequently if φ ∈ P(G) and f ∈ C(G) then φ(f) =

∫
fdφ.

Claim: P(G) is weak* closed: Let φα
w∗→ φ be a convergent net from P(G). We

need to show φ ∈ P(G). That amounts to showing two things, first φ is a positive
linear functional. That follows because if f ∈ C(G) satisfies f > 0, then φ(f) =

limφα(f) > 0 since φα(f) > 0 for all α. Also φ(1) = limφα(1) = 1.

Therefore by Banach Alaoglu theorem P(G) is a compact subset in the weak*
topology. Also P(G) is easily to be convex. Since P(G) 3 λ 7→ µ ? λ ∈ P(G) is
an affine map, we will be done by Markov-Kakutani fixed point theorem once we
show that P(G) 3 λ 7→ µ ? λ ∈ P(G) is weak* continuous. Let λα

w∗→ λ. Then for all
f ∈ C(G) we have limα

∫
fdλα =

∫
fλ. Therefore

lim
α

∫
fd(µ ? λα) = lim

α

∫
(

∫
f(gh)dµ(g))dλα(h) =

∫
(

∫
f(gh)dµ(g))dλ(h) =

∫
fd(µ ? λ)

In other words (µ?λα)
w∗→ (µ?λ). Thus by Markov-Kakutani we obtain a probability

measure λ such that µ?λ = λ. In view of proposition (9.1.7) this establishes existence
of a Haar measure.

Exercise 9.1.9. A left Haar measure is faithful.

Exercise 9.1.10. Let λ be a left Haar measure. Then show that λ?λ = λ and conclude
that λ is a right Haar measure as well.

Exercise 9.1.11. Let λ1, λ2 be two left Haar probability measures. Show that λ1 = λ2.

9.2 Finite Dimensional Representations

Henceforth unless otherwise stated G will stand for a compact Hausdorff topolog-
ical group. We have proved existence of Haar measure under the assumption of
metrisability. Here we will assume it exists even without that assumption. Refer-
ence for that would be Functional Analysis books of Rudin and Conway. They give
different proofs. We wish to understand strongly continuous unitary representa-
tions of G.
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9.3 Schur Orthogonality

Definition 9.3.1. (1) A finite dimensional representation of G in a complex vector
space V is a continuous homomorphism π from G to GL(V), the space of invertible
linear transformations of V . The vector space V is often referred as the representa-
tion space.
(2) A subspace W of V is called invariant if π(g)(W) ⊆ (W) for all g ∈ G. It is
called a reducing subspace if there exists another invariant subspace W′ such that
V =W ⊕W′. Clearly {0} and V are invariant subspaces.
(3) A representation is called irreducible if it has no other invariant subspace.
(4) LetW be an invariant subspace, then the restriction of π toW denoted π|W is the
representation π|W : G→ GL(W) given by π|W(g) := π(g)|W .
(5) A finite dimensional representation is called unitarizable if V can be endowed
with an inner product such that each π(G) ⊆ U(V), the space of unitary operators.
(6) Given two representations πi : G→ G(Vi), i = 1, 2, an intertwiner from π1 to π2
is a linear map T : V1 → V2 such that π2(g)T = Tπ1(g),∀g ∈ G. The representations
are called equivalent if there exists an invertible intertwiner from π1 to π2.
(7) The direct sum of two representations πi : G → GL(Vi), i = 1, 2 is the represen-
tation π : G→ GL(V) where V = V1 ⊕ V2 and π(g) = π1(g)⊕ π2(g) ∈ GL(V).
(8) A representation π : G → GL(V) is called completely reducible if there exists
invariant subspacesW1, · · · ,Wn such that V = ⊕niWi and each π|Wi

is irreducible.

Proposition 9.3.2. Let π : G→ GL(V) be a finite dimensional representation. Then it
is unitarizable. In other words every finite dimensional representation is equivalent
to a unitary representation.

Proof. Let n be the dimension of V . Then V is isomorphic with Cn. Using any inner
product on Cn we can define an inner product on V . Let (·, ·) be one such. Let
〈u, v〉 :=

∫
G
(π(g)u,π(g)v)dg, where dg denotes the Haar measure normalized so

that measure of G is 1. Only thing we need to verify is 〈u,u〉 = 0 implies u = 0.
But that follows because g 7→ (π(g)u,π(g)u) is a nonnegative continuous function
whose integral

∫
G
(π(g)u,π(g)u)dg = 〈u,u〉 vanishes. Therefore (π(g)u,π(g)u) = 0

for all g ∈ G. In particular taking g = e we get (u,u) = 0. Since (·, ·) is an inner
product we get u = 0.

Corollary 9.3.3. Let π : G → GL(V) and W be an invariant subspace then it is
reducing.

Proof. Fix an inner product on V such that π becomes a unitary representation. Let
W′ be the orthocomplement ofW. Then V =W⊕W⊥. Only thing we need to show
is thatW⊥ is invariant. Let g ∈ G and u ∈W⊥,w ∈W, then using the invariance of
W we see that π(g−1)w ∈W. Thus,

〈π(g)u,w〉 = 〈u,π(g)∗w〉 = 〈u,π(g−1)w〉 = 0.

This shows that π(g)u ∈W⊥, in other wordsW⊥ is invariant.
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Corollary 9.3.4. Every finite dimensional representation is completely reducible.

Proof. The proof is by induction on the dimension of the representation space. If
that is zero there is nothing to prove. Let us assume the that the result holds if the
dimension of the representation space is less tan or equal to n. Now let π : G →
GL(V) be a representation such that dimension of V is n + 1. If the representation
is ireducible there is nothing to prove, otherwise let W be an invariant subspace.
We have just seen that then W⊥ is also invariant. Clearly both W and W⊥ have
dimension less than n. By induction hypothesis there exists subspacesW1, · · · ,Wm

ofW andWm+1, · · · ,Wm+k ofW⊥ such thatW = ⊕mi=1Wi,W⊥ = ⊕m+k
i=m+1 and π|Wi

is irreducible for 1 6 i 6 m + k. Then V = ⊕m+k
i=1 Wi and π becomes completely

reducible.

Proposition 9.3.5 (Schur’s lemma). (1) Let φj : G → GL(Vj), j = 1, 2 be finite di-
mensional irreducible representations of G. Suppose there exists a nonzero linear
map T : V1 → V2 such that Tφ1(g) = φ2(g)T , ∀g ∈ G, then T is an isomorphism
and consequently φ1 and φ2 becomes equivalent. In particular there is no nonzero
intertwiner between inequivalent irreducible finite dimensional representations.
(2) Let φ : G→ GL(V) be an irreducible representation and T : V → V be a nonzero
linear map such that Tφ(g) = φ(g)T ,∀g ∈ G, then there exists a nonzero scalar
λ ∈ C such that T = λI.

Proof. (1) Let W1 = ker (T) then this is an invariant subspace of V1. Since φ1 is
irreducible there are two possibilities W1 = 0 or V1. The second possibility is ruled
out because T is nonzero. Therefore T is one to one. Let W2 = Image(T), then this
is an invariant subspace of V2. As before there are two possibilities W2 = 0 or V2.
The first possibility is ruled out because T is nonzero. Therefore T is onto.

(2) By part one we know that T is an isomorphism. Let λ be a nonzero eigenvalue
of T . Then (i) (T − λ.I)φ(g) = φ(g)(T − λ.I)∀g ∈ G, (ii) ker(T − λ.I) is a nonzero
invariant subspace, hence must be whole of V . Therefore T = λ.I.

Definition 9.3.6. Let φ : G→ GL(V) be a finite dimensional representaion. Let 〈·, ·〉
be an inner product such that φ becomes unitary. Given a pair of vectors v, v′ ∈ V ,
the continuous function θφ,v,v′(g) = 〈v,φ(g)v′〉 is called a representation function.
The continuous function χφ : g 7→ Tr(φ(g)) is called the character of the represeta-
tionφ. If we fix an orthonormal basis u1, · · · ,ud of V then χφ(g) =

∑d
j=1 θφ,uj,uj(g).

Proposition 9.3.7 (Schur Orthogonality Relations). (1) Let φj : G→ GL(Vj), j = 1, 2
be two inequivalent irreducible representations. Let v, v′ ∈ V1,w,w′ ∈ V2. Then
the L2(G) inner product of the associated representation functions θφ1,v,v′ , θφ2,w,w′

vanishes. That is

〈θφ1,v,v′ , θφ2,w,w′〉 =

∫
G

〈v,φ1(g)v′〉〈w,φ2(g)w′〉dg = 0 (9.1)

(2) Let φ : G → GL(V) be an ireducible representation, then given four vectors
v, v′,w,w′ ∈ V the L2(G) inner product of the associated representation functions
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θφ,v,v′ , θφ,w,w′ is given by

〈θφ,v,v′ , θφ,w,w′〉 =

∫
G

〈v,φ(g)v′〉〈w,φ(g)w′〉dg

=
1

dimV
〈v,w〉〈v′,w′〉. (9.2)

Proof. (1) Fix v ∈ V1,w ∈ V2. Consider the bilinear form

B : (v′,w′) 7→ ∫
G

〈v,φ1(g)v′〉〈w,φ2(g)w′〉dg.

Then

|B((v′,w′)| 6
∫
G

|〈v,φ1(g)v′〉| · |〈w,φ2(g)w′〉|dg

6
∫
G

‖v‖‖φ1(g)v′‖‖w‖‖φ2(g)w′‖dg

=

∫
G

‖v‖‖v′‖‖w‖‖w′‖dg, by unitarity of φ1,φ2

= ‖v‖‖v′‖‖w‖‖w′‖

By remark (6.4.2) we obtain a bounded linear map T : V1 → V2 such that B(v′,w′) =
〈T(v′),w′〉. Note that

〈Tφ1(h)(v′),φ2(h)(w′)〉 = B(φ1(h)(v
′),φ2(h)(w′))

=

∫
G

〈v,φ1(g)φ1(h)(v′)〉〈w,φ2(g)φ2(h)(w′)〉dg

=

∫
G

〈v,φ1(gh)v′〉〈w,φ2(gh)w′〉dg

= B((v′,w′),
= 〈T(v′),w′〉.

The fourth equality follows from the right invariance of Haar measure. It follows
that T intertwines φ1 and φ2.

(1) Ifφ1 andφ2 are inequivalent then it follows from part (1) of proposition 9.3.5)
that T must be zero. That is B(v′,w′) = 0. This proves (9.1).

(2) Ifφ1 = φ2 = φ, then by part (2) of proposition 9.3.5) we conclude that T = λ.I
for some complex number λ. Thus,∫

G

〈v,φ(g)v′〉〈w,φ(g)w′〉dg = λ〈v′,w′〉. (9.3)
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Let d = dim(V) and u1, · · · ,ud be an orthonormal basis of V . In 9.3 we put v′ =
w′ = uj and sum over j to obtain

dλ =

∫
G

d∑
j=1

〈w,φ(g)uj〉〈φ(g)uj, v〉dg

=

∫
G

d∑
j=1

〈w, v〉dg[ by (??)

= 〈w, v〉

Thus λ = 〈w,v〉
d

and putting this in (9.3) we obtain (9.2).

Corollary 9.3.8. Letφ,φ′ be inequivalent irreducible reresentations. Then 〈χφ,χφ′〉 =
0.

Definition 9.3.9. LetG be a compact hausdorff topological group and Ĝfin the space
of equivalence classes of finite dimensional irreducible representations. Let dφ de-
note the dimension of the representation space of φ. Let L2(Ĝ) be the completion of
the pre-Hilbert space ⊕φ∈ĜfinM(Cdφ) with respect to the inner product

〈(Tφ), (Sφ)〉
∑

φ∈Ĝfin

1

dφ
TrT∗φSφ.

Corollary 9.3.10. Let FĜ : L2(Ĝ)→ L2(G) be the map given by

Ei,j,φ 7→ θφ,i,j,φ ∈ Ei,j,φ, i = j = 1, · · · ,dφ

where {Ei,j,φ : i, j = 1, · · · ,dφ} is the canonical basis of M(Cdφ). Then FĜ is an
isometry.

Proof. Clearly {Ei,j,φ : φ ∈ Ĝfin, i, j = 1, · · · ,dφ} is an orthogonal basis of L2(Ĝ). It
suffices to show that 〈Ei,j,φ,Ek,l,φ′〉 = 〈θφ,i,j, θφ′,k,l, ∀φ,φ′, i, j,k, l. But that follows
from the Schur orthogonality relations.

9.4 The Banach-* Algebra of Square Integrable Func-
tions

The space of square integrable functions form an algebra under convolution. In this
section we will try to understand that.

Lemma 9.4.1. LetG be a locally compact Hausdorff topological group and f be a compactly
supported continuous function on G, then given ε > 0 there exists a neighborhood U of
identity e ∈ G such that

|f(g) − f(g′)| < ε, for g−1g′ ∈ U.
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Proof. Let V be a relatively compact neighborhood of e. Then

W = V ∩ V−1 = {g ∈ G : g ∈ V ,g−1 ∈ V}

is a relatively compact neighborhood of e such that g ∈ W, implies g−1 ∈ W. Let
f′ : G× G → C be the continuous function given by f′(g,h) = |f(g) − f(g.h)|. Let C
be the support of f. Then D = CW is a compact subset of G. Note that given any
g ∈ G, f′(g, e) = 0, therefore there exists open neighborhoods Ag of g and Bg ⊆ W
of e such that for each (g′,h) ∈ (Ag × Bg), f′(g′,h) = |f(g′) − f(g′.h)| < ε. Let
g1, · · · ,gn be such that Ag1 , · · · ,Agn covers D. Let B = ∩Bgi and U = B ∩ B−1. Let
us take g,g′ ∈ G such that g−1g′ ∈ U. There are two possibilities.

1. If g ∈ D then there is some i such that g ∈ Agi . Since g−1g′ ∈ U ⊆ Bgi , there
exists h ∈ Bgi such that g′ = g.h and

|f(g) − f(g′)| = |f(g) − f(gh)| < ε.

2. If g /∈ D then g /∈ C. Then g′ = g.h /∈ C, because otherwise g = g′h−1 ∈ CU ⊆
CW ⊆ D. Therefore |f(g) − f(g′)| = 0.

Proposition 9.4.2. Let G be a locally compact Hausdorff topological group and 1 6
p < ∞. For each g ∈ G consider the linear map Lg : Lp(G) → Lp(G) given by
(Lg(f))(h) = f(g

−1h). Then

1. for all f ∈ Lp(G), ‖Lg(f)‖ = ‖f‖, in other words Lg is an isometry.

2. For all g,h ∈ G,LgLh = Lgh and Le = Idwhere e is the identity of G.

3. For all f ∈ Lp(G) the map g 7→ Lg(f) is a continuous map from G to Lp(G).

Proof. (1) This follows from the left invariance of the Haar measure.

(2) This is also obvious.

(3) Note that by (1) and (2) ‖Lg(f)−Lh(f)‖ = ‖Lg(f−Lg−1Lh(f))‖ = ‖f−Lg−1h(f)‖.
Therefore it is enough to show that g 7→ Lg(f) is continuous at e. Let us firs assume
that f ∈ Cc(G). Applying lemma (9.4.1) for the compactly supported continuous
function g 7→ f(g−1) we obtain an open setU such that |f(g−1)−f(g′−1| < ε provided
g−1g′ ∈ U. Substituting g−1 = h,g′−1 = h′ we obtain

|f(h) − f(h′)| < ε, provided hh′−1 ∈ U (9.4)

Then given any g ∈ U ∩U−1,

‖f− Lg(f)‖p =

∫
G

|f(h) − f(g−1h)|
p
dh < 2εp|supp(f)|
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This shows that g 7→ Lg(f) is continuous. Now let us take an arbitrary f ∈ Lp(G),
then there exists f′ ∈ Cc(G) such that ‖f−f′‖ < ε/3. There is an open neighborhood
W of e such that g ∈W implies ‖f′ − Lg(f′)‖ < ε/3. Then,

‖f− Lg(f)‖ 6 ‖f− f′‖+ ‖f′ − Lg(f′)‖+ ‖Lg(f′) − Lg(f)‖ < ε.

Remark 9.4.3. If we take p = 2 then the resulting unitary representation is called the
left regular representation and we have already encountered this in proposition (??).
Instead of a left Haar measure if we had started with a right Haar measure λ′ and
considered the Hilbert space L2(G, λ′) then the R : G→ L2(G, λ′) given by Rgξ(h) =
ξ(h.g) also gives a strongly continuous unitary representation. In caseG is compact
then a left invariant measure is also right invariant therefore both left and right
regular representation acts on L2(G).

Lemma 9.4.4. Let f ∈ C(G), then
∫
G
f(g−1)dg =

∫
G
f(g)dg. If we define ξ∗ : g 7→

ξ(g−1) then ξ 7→ ξ∗ extends to L2(G) as a conjugate linear involutive isometry. So, we
have ‖ξ‖2 = ‖ξ∗‖2, ∀ξ ∈ L2(G).

Proof. If we denote by λ the Haar measure then ν : E 7→ λ(E−1) satisfies, ν(g.E) =
λ(E−1g−1) = λ(E−1) = ν(E) for all g ∈ G and every Borel set E. Also ν(G) = 1. So,
by uniqueness of the Haar measure we get ν = λ. Thus,∫

G

f(g−1)dλ(g) =

∫
G

f(g)dν(g) =

∫
G

f(g)dλ(g).

Using this we see that

‖ξ‖22 =
∫
G

|ξ(g)|2dλ(g) =

∫
G

|ξ(g−1)|
2
dλ(g) = ‖ξ∗‖22.

Clearly (ξ∗)∗ = ξ that is to say that the operation ξ 7→ ξ∗ is involutive.

Proposition 9.4.5. Let f ∈ L2(G) then Lf : ξ 7→ f ? ξ defines a bounded linear map
from L2(G) to C(G). Image of the unit ball under this map is pointwise bounded
and equicontinuous.

Proof. Let ξ ∈ L2(G). Since G is compact the Haar measure is finite and conse-
quently L2(G) ⊆ L1(G).

f ? ξ(h) =

∫
G

f(g)ξ(g−1h)dg

=

∫
G

f(hg)ξ(g−1)dg, [ by a change of variable

= 〈ξ∗,Lh−1f〉 (9.5)

Using (9.5) along with Cauchy Schwarz inequality we get,

|f ? ξ(h) − f ? ξ(h′)| 6 ‖ξ‖2‖Lh−1f− Lh′−1f‖2. (9.6)
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Since G is a topological group g 7→ g−1 is continuous. Therefore, by proposi-
tion (9.4.2,3) for any given f the map g 7→ Lg−1f is continuous. That means given ε >
0 there exists a neighborhood U of h′ such that h ∈ U implies ‖Lh−1f− Lh′−1f‖2 < ε.
If we combine this with (9.6) we see that

h ∈ U =⇒ |f ? ξ(h) − f ? ξ(h′)| 6 ε‖ξ‖2.

That shows the continuity of f ? ξ. In fact it also shows equicontinuity of the family
{f ?ξ : ‖ξ‖2 6 1}. It remains to show the boundedness of Lf. That follows from (9.5)
once we note that

‖Lf(ξ)‖ 6 sup
h∈G
‖ξ‖2‖Lh−1f‖2 = ‖ξ‖2‖f‖2.

Corollary 9.4.6. Let Lf : L2(G) → L2(G) be the bounded linear map obtained by
composing Lf : L2(G) → C(G) with the inclusion C(G) ↪→ L2(G), then Lf is a
compact operator.

Proof. Let {ξn} be a sequence of unit vectors in L2(G). Then we know from proposi-
tion (9.4.5) that the Arzela-Ascoli theorem (??) applies. Thus there exists a Cauchy
subsequence {ξnk} in C(G). The inclusion C(G) ↪→ L2(G) being continuous {ξnk} is
Cauchy in L2(G). This shows that the image of the unit ball under Lf is relatively
compact.

Corollary 9.4.7. The Hilbert space L2(G) with convolution product is an involutive
Banach algebra.

Proposition 9.4.8. The linear map Lf satisfies,

〈Lf(ξ),η〉 = 〈ξ,Lf∗(η)〉, ∀ξ,η ∈ L2(G).

In particular Lf is self-adjoint provided f = f∗.

Proof. Let f, ξ,η ∈ L2(G), then

〈Lf(ξ),η〉 =

∫
G

f ? ξ(h)η(h)dh

=

∫
G

∫
G

f(g)ξ(g−1h)η(h)dgdh

=

∫
G

∫
G

ξ(h′)f(g)η(gh′)dh′dg [g−1h = h′

=

∫
G

∫
G

ξ(h′)f∗(g−1)η(gh′)dh′dg

= 〈ξ,Lf∗(η)〉.
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9.5 The Peter-Weyl Theory

Proposition 9.5.1. Let f ∈ C(G) and g ∈ G, then LfRg = RgLf.

Proof. Let ξ ∈ L2(G), then

(LfRgξ)(g
′) = (f ? (Rgξ))(g

′)

=

∫
G

f(h)(Rgξ)(h
−1g′)dh

=

∫
G

f(h)ξ(h−1g′g)dh

= f ? ξ(g′g)

= (RgLf)(ξ)(g
′).

This shows that LfRg = RgLf.

Proposition 9.5.2. Let f1, · · · , fk ∈ C(G) then there exists a sequence of continuous
functions δn such that fj ? δn converges to fj in C(G) for j = 1, · · · ,k.

Proof. It is enough to show that given ε > 0 there exists a continuous function δ
such that

∀g ∈ G, |fj ? δ(g) − fj(g)| < ε, for 1 6 j 6 k. (9.7)

Using lemma (9.4.1) obtain an open set U such that

|fj(g) − fj(g
′)| < ε, for g−1g′ ∈ U, j = 1, · · · ,k. (9.8)

Let δ ∈ C(G) be a compactly supported positive function such that

{g ∈ G : δ(g) 6= 0} ⊆ U, and
∫
δ(g)dg = 1.

|fj ? δ(g) − fj(g)| = |

∫
G

fj(gh
−1)δ(h)dh− fj(g)

∫
G

δ(h)dh|

6
∫
G

|fj(gh
−1) − fj(g)|δ(h)dh

=

∫
U

|fj(gh
−1) − fj(g)|δ(h)dh

6
∫
U

εδ(h)dh, [by(9.8)

= ε.
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Theorem 9.5.3 (Peter-Weyl). Let G be a compact Hausdorff topological group and f ∈
C(G) be a function with f = f∗. By corollary (9.4.6) and proposition (9.4.8) Lf is a compact
self-adjoint operator. By the spectral theorem for compact operators Λ,the set of nonzero
eigenvalues of Lf is a discrete subset of nonzero real numbers. For λ ∈ Λ, let Hλ = {ξ ∈
L2(G) : Lf(ξ) = λξ} be the eigenspace for the eigenvalue λ. Then

1. Each Hλ for λ ∈ Λ is a finite dimensional invariant subspace for R the right regular
representation.

2. ξ ∈ Hλ, δ ∈ C(G) implies ξ ? δ ∈ Hλ.

3. Let Rλ be the representation on Hλ obtained by restricting R to Hλ. Then each
element of Hλ is a representation function of Rλ.

4. Given any ε > 0 there exists a representation function h such that ‖f− h‖2 < ε.

5. Given any ε > 0 there exists a representation function h such that ‖f− h‖∞ < ε.

Proof. (1) Let ξ ∈ Hλ. To show R(g)(ξ) ∈ Hλ we must show Lf(R(g)(ξ)) =

λR(g)(ξ). Since LfR(g) = R(g)Lf for all gwe have

Lf(R(g)(ξ)) = R(g)(Lfξ) = R(g)(λξ) = λR(g)(ξ).

Thus Hλ is an invariant subspace for R. By spectral theorem for compact selfadjoint
operators each Hλ is finite dimensional.

(2) Since Lf(ξ) = λξwe have Lf(ξ?δ) = f? (ξ?δ) = (f?ξ)?δ = λξ?δ. Therefore
ξ ? δ ∈ Hλ.

(3) Let ξ ∈ Hλ. Then ξ ∈ C(G) because ξ = 1
λ
f?ξ and f?ξ ∈ C(G) by proposition

(9.4.5). Therefore it mkes sense to evaluate ξ on an element of G. Let η1, . . . ,ηdλ
be an orthonormal basis for Hλ. Then Rλ(g)ξ =

∑dλ
j=1〈ηj,Rλ(g)ξ〉ηj. Evaluating

both sides on e, the identity element of G and using ξ(g) = (R(g)ξ)(e) we get
ξ(g) = 〈

∑dλ
j=1 ηj(e)ηj,R(g)ξ〉 = a representation function of Rλ.

(4) Given ε > 0, by proposition (9.5.2) obtain δ ∈ C(G) such that ‖f ? δ − f‖∞ <
ε/2. Let {λi : i = 1, 2, . . . } be an enumeration of elements of Λ in descending order
of their absolute values. If we denote by Pi the orthogonal projection onto Hλi ,
then the spectral theorem gives Lf =

∑
i λiPi, where the right hand side is a norm

convergent sum. Therefore

f ? δ = Lf(δ) = lim
n

n∑
i=1

λiPi(δ). (9.9)

By (3) each Pi(δ) is a representation function because it is in Hλi . Also, represen-
tation functions form a linear space. Therefore,

∑n
i=1 λiPi(δ) is a representation
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function. Thus by (9.9) we have shown f ? δ is an L2 limit of representation func-
tions. Therefore there is a representation function h such that ‖f ? δ − h‖2 < ε/2.
Triangle inequality along with ‖ · ‖2 6 ‖ · ‖∞ gives

‖f− h‖2 6 ‖f ? δ− f‖2 + ‖f ? δ− h‖2 6 ‖f ? δ− f‖∞ + ε/2 < ε.

(5) Given ε > 0, by proposition (9.5.2) obtain δ ∈ C(G) such that ‖f ? δ − f‖∞ <
ε/2. By (4) obtain a representation function f′ such that ‖f − f′‖2 < ε

2‖δ‖2
. Then for

all g′ ∈ Gwe have

|((f− f′) ? δ)(g′)| = |

∫
(f− f′)(g′g)δ(g−1)dg|

6

√∫
((f− f′)(g′g))2dg

√∫
(δ(g−1))2dg

=

√∫
((f− f′)(g))2dg

√∫
(δ(g))2dg

= ‖f− f′‖2‖δ‖2
< ε/2.

Therefore ‖((f− f′) ? δ)‖∞ < ε/2. By triangle inequality

‖f′ ? δ− f‖∞ 6 ‖((f− f′) ? δ)‖∞ + ‖f ? δ− f‖∞ < ε.

By (2) and (3) above f′ ? δ is a representation function and we can take that as h.

9.6 Fourier Series on Compact Groups

Let G be a comact, Hausdorff topological group and λ it’s unique Haar measure
normalized to have mass 1. We have already seen that representation functions are
dense in C(G). Now we seek to expand a function f ∈ L2(G) in an abstract Fourier
series in terms of representation functions. So, let us fix notations. Recall we have
denoted by Ĝ the set of equivalence classes of finite dimensional irreducible unitary
representations of G. Let us fix a representative from each class. Given a represen-
tation φ we will denote the representation space by Hφ. It is a finite dimensional
Hilbert space, say of dimension dφ. Fix an orthonormal basis ei, . . . , edφ of Hφ. By
Schur orthogonality relations {

√
dφθφ,i,j : 1 6 i, j 6 dφ} is an orthonormal set. Let

us record the following corollary of the Peter-Weyl theorem.

Corollary 9.6.1. The family ∪φ:[φ]∈Ĝ{
√
dφθφ,i,j : 1 6 i, j 6 dφ} is an orthonormal

basis of L2(G).

Lemma 9.6.2. Let f ∈ L2(G). Then the projection of f onto the span of {
√
dφθφ,i,j : 1 6

i, j 6 dφ} is given by d(f ? χφ).
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Proof. We need to calculate
∑
i,j〈θφ,i,j, f〉θφ,i,j.

∑
i,j

〈θφ,i,j, f〉θφ,i,j(h) =
∑
i,j

(∫
〈ei,φ(g)ej〉f(g)dλ(g)

)
〈ei,φ(h)ej〉

=
∑
i,j

∫
f(g)〈φ(g)ej, ei〉〈ei,φ(h)ej〉dλ(g)

=
∑
j

∫
f(g)〈φ(g)ej,φ(h)ej〉dλ(g)

=
∑
j

∫
f(g)〈ej,φ(g−1h)ej〉dλ(g) [ since φ(g)∗ = φ(g−1)

=

∫
f(g)χφ(g

−1h)dλ(g)

= f ? χφ(h).

Theorem 9.6.3. Let G be a compact Hausdorff topological group and f ∈ L2(G). Then
f =
∑
φ∈Ĝ dφf ? χφ, where the sum converges in L2 norm.

Proof. Corollary (9.6.1) and lemma (9.6.3) proves the result.

Proposition 9.6.4. Let X be a compact Hausdorff space and V : X→ L(H) be a map
such that ∀v ∈ H, x 7→ V(x)(v) is continuous. Such maps will be referred as strongly
continuous maps. Let µ be a probability measure on the Borel sigma-algebra of X.
Then

(i). supx∈X ‖V(x)‖ =M <∞.

(ii). The map BV : H ×H → C given by B(u, v) =
∫
〈u,V(x)v〉dµ(x) is conjugate

linear in u and linear in v. Also |B(u, v)| 6 ‖u‖‖v‖Mµ(X).

(iii). There exists a bounded linear map to be denoted by
∫
V(x)dµ(x) such that

B(u, v) = 〈u,
(∫
V(x)dµ(x)

)
(v)〉.

Proof. (i) Strong continuity coupled with the continuity of nor implies that for all
v ∈ H the map x 7→ ‖V(x)(v)‖ is continuous. Therefore ∀v, supx∈X ‖V(x)(v)‖ < ∞,
and by the Uniform Boundedness Principle we get the result.

(ii)Cauchy-Schwarz inequality and (i) implies

|〈u,V(x)v〉| 6 ‖u‖‖v‖M.

From this (ii) immediately follows.

(iii) Obvious.
[Lecture Notes of P.S.Chakraborty]
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9.7 Projection Formulas

Let G be a compact, Hausdorff topological group and V : G → U(H) a unitary
representation which is also strongly continuous.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

[68]

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

Week 10

Spectral Theory for Bounded
Operators

10.1 Banach Algebras

Definition 10.1.1. A Banach algebra A is a Banach space along with an associative
and distributive multiplication denoted (a,b) 7→ a.b such that ‖a.b‖ 6 C‖a‖‖b‖
for all a,b ∈ A for some positive C.

Remark 10.1.2. Let A be a Banach algebra. Then there exists an equivalent norm ‖.‖′
on A such that for all a,b ∈ A, ‖a.b‖′ 6 ‖a‖′‖b‖′.

Proof. Suppose ‖a.b‖ 6 C‖a‖‖b‖∀a,b ∈ A

Case 1: C < 1, take ‖a‖′ = ‖a‖
Case 2: C > 1, define ‖a‖′ = C‖a‖
In view of the above remark given any Banach algebra we will assume that the
norm satisfies ‖a.b‖ 6 ‖a‖‖b‖ for all a,b ∈ A.

Proposition 10.1.3. (1) Let A be a Banach algebra. Then Ã = A ⊕ C is a Banach
algebra provided,

(x,α).(y,β) = (xy+ αy+ βx,αβ)
‖(x,α)‖ = ‖x‖+ |α|

(2) x 7→ (x, 0) gives an isometric embedding of A in Ã as an ideal.
(3) e = (0, 1) satisfies (x,α).e = e.(x,α) = (x,α) and ‖e‖ = 1.

Definition 10.1.4. A Banach algebra A with an element e such that e.x = x.e =

x∀x ∈ A, ‖e‖ = 1 is called a unital Banach algebra.

Remark 10.1.5. The previous proposition says every Banach algebra can be isomet-
rically embedded into a unital Banach algebra. Henceforth unless otherwise stated
a Banach algebra means a unital Banach algebra.



NOT FOR
REDIST

RIB
UTIO

N

[70]

Example 10.1.6. Let K be a compact Hausdorff space. C(K) be the space of all con-
tinuous complex valued functions on K. For f,g ∈ C(K), Define

(f+ g)(p) = f(p) + g(p)

(f.g)(p) = f(p).g(p)
‖f‖ = supp∈K|f(p)|

C(K) is a commutative Banach algebra.

Example 10.1.7. Let E be a Banach space. Then L(E), the space of all bounded linear
maps from E to itself is a Banach algebra under operator norm.

Example 10.1.8. Let K be a compact subset of C or Cn with nonempty interior. Then
A = {f ∈ C(K) : f|interior of K is holomorphic} is a Banach algebra.

Proposition 10.1.9. Let G be a locally compact group. Let µ be a Haar measure on
G. Recall that µ satisfies ∫

f(gh)dµ(h) =

∫
f(h)dµ(h).

Then A = L1(G,µ) is a Banach algebra with multiplication defined by

(f1 ? f2) =

∫
f1(g)f2(g

−1h)dµ(g).

Proof. (1) f1 ? f2 ∈ L1:∫
|f1 ? f2(h)dµ(h) 6

∫ ∫
|f1(g)||f2(g

−1h|dµ(g)dµ(h)

=

∫
|f1(g)|dµ(g)

∫
|f2(h)|dµ(h)

= ‖f1‖1‖f2‖1
Therefore we have proved

f1 ? f2 ∈ L1(G)and
‖f1 ? f2‖1 6 ‖f1‖1‖f2‖1

(2) (f1 ? f2) ? f3 = f1 ? (f2 ? f3) :

(f1 ? f2) ? f3(u) =

∫
(f1 ? f2)(v)f3(v

−1udv

=

∫ ∫
f1(w)f2(w

−1v)f3(v
−1u)dwdv

=

∫ ∫
f1(w)f2(v)f3(v

−1w−1u)dwdv

= f1 ? (f2 ? f3)(u)

[Lecture Notes of P.S.Chakraborty]
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Example 10.1.10. Let C1[0, 1] be the space of once continuously differentiable func-
tions. Define ‖f‖ = supx∈[0,1]|f(x)| + supx∈[0,1]|f

′(x)|. Then under pointwise multi-
plication C1[0, 1] is a Banach algebra.

Example 10.1.11. Let A ⊆ B(H) be a norm closed subalgebra. D a densely defined
closed operator. D need not be bounded. Let

A(1) = {a ∈ A : a(Dom(D)) ⊆ Dom(D) and ∀ξ ∈ Dom(D)

∃C > 0 such that ‖[D,a]ξ‖ < C‖ξ‖}

A(1) is a Banach algebra with the norm ‖a‖(1) = ‖a‖+ ‖[D,a]‖.

Proof. Suppose {an} is a Cauchy sequence with respect to ‖ · ‖(1). Then an →
a, and [D,an]→ b For ξ ∈ Dom(D) we have

Danξ → bξ+ aDξ

anξ → aξ

Since D is closed

(i)aξ ∈ Dom(D)

(ii)Daξ = aDξ+ bξ

Therefore [D,a] = b

So, a ∈ A(1)

Therefore A(1) is complete. For a,b ∈ A(1),

‖ab‖(1) = ‖ab‖+ ‖[D,ab]‖
6 ‖a‖‖b‖+ ‖[D,a]b+ a[D,b]‖
6 ‖a‖(1)‖b‖(1).

Theorem 10.1.12. Assume that A is a Banach space as well as a complex algebra
with a unit element e 6= 0, in which multiplication is both left and right continuous.
Then there is a norm on A which induces the same topology as the given one and
makes A a Banach algebra.

Proof. Define π : A→ L(A) by, π(x)(z) = xz. Clearly π(x) is linear. It is continuous
because multiplication is given to be right continuous. ‖x‖ = ‖xe‖ = ‖π(x)(e)‖ 6
‖π(x)‖‖e‖, So π is one to one. We also have ‖π(x)π(y)‖ 6 ‖π(x)‖‖π(y)‖, ‖π(e)‖ = 1.
So π(A) is a Banach algebra provided it is complete. For that it is enough to show

[Lecture Notes of P.S.Chakraborty]
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that π(A) is closed. For that suppose π(xn) → T in L(A). Then xn = π(xn)(e) →
T(e) = x.

T(y) = limπ(xn)(y) = limxny = xy = π(x)(y)

by continuity of left multiplication. So T = π(x).

Definition 10.1.13. A linear map φ : A→ B is called a homomorphism if

φ(xy) = φ(x)φ(y), ∀x,y ∈ A

‖φ(x)‖ 6 ‖x‖ ∀x ∈ A.

A nonzero homomorphism into the complex numbers is called a complex homo-
morphism

Proposition 10.1.14. If φ is a complex homomorphism on a Banach algebra A then
φ(e) = 1 and φ(x) 6= 0 for all invertible x ∈ A.

Proof. For some y ∈ A,φ(y) 6= 0, φ(y) = φ(y)φ(e) gives φ(e) = 1.
φ(x)φ(x−1) = φ(e) = 1 gives φ(x) 6= 0.

10.2 Spectrum

Proposition 10.2.1. Let x ∈ A with ‖x‖ < 1 then (I− x) is invertible.

Proof. The series
∑∞
n=0 x

n converges and is the inverse of (I− x).

Corollary 10.2.2. Let G(A) be the set of invertible elements of a Banach algebra A.
Then G(A) is an open subset of A.

Proof. Let x ∈ G(A). For y ∈ A with ‖y‖ < 1
‖x‖−1 , (x−y) = x−1(I−x−1y) is invertible

by the previous proposition because ‖x−1y‖ 6 ‖x−1‖‖y‖ < 1.

Definition 10.2.3. Let A be a unital Banach algebra and x ∈ A. Then the spectrum
of x is defined as {λ ∈ C : (λ− x) is not invertible}. It is denoted by σA(x). We often
drop the subscript A. For a nonunital Banach algebra A the spectrum of an element
x is defined as σ

Ã
(x) where Ã is the unitization defined before.

Definition 10.2.4. The spectral radius ρ(x) of x ∈ A is defined as

ρ(x) = sup{|λ| : λ ∈ σ(x)}.

Definition 10.2.5 (The resolvent set). The complement of spectrum of x ∈ A is called
the resolvent of x and is also denoted by ρ(x). We have also used same notation for
spectral radius. Both notations are standard. You have to make out from the context.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

[73]

Definition 10.2.6 (The resolvent function). Let x ∈ A. Then for λ ∈ ρ(x), the func-
tion λ 7→ Rλ(x) = (λ1A − x)−1 is called the resolvent function.

Proposition 10.2.7. Let x be an element of a Banach algebra A. Then σ(x) is a
nonempty closed and bounded subset of C.

Proof. σ(x) is closed:
Enough to show that it’s complement is open. Suppose λ is such that (λ − x) is
invertible. Then by the proof of the previous corollary the ball of radius 1

‖λ−x‖−1
around λ is contained in σ(x)c. Hence σ(x)c is open.
σ(x) is bounded:
If λ is such that |λ| > ‖x‖ then (λ−x) = λ(I− x

λ
) is invertible. Hence σ(x) is contained

in the ball of radius ‖x‖.
σ(x) is nonempty:
If possible let σ(x) be empty. Then f(λ) = (λ − x)−1 is a holomorphic function
defined on the entire plane. For λ > ‖x‖, we have

f(λ) = λ−1
(
I−

x

λ

)−1
= λ−1

∞∑
n=0

xnλ−n, since‖x
λ
‖ < 1

So, ‖f(λ)‖ 6 |λ|−1
|λ|

|λ|− ‖x‖

6
1

|λ|− ‖x‖

Hence f is a bounded entire function. Therefore it must be constant. From the
previous estimates we see that limλ→∞f(λ) = 0. Hence f is the constant function 0.
But 0 is not invertible so we get a contradiction.

Theorem 10.2.8 (Gelfand-Mazur). Let A be a Banach algebra such that every nonzero
element is invertible then A ∼= C.

Proof. Suppose λ1 6= λ2 ∈ σ(x), then (x− λ1) = 0 = (x− λ2). Hence, σ(x) consists of
a single point say λ(x), and x = λ(x)I. x 7→ λ(x) gives an isomorphism between A

and C.

Lemma 10.2.9. Let R be a commutative ring over C. Then ab is invertible iff a and
b are invertible.

Proof. Suppose c = (ab)−1 = (ba)−1. Then a−1 = bc because, (i) abc = 1 (ii)
bca = abc = 1, the first equality uses commutativity.

Proposition 10.2.10. Let p be a polynomial. Then for any x ∈ A, σ(p(x)) = p(σ(x)).
[Lecture Notes of P.S.Chakraborty]
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Proof. Let λ ∈ C.

p(z) − λ = c
∏

(z− λi), for some c 6= 0, λ1, · · · , λn ∈ C

p(x) − λ = c
∏

(x− λi)

σ(p(x)) ⊆ p(σ(x)):

λ ∈ σ(p(x)) =⇒ λi ∈ σ(x) for some i
=⇒ λ ∈ p(σ(x)) since λ = p(λi)

p(σ(x)) ⊆ σ(p(x)):

λ ∈ p(σ(x)) =⇒ λ = p(µ) for some µ ∈ σ(x)
=⇒ p(x) − λ = (x− µ)q(x) for some polynomial q
=⇒ λ ∈ σ(p(x)) by the lemma above

Proposition 10.2.11. Let x be an element of the Banach algebra A. Then the spectral
radius satisfies ρ(x) = Lim‖xn‖ 1n = inf‖xn‖1/n

Proof. By the previous lemma ρ(xn) = ρ(x)n,∀n > 1, also ρ(x) 6 ‖x‖. So, ρ(x)n =

ρ(xn) 6 ‖x‖n implying ρ(x) 6 inf‖xn‖1/n 6 Lim‖xn‖ 1n . To complete the proof it
suffices to show Lim‖xn‖ 1n 6 ρ(x). Let φ be a continuous linear functional on A.
Then the resolvent

f(λ) = (λ− x)−1 = λ−1(1− λ−1x)−1

is holomorphic outside the disk of radius ρ(x). So, g(λ) = λ(1 − λx)−1 is analytic
inside the disk of radius 1

ρ(x)
. For |λ| < ‖x‖ we have the power series expansion

g(λ) =
∑
λn+1xn. The function λ 7→ (φ ◦ g)(λ) is holomorphic in the disk of radius

1
ρ(x)

. Hence it’s Taylor series
∑
φ(xn)λn+1 converges in this disk. Thus

|φ(λnxn)|→ 0 if |λ|ρ(x) < 1.

For each fixed φ and λ we have some constant C(λ,φ) such that

Supn|φ(λ
nxn)| < C(λ,φ).

For each |λ| < 1
ρ(x)

consider the family of linear functionals on A∗ given by Tn : φ 7→
φ(λnxn). We know

Supn|Tn(φ)| < C(λ,φ).

By the uniform boundedness principle we get

sup
n

‖Tn‖ < C(λ) for some constant C(λ).
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NOT FOR
REDIST

RIB
UTIO

N

[75]

Clearly ‖Tn‖ = ‖λnxn‖, so

‖xn‖ < C(λ)|λ|−n for |λ| <
1

ρ(x)

=⇒ ‖xn‖1/n < C(λ)1/n|λ|−1 for |λ| <
1

ρ(x)

=⇒ Lim‖xn‖1/n < |λ|−1 for |λ| <
1

ρ(x)

=⇒ Lim‖xn‖1/n 6 ρ(x)

10.3 Holomorphic Function Calculus

Let x ∈ A and Ω an open neighborhood of σ(x). Let f : Ω → C be a holomorphic
function. Let Γ be a contour inΩ surrounding σ(x). Then define

f(x) =
1

2πi

∫
Γ

f(λ)

λ− x
dλ.

Note that on the resolvent set λ 7→ f(λ)
λ−x

is holomorphic. Hence the integral is well
defined and does not depend on Γ .

Proposition 10.3.1. The mapping f 7→ f(x) is a homomorphism from the algebra of
functions holomorphic in a neighborhood of σ(x) to A. Moreover if fk : Ω → C is
given by fk(z) = zk then fk(x) = xk.

Proof. Let f and g be holomorphic functions defines in a neighborhood of σ(x). Let
C1,C2 be curves surrounding σ(x) such that C2 lies inside C1. Then,

f(x)g(x) =

(
1

2πi

∫
C1

f(λ)

λ− x
dλ

)(
1

2πi

∫
C2

g(µ)

µ− x
dµ

)
= −

1

4π2

∫
C1

∫
C2

f(λ)g(µ)(λ− x)−1(µ− x)−1dλdµ

= −
1

4π2

∫
C1

∫
C2

f(λ)g(µ)

λ− µ

(
1

µ− x
−

1

λ− x

)
dλdµ

= −
1

4π2

∫
C1

∫
C2

f(λ)g(µ)

λ− µ

1

µ− x
dλdµ

=
1

2πi

∫
C2

(
1

2πi

∫
C1

f(λ)

λ− µ
dλ

)
g(µ)

µ− x
dµ

=
1

2πi

∫
C2

f(µ)g(µ)

µ− x
dµ

= (f.g)(x)
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Here the fourth equality follows from 1
4π2

∫
C1

(∫
C2

g(µ)
λ−µ

dµ
)
f(λ)
λ−x

= 0. This is so be-

cause g(µ)
λ−µ

is holomorphic inside C2 if λ lies in C1.
To show fk(x) = x

k, let C = {λ : |λ| = ‖x‖+ ε} for some ε > 0.

f(x) =
1

2πi

∫
C

∞∑
n=0

xnλk

λn+1
dλ

= xk

Proposition 10.3.2 (Spectral Mapping Theorem). Let x ∈ A and f be a holomor-
phic function in a neighborhood of σ(x). Then σ(f(x)) = f(σ(x)). Moreover if g is
holomorphic in a neighborhood of f(σ(x)), then we have (g ◦ f)(x) = g(f(x)).

Proof. Let y = f(x) and µ ∈/f(σ(x)). Since f(σ(x)) is compact ∃U open with U
compact f(σ(x)) ⊆ U ⊆ U ⊆ {µ}c. On f−1(U) define a holomorphic function h(λ) =
1

f(λ)−µ
. Put z = h(x), then by the previous proposition (y − µ)z = (f(x) − µ)h(x) =

(h(f−µ))(x) = 1, hence µ ∈/σ(f(x)). On the other hand if µ ∈ f(σ(x)), then µ = f(λ0)

for some λ0 ∈ σ(x). Then there exists holomorphic h around σ(x) such that

f(λ) − µ = (λ− λ0)h(λ)

so, (y− µ) = (x− λ0)h(x)

Since (x − λ0) is not invertible neither is (y − µ). Thus µ ∈ σ(f(x)). Now choose
simple closed curves C1 and C2 in such a way that C1 encloses f(σ(x) and is in the
domain of g and C2 encloses the inverse image of C1 under f and is contained in
the domain of f.

(g ◦ f)(x) =
1

2πi

∫
C1

(g ◦ f)(λ)
λ− x

dλ

=
−1

4π2

∫
C1

(∫
C2

g(µ)

µ− f(λ)
dµ

)
1

λ− x
dλ

=
−1

4π2

∫
C2

g(µ)

∫
C1

(
1

µ− f(λ)

)(
1

λ− x

)
dλ

=
1

2πi

∫
C2

g(µ)

µ− f(x)
dµ

= g(f(x))

10.4 Abelian Banach Algebras

In this section unless otherwise stated we are dealing with a not necessarilly unital
commutative Banach algebra A.
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Definition 10.4.1. An ideal m of A is called regular the quotient ring A/m is unital.
In other words if there exists e ∈ A such that ∀x ∈ A, ex− x ∈ m.

Proposition 10.4.2. Let m be a proper regular ideal of A. If e is an identity modulo
m, then we have

inf{‖e− x‖ : x ∈ m > 1.

Proof. Suppose ‖e−x‖ < 1 for some x ∈ m. Then the power series y =
∑∞
n=1 (e− x)

n

converges. Since (e− x)y =
∑
n>2 (e− x)

n, we have

y = (e− x) + (e− x)y

= ey− xy+ e− x.

Hence e = y− ey+ xy+ x ∈ m. For any a ∈ A,a = ea+ (a− ea) ∈ m. Thus m = A,
a contradiction!

Corollary 10.4.3. The closure of any regular proper ideal of an abelian Banach alge-
bra A is proper and regular. In particular any maximal regular ideal is closed.

Proposition 10.4.4. Any proper regular ideal is contained in a maximal regular
ideal.

Proof. Let e be an identity modulo m. Then any ideal containing m is regular. Now
apply Zorn’s lemma to ideals containing m and not containing e.

Proposition 10.4.5. Let m be a closed ideal of a possibly noncommutative Banach
algebra A. The quotient algebra A/m is a Banach algebra.

Proof. Let π : A → A/m be the quotient map. From the definition of the quotient
norm it follows that ‖π(x)‖ = inf{‖x +m‖ : m ∈ m}. Given ε > 0 get m,n from m

such that ‖x+m‖ 6 ‖π(x)‖+ ε, ‖y+ n‖ 6 ‖π(y)‖+ ε.

‖π(x)π(y)‖ = ‖π(xy)‖ = ‖π((x+m)(y+ n))‖
6 ‖(x+m)(y+ n)‖
6 (‖π(x)‖+ ε)(‖π(y)‖+ ε)

Since ε is arbitrary ‖π(x)π(y)‖ 6 ‖π(x)‖‖π(y)‖.

Proposition 10.4.6. Let A be a unital Banach algebra. If an element x ∈ A is not
invertible then x is contained in some maximal ideal.

Proof. Ax is a proper regular ideal. Hence there exists a maximal ideal containing
this.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

[78]

Proposition 10.4.7. Let φ : A → C be a nonzero complex homomorphism. Then
φ−1(0) is a regular maximal ideal. φ 7→ φ−1(0) gives a bijection between nonzero
complex homomorphisms and regular maximal ideals of A.

Proof. Since A/Ker(φ) is isomorphic with a field ker(φ) is a regular maximal ideal.
To show that the correspondence is bijective observe that for a regular maximal
ideal m, A/m is a Banach algebra with every nonzero element being invertible. This
is so because otherwise by the above proposition we will get a contradiction to the
maximality of m. Now by the Gelfand-Mazur theorem A/m ∼= C. Hence m = ker(φ)

where, φ : A→ A/m is the quotient map.

Proposition 10.4.8. Letω be a nonzero complex homomorphism of A. Then ‖ω‖ 6
1.

Proof. We have,
|ω(x)| = |ω(xn)|1/n 6 ‖ω‖1/n‖xn‖1/n

Now taking limit as n goes to infinity we get |ω(x)| 6 ρ(x) 6 ‖x‖. Therefore ‖ω‖ 6
1.

Proposition 10.4.9. (i) LetΩ(A) be the set of all nonzero complex homomorphisms.
Then under weak* topologyΩ(A) is a locally compact Hausdorff space.
(ii) If A is unital, thenΩ(A) is compact.
(iii) For x ∈ A, x̂ : Ω(A) → C defined by x̂(ω) = ω(x) gives a homomorphism
F : A→ C0(Ω(A)), called Gelfand transform.
(iv) For A unital we have σ(x) = {x̂(ω) : ω ∈ Ω(A)}. For A nonunital σ(x) = {x̂(ω) :

ω ∈ Ω(A)} ∪ {0}.
(v) ‖x̂‖ = ρ(x).

Proof. (i) Let Ω′ = Ω ∪ {0} and ωi be a convergent net in Ω′. Suppose ωi → ω in
weak* topology. Then ω(xy) = limωi(xy) = limωi(x)ωi(y) = ω(x)ω(y). There-
fore ω is a homomorphism. It may be the zero homomorphism. Being a weak*
closed subset of the unit ball of A∗ Ω′ is compact. Clearly {0} is closed. HenceΩ(A)

is locally compact. Suppose ω1 6= ω2 ∈ Ω(A). Then there exists x ∈ A such that
|ω1(x) − ω2(x)| > ε for some ε > 0. Note that {ω : |ω1(x) − ω(x)| < ε/3} and
{ω : |ω2(x) − ω(x)| < ε/3} are disjoint neighborhoods of ω1 and ω2. Hence Ω′ is
Hausdorff.
(ii) If A is unital then {0} is an isolated point in Ω′ because for any other ω ∈
Ω′ω(1) = 1. HenceΩ is compact.
(iii) x̂ ∈ C0(Ω(A)) because for any ε > 0, {ω : |x̂(ω)| > ε} is compact. Clearly F is a
homomorphism.
(iv) Case 1 A Unital : If λ ∈ σ(x) then (x − λ) is not invertible. Hence there exists
ω ∈ Ω(A) such that ω(x − λ) = 0 or equivalently λ = x̂(ω). So, λ ∈ Range of x̂.
Conversely suppose λ = x̂(ω) = ω(x), thenω(x− λ) = 0. Hence λ ∈ σ(x).
(v) Follows from (iv). Note that this implies that the Gelfand transform is contrac-
tive.
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Definition 10.4.10. Let A be a commutative Banach algebra thenΩ(A) is called the
space of characters of A or the spectrum of A.

10.5 Characters of L1(G)

LetG be a locally compact abelian group and µ, a left invariant Haar measure. Then
we have seen the abelian Banach algebra L1(G,µ). We wish to identify its space of
characters.

Theorem 10.5.1. Let ω be a character of L1(G), that is to say that it is a nonzero homo-
morphism from L1(G) to the complex numbers. Then there is a continuous homomorphism
φ : G→ T such thatω(f) =

∫
G
f(g)φ(g)dg.

Proof. In particular ω is a bounded linear functional on L1(G), hence there exists
φ ∈ L∞(G) such thatω(f) =

∫
G
f(g)φ(g)dg.

ω(f1 ? f2) =

∫
G

(f1 ? f2)(h)φ(h)dh

=

∫
G

∫
G

f1(g)f2(g
−1h)φ(h)dgdh

=

∫
G

f1(g)(

∫
G

Lg(f2)(h)φ(h)dh)dg

=

∫
G

f1(g)ω(Lg(f2))dg

On the other hand

ω(f1 ? f2) = ω(f1)ω(f2)

= ω(f2)

∫
G

f1(g)φ(g)dg.

Therefore ,∫
G

ω(f2)f1(g)φ(g)dg =

∫
G

f1(g)ω(Lg(f2))dg, ∀f1, f2 ∈ L1(G). (10.1)

Since ω is a nonzero homomorphism there exists f2 such that ω(f2) 6= 0. It follows
from (10.1) that

φ(g) =
ω(Lg(f2))

ω(f2)
,a.e (10.2)

Note that φ is determined upto a set of measure zero. However Part (3) of propo-
sition (9.4.2) along with (10.2)shows that φ is almost everywhere equal to a contin-
uous function namely ω(Lg(f2))

ω(f2)
and we will take this representative. In particular
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φ(e) = 1. To see that φ is multiplicative note that given arbitrary f1, f2 ∈ L1(G),
0 = ω(f1 ? f2) −ω(f1)ω(f2)

=

∫
G

∫
G

f1(g)f2(g
−1h)φ(h)dgdh− (

∫
G

f1(g)φ(g)dg)(

∫
G

f2(h)φ(h)dh)

=

∫
G

∫
G

f1(g)f2(g
−1h)φ(gg−1h)dhdg−

∫
G

∫
G

f1(g)f2(h)φ(g)φ(h)dgdh

=

∫
G

∫
G

f1(g)f2(h
′)φ(gh′)dh′dg−

∫
G

∫
G

f1(g)f2(h)φ(g)φ(h)dgdh,

[ substituiting g−1h = h′, ]

=

∫
G

∫
G

f1(g)f2(h)(φ(gh) − φ(g)φ(h))dgdh.

Since φ is continuous this shows that φ is a homomorphism, that is

φ(gh) = φ(g)φ(h),∀g,h ∈ G.

It remains to show that |φ(g)| = 1,∀g ∈ G. Suppose there exists α > 1 such that the
open set Aα = {g ∈ G : |φ(g)| > α} is non-empty. Fix a compact subset K of Aα of
positive measure. Define

f(g) =

{
φ(g)
|φ(g)|

if g ∈ K,

0, otherwise
.

Then ‖f‖1 = |K|, where |K| denotes Haar measure of K. Let f̃ = f
‖f‖1

. By proposition
(10.4.8) we have

1 > ‖ω‖.‖f̃‖ > |ω(f̃)| =

∫
K

φ(g)

|φ(g)|

φ(g)

|K|
dg

=

∫
K

|φ(g)|

|K|
dg > α > 1!

This contradiction shows that Aα must be empty. That is |φ(g)| 6 1 for all g ∈ G.
Similarly considering φ(g)−1 we conclude that |φ(g)| > 1 for all g ∈ G. Thus we get
range of φ is contained in {z ∈ C : |z| = 1}.

10.6 C∗-algebras

Definition 10.6.1. A Banach algebra A is called involutive if there exists a map ∗ :
A→ A such that a 7→ a∗ satisfies

(a+ λb)∗ = a∗ + λ̄b∗,
(ab)∗ = b∗a∗,
(a∗)∗ = a,
‖x∗‖ = ‖x‖.
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An involutive Banach algebra A is called a C∗-algebra if ‖x∗x‖ = ‖x‖2 for all x ∈ A.

x ∈ A is called hermitian or selfadjoint if x = x∗, normal if xx∗ = x∗x, unitary if
x∗x = xx∗ = I, projection if x = x∗ = x2.

Proposition 10.6.2. Let A be a C∗-algebra. If x ∈ A is normal then ‖x‖ = ρ(x).

Proof. ‖x2‖2 = ‖(x2)∗x2‖ = ‖(x∗x)2‖ = ‖x∗x‖2 = ‖x‖4. Therefore we have, ‖x2‖ =
‖x‖2, implying ‖x2n‖ = ‖x‖2

n

. So ρ(x) = ‖x‖.

Proposition 10.6.3. Let A be a unital C∗-algebra.

1. σ(u) ⊆ {λ : |λ‖ = 1} for all unitary u.

2. σ(h) ⊆ R for all hermitian h.

Proof. (1) ‖u‖2 = ‖u∗u‖ = ‖I‖ = 1 =⇒ ‖u‖ = 1. Therefore σ(u) is contained in the
unit disc. Also u is invertible with u−1 = u∗. Therefore 0 does not belong to σ(u).
Therefore by the spectral mapping theorem we have σ(u−1) ⊆ {z ∈ C : |z| > 1}.
On the otherhand ‖u−1‖ = ‖u∗‖ = 1, hence σ(u−1) ⊆ {z ∈ C : |z| 6 1}. Therefore
σ(u−1) ⊆ {z ∈ C : |z| = 1}. Now by the spectral mapping theorem we are done.

(2)u = eih is a unitary. Hence by the spectral mapping theorem we have eiσ(h) ⊆
{z ∈ C : |z| = 1}. The only way this can happen is σ(h) ⊆ R.

Theorem 10.6.4. Let A be an abelian C∗-algebra. If Ω is the spectrum of A, then the
Gelfand transformation is an isometric isomorphism of A onto C0(Ω), preserving the ∗-
operation.

Proof. We know ‖x̂‖ = ρ(x). On the other hand since A is abelian every element is
normal. So, ‖x‖ = ρ(x). Therefore the Gelfand transform x 7→ x̂ is isometric. Take
ω ∈ Ω, for h ∈ Ah, ω(h) ∈ σ(h) ⊆ R. x can be expressed as x = h + ik, with
h,k ∈ Ah. ω(x∗) = ω(h − ik) = ω(h) − iω(k) = ω(x). Hence x 7→ x̂ preserves
*-operation.
Let F : A → C0(Ω), F(x) = x̂, then F(A) separates points because if ω1 6= ω2 ∈ Ω,
then there exists x ∈ A such that ω1(x) 6= ω2(x). Hence x̂(ω1) 6= x̂(ω2). By the
Stone-Weirstrass theoremFA = C0(Ω).

Proposition 10.6.5. Let Ω be a locally compact Hausdorff space and A = C0(Ω).
The map ω ∈ Ω 7→ ω̂ ∈ Ω(A) given by ω̂(x) = x(ω) is a homeomorphism of Ω
ontoΩ(A).

Proof. Let us assumeΩ to be compact. ThenΩ(A) is compact andω 7→ ω̂ is contin-
uous because ifωα → ω then x(ωα)→ x(ω)∀x ∈ A, or equivalently ω̂(x)→ ω(x).
ω 7→ ω̂ is one to one: Suppose ω1 6= ω2, then by Tietze extension theorem ∃f such
that f(ω1) = 0 and f(ω2) = 1. ω̂1(f) 6= ω̂2(f).
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ω 7→ ω̂ is onto: Let m be a maximal ideal of A. Then ∃ω such that m = {x : x(ω) =

0}. Letφ be the homomorphism corresponding to m,i.e.,φ : A→ A/m,φ(x) = x(ω).
Then ω̂ = φ. So ω 7→ ω̂ is a bijective map between compact Hausdorff spaces.
Hence it is a homeomorphism.

IfΩ is locally compact and not compact then argue through one point compact-
ification.

Proposition 10.6.6. Let B ⊆ A be a C∗-subalgebra of a unital C∗-algebra containing
the identity. Then ∀x ∈ BσB(x) = σA(x).

Proof. Case 1: Let x be self adjoint.
Clearly σA(x) ⊆ σB(x). Suppose λ ∈ R \ σA(x) we want to show λ /∈ σB(x). For
ε > 0, λε = λ + iε /∈ σB(x), hence (x − λε)

−1 ∈ B. Using continuity of inverse in
G(A), we get (x−λε)−1 → (x−λ)−1 inG(A). Since B is closed, (x−λ)−1 ∈ B, hence
λ /∈ σB(x).
Case 2: If x ∈ B is invertible in A then x∗x is invertible in A and so in B (By the pre-
vious case). Hence x is left invertible in B. Similarly using xx∗ x is right invertible
in B. Hence x is invertible in B. So, λ /∈ σA(x) iff (x− λ) is invertible in A iff (x− λ)
is invertible in B iff λ /∈ σB(x).

Proposition 10.6.7. Let A be a unital C∗-algebra. If x ∈ A is normal then there exists
a unique isomorphism φ : C(σ(x)) → C∗(x), the C∗-algebra generated by x and 1
such that φ(i) = 1,φ(ι) = xwhere ι : σ(x)→ C is the function ι(λ) = λ.

Proof. Let B = C∗(x) and P = polynomials in x and x∗. P is dense in B. Let Ω
= space of all complex homomorphisms from B to C. Define ψ : Ω → σ(x) by
ψ(η) = η(x).
ψ(η) ∈ σ(x): η(x− η(x)) = 0, hence x− η(x) is not invertible.
ψ is continuous: Suppose ηα → η in weak∗, then ηα(x)→ η(x) in C.
ψ is one to one: Suppose η1 and η2 are two homomorphisms such that η1(x) =

η2(x), then η1|P = η2|P. Since P is dense in B, η1 = η2.
ψ is onto: Suppose λ ∈ σ(x), then ∃η such that λ = η(x). ψ(η) = λ.
ψ is a bijective continuous map between compact Hausdorff spaces and hence a
homeomorphism. ψ induces an isomorphism between C(Ω) and C(σ(x)). This iso-
morphism composed with the inverse of the Gelfand transform gives the required
isomorphism. In other words φ(f) = F−1(f ◦ψ) is the isomorphism.

Definition 10.6.8 (Continuous Function Calculus). Let x ∈ A be a normal element.
Let f be a complex valued continuous function on σ(x). Then φ(f) with φ as in the
previous proposition is denoted by f(x).

Proposition 10.6.9. Let A be a unital C∗-algebra. Then every element of A is a linear
combination of 4 unitary elements.

Proof. Let x ∈ A be selfadjoint and ‖x‖ 6 1. u = x + i(1− x2)
1/2 is a unitary and

x = 1
2
(u+ u∗).
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Proposition 10.6.10. Let K ⊆ C be compact. AK = {x ∈ A|x is normal and σ(x) ⊆ K}.
If f : K→ C is continuous then x ∈ AL 7→ f(x) ∈ A is continuous.

Proof. By Stone-Weirstrass there ixists a polynomial p(z, z) such that

Supz∈K|p(z, z) − f(z)| < ε

There exists a constant M such that ‖x‖ < M for x ∈ AK. Also, since p is a polyno-
mial ∃δ > 0 such that

‖p(x, x∗) − p(y,y∗)‖ < ε if ‖x− y‖ < δ, ‖x‖, ‖y‖ < M.

Now if x,y ∈ AK and ‖x−y‖ < δ, then ‖f(x)−f(y)‖ 6 ‖f(x)−p(x, x∗)‖+‖p(x, x∗)−
p(y,y∗)‖+ ‖f(y) − p(y,y∗‖ < 3ε.

Theorem 10.6.11 (Not Done in Class). For a selfadjoint element x in a C∗ algebra A, the
following are equivalent.
(i) σ(x) ∈ [0,∞).
(ii) x = y∗y for some y ∈ A.
(iii) x = h2 for some h ∈ A.
The set of all selfadjoint elements satisfying any of the above is a closed convex cone P in A

with PAp(−P) = {0}
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