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Rules of The Game

We do experiments to learn about things. There are people who reeognise
their significance and are explicit about it. This explicitness.is also at the
core of mathematical methods. So, this semester we will do several of
them.

The Checklist

You are attending classes for several yearstand if not all, I am sure many
of you use a checklist to assist you in your studies. May be we can do that
officially. Here is a checklist. Yotnshould use this list regularly. I wrote
down whatever came to my mind and as we go along we will append
this.

Checklist

¢ Did I introducesany concept? If so then what is that concept? You
must pay attention to concepts being introduced.

* Was the concept introduced out of thin air or were their attempts to
motivate the introduction?

¢ Did you feel motivated? Note that what constitutes motivation etc.
are subjective issues but that does not mean we can’t talk about them
and introduce objectivity. If you are not motivated did you raise any
objection? You can still do it. Only condition is, you must be able
to write down your objection clearly. At the end of the day, the sub-
ject of Mathematics is about one and only one thing clarity. Clarity



of thought expressed through precise linguistic means characterises
this subject.

* Was the concept illustrated through examples? Do you want more?
This has a catch though because you have to answer when do you
consider two examples to be different. Of course I'll assist you there.

* Do you think the purpose behind the introduction of<the-concept
has been achieved? If not, you should come back tohis\question in
future and check again.

¢ Can you summarise the material covered in‘this\elass? Or in this
topic/subtopic?

Later on we may and I am sure we will append this checklist. We will
communicate on this matter through other‘channels like WA.

Taking Notes

It is better to take your owh notes.

Weightage

Classtest 10(5%5), Assignent+Notes+Viva 10, Midsem 30, End semester 50.
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Chapter 1
Getting Ready

Functional Analysis is the study of linear algebra coupled with topological
considerations. Even though this could be an almost aecurate and possi-
bly shortest description of the subject, in reality it did not start with such
considerations. It is not that one fine mornihg someone thought let’s see
what happens if we club topology and linedr algebra together. No, mean-
ingful subject starts in that way. It catme up“in our endeavour to answer
very natural questions. As we go along 'l hope to indicate more impressive
reasons behind topologizing linear ‘algebra. However, for the time being
we will remain content with thisfiaive motivation.

1.1 Nets

Since we wish_t0 topologize linear algebra we begin by asking how can
we specify atopology. This could be done, for example, by specifying the
class of closed sets or equivalently by specifying the operation of taking
closures. Wehave seen this while introducing topologies associated with
metric spaces. The following proposition shows that the concept of se-
quential convergence allows us to define the notion of closure of a set in a
metric space.

Proposition 1.1.1. Let (X, d) be a metric space and A C X. Then closure of
A is given by

A = {limx, : {x,} C A, is a sequence }



2 1.1. Nets

We also know that such a proposition does not hold in a topological
space unless that is first countable. Is there a natural generalisation of se-
quential convergence so that there is an analog of this proposition in the
setting of topological spaces? This was answered by E.H. Moore and Her-
man L. Smith in 1922, in the article "A General Theory of Limits" spanning
pages 102-121, published in the 2nd issue of the 44th volume of the journal
American Journal of Mathematics. Instead of writing such long sentences
we could have written "this was answered by, E. H. Moore ;H: L. Smith, A
General Theory of Limits, American Journal of Mathematics, 1922, 44 (2),
102-12" and in future will write this way. Here is what Moore and Smith
did. They described a natural generalisation of a sequence called nets and
that allowed them to obtain closure of a set in a‘general topological space
through what they called convergence of nets:Léts see that.

Definition 1.1.2 (Preorder). A binary relation-—=, on a set A is called reflex-
ive if A < A, VA € A. The relation <X is,said to be transitive if given any
three elements A;, A, A3 € A satisfying A1 < A, < A3 wehave A; < A3. A
reflexive, transitive binary relatieriis'called a preorder. A preordered set
(A, =) is a set A, equipped with apreorder <.

Definition 1.1.3 (Directed Set). A preordered set (A, <) is called directed
if

VAT, A2 € A,TFA € AN <A A <A

A preorderwith this property is called a direction.
Example 1.1.4. 1. (N, X) withn < miff n < mis a directed set.

2. ([0, 00), =) withy < xiff y < x is a directed set.

3. ((0,1), %) withy = x iff x <y is a directed set.
Example 1.1.5. Let X be a topological space and x € X. Let N, be the set
of neighbourhoods of x. Consider the relation W < Vif V. C W. Then
(N, =) is a directed set.

Exercise 1.1.6. Are the examples in special cases of example|1.1.57
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1.1. Nets 3

Definition 1.1.7. Let (A, =i)ic1 be a family of directed sets. Then A =
[ [; Ai becomes a directed set with (ai)icr =< (bi)ier if ai =i by, Vi. The di-
rected set (A, <) is called the product directed set of the family (A, <i)ic1.
Unless otherwise specified we will always endow products of directed sets
with this direction.

Definition 1.1.8 (Net). Let X be a set and (A, <) be a directed set. A nét
{xahaen In X with index set Aisamap x : A 3 A — x, € X. When the index
set is understood we drop it from the notation and just say, {x,} € Xis a
net.

Example 1.1.9. Every sequence defines a net with the index'set (N, <).

Definition 1.1.10 (Convergence of nets). A net {x) )& inwa’ topological
space X is said to converge to some point x € X ififoreach neighbour-
hood V of x, there exists Ay € A such that x, € V.avhenever Ay < A. In that
case we say x is a limit of the net {x, } and writéx, = x.

Proposition 1.1.11. A topological space X is"Hausdorff iff every net in X
converges to at most one point.

Proof. If part: Suppose X is not Hausdorff. Then existsx,y € X such that
VU € Ny, ¥V € N, UnV # 0. For each (U, V) € Ny x Ny, xyvy € UNV.
Then the net {xu,v}u,v)en, xN, converges to both x and y.

Only if part is left as anexercise. O

Exercise 1.1.12. Prove'only;if part of the proposition|1.1.11
Now we will.show that the analog of proposition holds.

Proposition-1:1.13. Let X be a topological space, A C X and x € X. Then
x € A iff x is a limit of a net {x,} C A.

Proof. Let X e A. IfVeN,, then VNA = (), so there exists xyy € VN A.
Then thenet {xy }ven, converges to x. Conversely if xo — x and {x,} C A
then x € A. Il

Definition 1.1.14 (Subnet). A net {yg}gep is a subnet of a net {xy}xea if
there is an order preserving function ¢ : B — A such that (i) for all oy € A,
there exists 3y € B such that ¢(Bo) > o, in other words ¢(B) is a cofinal
subset of A and (ii) forall b € B, yp = X¢(b)-

[Lecture Notes of P.S.Chakraborty]



4 1.1. Nets

Remark 1.1.15. In the mathematical community there is lack of uniformity
regarding the concept of subnet. This is due to Willard and we will stick
to this.

Example 1.1.16. Every subsequence is a subnet.

Example 1.1.17. Consider the sequence of natural numbers {x,, = n? + 1}
Then the net {Ymn}(mn)enxn of natural numbers defined by Yy, = (M +
n)? + 1, is a subnet of the sequence {x,,}. To see this, note thatwe can take
¢ :Nx N> (mmn)— (m+n) € N. Note that the net {Uw n}mn)enxn 1S
not a subsequence of {x,}.

Example 1.1.18. Net {ny}xen be an increasing sequence of natural num-
bers. Let Ng = 0. Let ¢ : N — N be the mapp(ih=kif i1 <j < ny.
Then ¢ is monotone. Given any sequence {x4,} consider the subnet {yn }nen
given by yn = X¢n). Clearly {y, } need not be asubsequence. For example
if i + 1 < nyey g, then {y, } is not a subsequence.

Example 1.1.19. Consider the nets {ya}xe(0,1) and {X«}ae(0,00) defined by
Y = % where p < Aiff A < pand %= o with o < f iff « < 3. Then {y,}
and {x,} are each other’s subnet.

Definition 1.1.20 (Limitpoinit /Accumulation point/ Cluster point). An el-
ement x in a topologicalspace is a limit point (accumulation point/cluster
pointare also used) of a net {x} if for all neighbourhood V of x and each
index o there exists\3 > o with xg € V. The possibly empty set of limit
points of thenet {x.} is denoted by Lim{x«}.

Proposition 1.1.21. In a topological space X, a point x is a limit point of a
net {x} } iff x is the limit of some subnet of {x4}.

Proof. Let x be a limit point of the net {xy}qca. For each («, V) € A x Ny
pick some ¢, v = « and x¢,, € V. Now consider the net {y, v} given by
Yo, v = X, and note that {y,v}is a subnet of {x4} converging to x.
Conversely suppose a subnet {yg }gcp converges to x. Fix «p € A and
V € N,. We have to find o > « such that x, € V. Since {yg} is a subnet
we have amap ¢ : B — A. Since ¢(B) is cofinal we can pick 3o € B such
that (o) = «o. Choose 3; € B so that B > B; = ypg € V. Choose

B2 = B1,B2 = Bo. Then ¢(B2) = d(Bo) = oo. Take o = $(B2). Then
Xo =X¢(p,) =Yp, € V. [
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1.2. Filters 5

Remark 1.1.22. Is there a problem in the argument? Can you fix that? Don’t
read. Think and try.

Fixing the proof of proposition Let x be a limit point of the net {x«}xca.
LetB={(et, V) EAXN,:xq €Vland ¢ : B> (&, V) — « € A. For each
(o, V) € A x Ny pick some &’ >~ « such that x, € V. Thus («, V) € B and
(«/, V) = (&, V). This shows ¢(B) is a cofinal subset of the directed set A.
Given («, V) € B, let {yq,v} = X«. The net {yp}pep is a subnet of {x,}..This
subnet converges to x. [

Lemma 1.1.23. In a topological space X, a net {x«} converges to a poirt x iff
every subnet converges to the same point.

Proof. Obvious. O

Exercise 1.1.24. Let {x)}aca be a net in a topologieal space X. Suppose
there exists x € X such that every subnet of the'given net admits a further
subnet converging to x. Then the original net{x:} must be converging to
X.

1.2 Filters

The concept of filters is due'to, Henry Cartan. This also serves the same
purpose as nets in the sense that it allows us to describe the closure of a set
in a topological space, ©ne drawback of nets is the directed sets involved
are not internal. This'drawback is addressed in the notion of filters. Precise
meaning of this remark will become clearer as we go along.

Definition1.2.1. A filter on a set X is a family § of subsets of X satisfying
1. € Fand X € §.
2. A,BEF= ANBEGF.
3. fACBand A € Fthen B € §.

A free filter is a filter § with Nacz = (. The filters that are not free are
called fixed.

[Lecture Notes of P.S.Chakraborty]



6 1.2. Filters

Example 1.2.2. Let X be asetand S C X. Then § :={A C X|S C A}isa
filter. Note that this is a fixed filter.

Example 1.2.3. Let X be an infinite set and § = {A C X|A€ is finite } is a
filter called the cofinite filter on X. This is a free filter.

Example 1.2.4 (Neighbourhood filter). Let X be a topological space and
x € X. Then
Ny = {N|N is a neighbourhood of x}

is a filter called the neighbourhood filter at x.

Definition 1.2.5. A filter & is a subfilter of another filter'F if § C &. Care-
fully note the nature of the inclusion for the term subfilter. In this case we
say & is finer than §. A filter i is called an ultrafilter if it has no proper
subfilter.

Our next result requires a set théoretic technology. We won’t spend
much time on this though.

Definition 1.2.6. A binary relation ='on a set A is said to be antisymmetric
if Ay = Ay and A, < A; for' some’Aq, A, € Aimplies A; = A,. A reflexive,
antisymmetric, transitive binary relation is called a partial order. A par-
tially ordered set (A, <)is d pair consisting of a set A along with a partial
order < on A. Adsubset' A’ C A of a partially ordered set (A, <) is said
to be linearly ofdered if given any A,\" € A’ we have either A < A’ or
A" < A. In other words any two elements of A’ can be compared. An ele-
ment A’ is an{upper bound for a subset A’ of a partially ordered set (A, <)
if A <ALVA € AL

Theorem 1.2.7. [Zorn’s lemma] Let (A, =) be a partially ordered set in which
everyf Tinearly ordered subset has an upper bound. Then there is a A € A\ which is
maximal. This means that there is no N’ € A with A\ < N. Note that the theorem
does not assert existence of an upper bound for A.

Remark 1.2.8. Zorn’s lemma is equivalent to the axiom of choice. In that
sense it is an axiom of ZFC an axiomatic formulation of set theory.

Theorem 1.2.9. Every filter is included in at least one ultrafilter. Consequently
every infinite set has a free ultrafilter.

[Lecture Notes of P.S.Chakraborty]



1.2. Filters 7

Proof. Let § be a filter on X and let P be the partially ordered set of all
subfilters of §. P is partially ordered by inclusion. In this partially ordered
set every linearly ordered subset P’ has the obvious upper bound Ugcp/§.
So Zorn’s lemma applies and produces an ultrafilter as a maximal element
of P. For the last statement note that an ultrafilter containing the cofinite
filter is free. L]

Lemma 1.2.10. Every fixed ultrafilter on a set X is of the form {, = {A C X[X'&
Al

Proof. Let 4l be a fixed ultrafilter and let x € NacyA. Then &, is’an ultrafil-
ter containing (. Therefore {{ = 4. O

Exercise 1.2.11. Let X be a set. Show that a collection §Fof nonempty sub-
sets of X closed under finite intersections is an ultrafilter iff for all subsets
A of X, one of A, X\ A belongs to §.

Definition 1.2.12. A nonempty collection B of subsets of a set X is a filter
base if

1. 0 ¢B.
2. If A,B € *B then 3C € B with,C CVA N B.

Every filter is a filter base. On the-other hand, if ‘B is a filter base, then the
collection of sets

S+ {ACX|B C A, for some B € B}

is a filter, called the filter generated by ‘8. For instance the open neighbour-
hoods of a pointix of a'topological space X forms a filter base ‘B generating
Ny.

Lemma 1.2.13./An ultrafilter 3 on a set X satisfies the following.
1. If Ay U---UA,, € lthen A; € U for some i.

2. IFANB #0,VB € i then A € §L.

Proof. (1)Let U be an ultrafilter on X and AUB € . If A ¢ 4 then § =
{CIA U C € i} is a filter satisfying B € § and { C §. Hence i = 3.

(2) Assume ANB # (), VB € 4. If we set B :={ANB|B € U}, then Bisa
filter base and { C Fy. So F = L. Since A € Fp we get A € 4. O

[Lecture Notes of P.S.Chakraborty]



8 1.3. Relations between nets and filters

Lemma 1.2.14. If 3l is a free ultrafilter on a set X, then Y contains no finite
subsets of X. In particular only infinite sets admit free ultrafilters.

Proof. A free ultrafilter contains no singletons because if {x} € 4, then for
any A € 4, AN{x} € U. Since O ¢ 4, we must have {x} C A. Thus
x € NaeyA! Now for an ultrafilter if the finite set {x1,...,xn} = Ui{xi} € 4,
then by the previous lemma we must have {x;} €  for some 1i. O

Definition 1.2.15 (Filter Convergence). A filter § on a topelegical X con-
verges to a point x € X, written § — x is § includes the‘neighbourhood
filter Ny at x i.e., Ny C §. Similarly a filter base B converges to a point x,
denoted B — x if §u — x. Clearly Ny — x.

Definition 1.2.16. An element x in a topologicalispace X is a limit point of
a filter §if x € A, VA € §. The set of all limit peints is denoted by Limg.
Clearly Lim§ =N AESK-

Proposition 1.2.17. In a topological-space X a point x is a limit point of a
tilter iff there exists a subfilter convefging to x.

Proof. Letx € Lim§ = NaczA. Then B = {VN AV € N,, A € F}. is a filter
base. clearly VA € §,VV.{e ,NyV NA C A, therefore § C §y. Similarlr
Nx C F. That is §y isasubfilter converging to x.

For the converse, suppose § C & is a subfilter with & — x,i.e., N, C &.
Then for each A<c.§ and V € Ny both belong to & and consequently
VNA # 0. O

Exercise 1:2.18."In a topological space a filter converges to a point x iff
every subfilter converges to x.

1.3-"Relations between nets and filters

Let {x)}rc be a net in a topological space X. Foreach A € A, let F) == {x) :
N = Aland B = {F\ : A € A}. Then B is a filter base and §y, the filter
generated by B is called the section filter of {x,} or the filter generated by
the net {x,}.

Proposition 1.3.1. Let {x)}aca be a net in a topological space X. Then
Lim{x,} = Lim§ where § is the section filter of {x,}.

[Lecture Notes of P.S.Chakraborty]



1.4. Applications of nets and filters 9

Proof. If x € Lim{x,} then y, — x for some subnet {y«}. The filter gener-
ated by {y} is a subfilter of § converging to x. Conversely if x € Limg.
Then consider the directed set

B={(A, V)A€ A, VeN,x\€V}L

In other words B is a subset of the Cartesian product of A and N with the
product direction. Define ¢ : B — A by ¢((A,V)) = A, and yrv) =%
Then {y(,,v)}is a subnet of {x, } converging to x. Therefore x € Lim{x,}. |

Consider an arbitrary filter § in a topological space X. Refine A =
{(A,A)JA € §,A € A}. Then A has a natural direction given byy(A, A) >
(N,B) is A C B. We have a net {x(» o) = A} with index Set A) This net is
called the net generated by the filter §. Observe that®E;xa) = A. So, the
filter generated by {x(» o)} is §. In particular we have Lim{x a)} = Limg.
We have proved the following theorem.

Theorem 1.3.2. In a topological space X, a net@and.the filter it generates have the
same limit points. Similarly a filter and the net it generates have the same limit
points.

1.4 Applications of nets and filters

Now we prove theorems«sreminiscent of results we had for metric spaces
involving sequences:

Theorem 1.4.1. For a function f : X — Y between topological spaces and points
x € X the following are equivalent.

1. Thefunction f is continuous at x.
2. Ifanet x, — x then f(x,) — f(x).
3. If afilter § — x then f(F) — f(x). Note that f(F) is a filter base.

Proof. (1) implies (3): Let § — x, i.e,, Ny C §. Continuity of f implies
f~1(V) € N, for each V € N¢(x). From f(f'(V)) C V, we conclude that
N¢(x) is included in the filter generated by f(§). Thus the filter base f(§)
converges to f(x).

[Lecture Notes of P.S.Chakraborty]



10 1.4. Applications of nets and filters

(3) implies (2): Let {x«}xca be a net converging to x. Let § be the filter
generated by the net {x4}. Then Lim§ = Lim{x} = {x}. In other words
the filter § converges to x. Therefore f(§§) converges to f(x). So N¢(x) is
contained in the filter generated by f(J). Therefore if V € N¢(y) there
exists oy such that f({xg|B >~ xo}) C V. Hence {f(x«)} converges to f(x).

(2) implies (1): Suppose f is not continuous at x. Then there is a neigh-
bourhood V of f(x) such that x is not in the interior of f7'(V):.. Then
x € f-1(V)e. There exists a net {xo} C (V)¢ = ' (V¢)converging to
x. Since {f(x«)} € V¢ and V¢ is closed, f(x) € V¢, a contradiction! ]

Proposition 1.4.2. Let X be a compact topological space and {x.} be a net
in X. Then {x,} has a convergent subnet. Equivalently we can show that
every filter in X has a convergent subfilter. The converse is also true. That
means if X is a topological space with the property that every filter on X
has a convergent subfilter then X must be compact.

Proof. Let § be a filter. Then & = {A{A €'§} has finite intersection property.
So, Limg =N AESK # (). In otherwords § has a convergent subfilter.

For the converse, let & be‘a family of closed sets with the finite inter-
section property. Then finite intersections of elements of & is a filter base.
By hypothesis §, the filter ‘generated by this filter base has a limit point.
Therefore NgeeG = MALA= LimF # 0. O
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1.5. Assignment-I 11

1.5 Assignment-I, Due on 17/01/25

1. Let 4 be an ultrafilter on X. Define py : 2X — R, with 2 = {0, 1} by

TifAcu
Hy(A) = {

0if X\ A € §L.

Then py is a finitely additive measure. Conversely if p: 2X — {0,13.C
R is a {0, 1} valued finitely additive measure with u(X) = (1, then
iy, ={A C X|u(A) = 1}is an ultrafilter.

Definition 1.5.1. Let A be an index set and 4l be an‘ultrafilter on
A. Suppose we have a function f : A — Y, where Y is a topo-
logical space. We say f has {-limit y for some ynin Y if for all V €
Ny, 1 (V) € 4. This is denoted by U-lim f =y.

2. Show that if Y is a compact Hausdorff space and il is an ultrafilter on
Atheneach f : A — Y has a #I-limit. Detérmine $(-limit for a principal
ultra filter.

3. (Continued) This allows us 10 do funny things. For example if { is
an ultrafilter and {x,, } is abounded sequence in R then show that we
can define {-lim x. Or if we have a sequence {s,} C Z, where Z, is
the group with two elements with discrete topology. Then show that
applying the preyious exercise can define 4-lims. Also show if x €
Z,, then the sequence {s!, = x + s}, satisfies {-lim s’ = x + 4-lims.

4. In ajail the jailer played the following game with the prisoners. All
the prisoners-were given T-shirts with a tick or a cross in the back-
side of the T-shirt and were arranged in a queue so that any pris-
oner.could see the backsides of all the prisoners standing in front of
him/her. Based on that he/she has to guess the mark on the T-shirt
he/she is wearing. Let us assume prisoners are standing in positions
1,2, etc. so that the prisoner standing on position i can see the back-
sides of prisonersi+ 1,1+ 2,... etc. After the first prisoner declares
his mark the second prisoner has to declare and so on. If everybody
except the first prisoner can answer correctly then they will be re-
leased. Device a winning strategy.
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5. Let (X&, Ta)xeca be a family of topological spaces. Let X = [ [, c A X«
be the product space with the product topology. Then a net {x, =
(XA, o) xearen In X converges to x = (X« )wea iff X5 o = X, Vax € A.

6. (Stone-Cech Compactification) Let X be a discrete set. Then a filter
is a subset of P(X) = 2X or an element of 22*. Therefore BX, the set
of ultrafilters on X is a subset of 27". By Tychonoff’s theorem 2> is
compact. Show that 3X is closed and therefore compact.

7. (Continued) Consider the map { : X 5 x — i, € BX, 'where 4L, is the
principal ultrafilter determined by x. Since ilis,onerto one we can
and we will identify X as a subset of 3X. Show-that {((X) is dense in
BX.

8. (Continued) Finally, given any compaet Hausdorff space Y and a
map f : X — Y define f:pX — Yoy f(U) = U-limf. Show that f
is continuous.
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Solutions

(1.1.24) Let {xa}aen} € X be a net in a topological space X such that every

2

subnet has a further subnet converging to x € X. Now suppose x, -
x. Consider the index set B .= {(A, V)IA € A,V € Ny, x, € V} with the
binary relation (A, V) < (N, V') iff A < A,V C V'. Equipped with this
relation B is a directed set. Consider the net {yv)}v)es given by
Y v) = Xa. Since x), = X,

dVo € Ny, VA € A, 3(1))\ >~ 7\,X¢>\ ¢ Vo.

So, (da, Vo) € B and if we define d : B 5 (A, V) — A €A, then ¢ is
monotone and ¢ ((Ppa, Vo)) = dr = A, VA € A. Inetherwords ¢(B)
is cofinal. Therefore {y )} is a subnet of {x)} Now we will show
that the net {y v }(x,v)es can’t have a subnet converging to x. Or
equivalently we will show that x ¢ Lim{yvy},v)es. That means
we have to show that

IV e Ny, 3N, V) € B, YXVNE (A, V), yaav) & V'

We will take V! = V, = Vand;A such that (?\, \7) € B. We have
already seen that there exists.such A. Then for anyB> (A, V) >~ (7\, \7)
we have yv) = xa &V 2D V = V'. Thus x is not a limit point of
Yiavitav)es. Butthis contradicts the hypothesis that every subnet
has a subnet converging to x.

Let us assume ‘on the contrary that f has no ultra limit. Then Vy €
Y, 3V, eNy with 1(Vy) € 4. Since il is an ultrafilter given any set
it must contain that set or it’s complement. Therefore we conclude
that A\ 7' (V) € U. Appealing to the compactness of Y we obtain
U7, "yn so that Y = U, V,,. Then A = U ,f'(V,,). Therefore
0 =N (A\FT(Vy,) € 4, a contradiction!

Let us define x,, = 1 if the i-th prisoner gets a T-shirt marked with
a tick, else x,, = 0. The variables x,, takes values in the group Z,.
Fix a free ultrafilter {{ on N. For each k € N consider the sequence
sx whose n-th term is sy ,, == Z;‘;? 11% € Zj. If we denote by yy
the response of the k-th prisoner. Let us consider the strategy where
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Solutions

3)

the first player announces {-lims; and for k > 1,yx = Z;:: y; +
H-1im sy.

Let {/,} be anetin X converging to {{. We have to show that i € 3X.
We first show that 4l is a filter. Note that p, (B) — py(B), VB C X.
Therefore empty set belongs to i because () = limy py, () = 0.
Similarly we can verify other filter properties. Finally to show that it
is an ultrafilter let A C X. We have to show that pgy(A) + ug(A¢) = 1.
That follows from py(A) + py(A€) = lim, (py, (A) + p, (A€)) = 1.

Let 4 be an ultrfilter. We will exhibit a net fromi"X C)BX converging
to . Let A = {(a,A)|A € U,a € A}. Consider the direction on
A defined by (a,A) > (b,B) if A C B. Lonsider the net {{l(4 A)cn
given by {4 o) = U, the principal ultrfilter. Now we will show that
HU(a,a) — Uorequivalently py ., (B) 5 fw(B), VB C X.

Let us fix B € X. Suppose B ¢4l. Take Ay = (b,B) € A. Then for
(b’,B’) = (b,B) we have B'(C.B. "'Therefore b’ € B’ C B. Conse-

quently B € thy = (v py. Therefore py , , = 1. If B ¢ Ll we use
B¢ € 4L

b/, B/

Let {4[,} be a net in\3X converging to L. If we denote &[,-1im f by y,
and i-lim f by y,\then we have to show that lim) y, = y. Suppose
that the net {{j} does not converge to y. That means there is a neigh-
bourhood*V, of y and a subnet of {y,} that lies outside V (why?).
If necessary by passing to the subnet we can assume that the net
{ya} lies outside V. If necessary by passing to a further subnet we
can assume Yy, — y’. Get an open neighbourhood V’ of y’ disjoint
from'V. Since {-limf = y we have f (V) € 4. Therefore from
1=y (f 1 (V) = limy pg, (' (V)) we conclude that there exists Ay
such that VA = Ao, wy, (F71(V)) = 1T or (V) € Uy. On the other
hand since y, € V' for a cofinal set of indices we conclude that even-
tually f~'(V’) € U,. Therefore ) = £~ (V') N {1 (V) € 4, for a cofinal
set of A’s. This contradiction establishes that the assertion {y,} does
not converge to y must be wrong.
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Chapter 2

A very general setup

We introduce the most general framework for doing functional analysis.
These are vector spaces endowed with topologiesthat makes addition and
scalar multiplication continuous. We extract prOperties of such topologies.
This in turn allows us to characterize suchtopoloegies. Then we see char-
acterization of finite dimensional vector spaces. See some more examples
and learn about limitations of making‘thingstoo general.

2.1 Topological Vector-Spaces

In this course we will use ' Kto mean a statement which holds for K =
R or C.

Definition 2.1.1 (Linear Topology/ Vector Space Topology). Let E be a vec-
tor space over'Ky, A topology 7 on E is called a linear topology or vector
space topologyif

1. the.operation of addition +: E x E > (a,b) — (a+b) € Eand
2. the operation of scalar multiplication. : K x E 3 («,x) — a.x € E

are continuous. Here we endow E x E and K x E with the product topolo-
gies.

Definition 2.1.2 (Topological Vector Space). A vector space equipped with
a linear topology is called a topological vector space, TVS in short.
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Exercise 2.1.3. Show that (E,T) is a TVS iff

(i) for every pair of convergent nets {x)},{yr} € E withxy — x,yx =y
we have x) +yx — (x +y);

(ii) for every pair of convergent nets {ax} C K,{x,} € E with a) —
a,x), — x we have a).x, — a.x.

Remark 2.1.4. Let Ebe a TVS
(i) forally € E, the translation T, : E 3 x — (x +y) &E;
(ii) for all « € K\ {0}, the dilations D : E 5 x —.a.x € E

are homeomorphisms.

We wish to understand vector space topologies or which topologies on
a K-vector space will turn that into a TVS, For that purpose we begin by
exploring some of the necessary conditions-of the neighbourhood base at
origin.

Proposition 2.1.5. Let E be a FVS.

1. for any neighbourheod V4of 0 € E, there exists a neighbourhood W
of 0 € Esuch that{x +y:x,ye W} =W4+WCYV;

2. for any neighbourhood V of 0 € E and any compact set C C K there
exists a neighbourhood W of 0 € E such that {ae.x|x € C,x € W} =
CWcC\V

Proof. (i) Sinee addition is continuous and 0 + 0 is 0, there exists W;, W, €
Ny such'that {x +ylx € W,y € Wo} = W; +W, C V. Take W; "W, as W.
(ii) Similarly using the continuity of scalar multiplication we get a neigh-
beurhood W, of origin in K and a neighbourhood W, of origin in E such
that W1.W, C V. The result now follows from locally compactness of K
and the fact that dilations are homeomorphisms. O

Definition 2.1.6. A subset A C E is said to be absorbing if ¥x € E,3A > 0
such that A.x € A.

A subset A C E is said to be balanced if x € A, x € K with |a| < 1
implies o.x € A. Balanced hull of a subset A is the smallest balanced set
containing A. This is given by Uy «<1%.A and is denoted by Bal A.
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Remark 2.1.7. Any neighbourhood of origin in a TVS E is absorbing be-
cause given any x € E, {7}, is converging to 0.

The next proposition gives a reasonable list of necessary conditions for
a linear topology.

Proposition 2.1.8. Let E be a TVS.

(i) If B is a basic system of neighbourhoods at 0, then

(a) forall V € *B, there exists W € B such that W+ W C V;

(b) for all V € B, for all compact C C K, there exists W € B such
that CW C V.

(c) forallx € E, B, ={x+ V|V € B}is alocal base at.x.
(d) The topology of E is Hausdorff iff Ny cuV = {0}

(ii) There exists a basic system of neighbourhoods.of 0 consisting of open
balanced sets.

Proof. (i) We have already seen proofs eofy(a), (b). Proof of (c) follows from
the fact that translations are homeomorphisms. Let us prove (d). Let W =
NvesV. Then 0 € W. Assume that'the topology is Hausdorff. Then for all
x € E\ {0}, the set E \ {x} is an openneighbourhood of origin. So, there
exists V, € B such that V, & E \ {x}. Then

W € MVx € Nyzo(E\ {x}) ={0}.

Conversely suppose W = {0}. Let x # y be two elements of E. without
loss of generality we can assume y = 0. Since x is nonzero, x ¢ NyexV.
Therefore there exists V € ‘B such that x ¢ V. By (a) there exists W € ‘B
such that W+ W C V. So, x ¢ W+ W. This implies (x+ (—1).W)NW = ().
(ii) LetB.be the collection of all balanced sets containing 0. We know that
for any neighbourhood V of 0 there exists an open W such that y W C V
for all y with |y| < 1. Then Bal W is an open, balanced subset of V. ]

Definition 2.1.9. Let E be a TVS. A subset B C E is said to be bounded if
for all neighbourhood V of 0 € E, there exists p > 0 such that B C pV.

Proposition 2.1.10. Let E be a TVS. If the net {ay}xcn € K converges to
0 € Kand the net {xa}aca C E is bounded, then {a)x,} converges to 0 € E.
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Proof. Let V be a neighbourhood of origin in E. Without loss of generality
we can assume V is balanced. Using the boundedness condition we get
xa € pV, VA € A. Since {a,} is converging to zero we get |a)| < %,V?\ = Ao-
Since V is balanced a,x) € V,VA = A. O

Exercise 2.1.11. Show that the last proposition holds if we assume {x,} is
eventually bounded, i.e., there exists A so that {xx|A > Ay} is bounded.

Theorem 2.1.12. Suppose E is a K-vector space and B is a filter baseron E with
the following properties:

(i) 0 € V,VV € B;
(ii) every V € B is absorbing;
(iii) for every V € B,3IW € ‘B satisfyingW 4+ W C V;
(iv) forevery V € B,3IW € B,r > 0'so that p.W C V,Vp € K with [p| < .

Then there exists a unique lineartopolegy on E so that §w is the neighbourhood
filter at origin of E. Moreoverthetopology is Hausdorff iff {0} = Nyep V.

Proof. Declare a set AL E tobe open if
Vae A,V e B, V+a C A.

Let T be‘the collection of all open sets. We will begin by showing that
T is a topology. The collection T contains ) vacuously and E € 7. Also it
is obvious that 7 is closed under arbitrary unions. Let us check that T is
closed'under finite intersections. Let A, B € T and a € A N B. There exists
NGV, € B suchthata+V; C A, a+V, C B. Since ‘B is a filter base we can
getV CViNV, VeB. Thena+VCa+V,;CAanda+V Ca+V, CB.
Therefore a +V C A N B. This shows A N B € T. This completes proof of
the fact that 7 is a topology.

Next we will show that the filter §y generated by the filter base B is
the neighbourhood filter at origin of the topology 7. This is done in the
following steps.

* Givenany B € B, define A ={x € E[FV € B,V +x C B}
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¢ Since 0 € B, we can take V = B to conclude that 0 + V C B. Thus
0e€A.

* To see that A is open, given a € A we need to exhibit V" € 95 so that
a+ V” C B. Since a € A, there exists V' € B so that a + V' C B.
On the other hand by (iii) there exists V"’ € B, V" + V" C V'. Then
a+ V" + V" CB. In particular a + V" C A.

* The A constructed above is contained in B. To see this not¢ that if
we take a from A then a € B because every element of B contains
origin.

* Sowe have proved B O A and A is an open set containing origin. So,
B is a neighbourhood of origin. Thus ‘B is a subset of the neighbour-
hood filter at origin. Therefore 5 C No.

* The other inclusion Ny C §y is immediate because if B is a neigh-
bourhood of origin then there exists.an6pen set A containing origin
and A C B. Since A is open and*Q ‘€ “A there exists V € ‘B with
V C A. Being a superset of an.element of B, we have B € §y.

Now we will show continuity of addition. Suppose we have nets {xA}1, {uata
converging to x,y respectively. We have to show given any open neigh-
bourhood A’ of (x + y) there-exists Ay so that x) +yx € A, VA = Ao.

* Clearly for everysu € E, a subset A C E is open iff A + u is open.
Therefore A’, ah open neighbourhoods of x + y is of the form A +
(x +y) forsome open neighbourhood A of origin. So, we have to
show that,given any open neighbourhood of origin A, there exists Ay
such thatx) +yx € A+ (x +y), VA = Ao.

¢ Since open neighbourhoods of origin are supersets of elements of
B, it suffices to show VYV € B, there exists Ay with x, +y, € V +
(x +Y),VA = Ao. By property (iii) of our hypothesis there exists
W e B satisfying W + W C V. Obtain Ay such that A > Ao implies
xAx € W+ x,yn € W +y. Then for A = Ay we have x) + yp €
W4+ W+ (x +y) C V+ (x+y). This completes proof of continuity
of addition.
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To show that T is a vector space topology only thing remains to be
shown is the continuity of scalar multiplication. Let {x,} C E,{x)} C K
be nets with x, — x, xx — «. We have to show that x,.x), — a.x. Using
continuity of addition it is enough to show that

(@) oa(xa —x) = 0;
(b) (on — ). x — 0.
Let V € B. Fixr > 0, W € ‘B be as in (iv) of our hypothesisiinivolying 5.

Proof of (a). Since ), — «, there exists Ay so that M = SuUpiey, lon| < 0.
Letn € Nbe such thatnr > M. Let Z € Bbesuchthatn.ZC Z+---+7Z C
W. For all A = Ay, we have |x, /n| < r. Therefore

on.Z = %.nz C 2 W IR Ao

n
Since x, — x, there exists A7 such that«, — x € Z,VA = A;. If we take
Av = A1, Ao, then for all A = Ay we have x,(x, —x) € V. O

Proof of (b). Since every V € ‘B is abSorbing we can choose t > 0 so that
tx € W. We choose vy so that [ex — «| < 1t,VA > vy. Equivalently
[t (o — )] < 7, VA = vy, Sopby/condition (iv), t~' (o — o). W C V, VA =
vy. Since t.x € W, (o, = 0o8x =17 (o) — &).tx € V, VA > vy. O

Uniqueness is obvious and we have seen the characterization of the
Hausdorff property before. O

Corollary 2.113. Suppose E is a K-vector space and ‘B is a filter base on E
with the following properties:

(i) 0&€ V,VV € B;

(ii) every V € ‘B is absorbing;
(iii) for every V € B,3IW € B satisfying W +W C V;
(iv) every V € ‘B is balanced.

Then there exists a unique linear topology on E so that §y is the neigh-
bourhood filter at origin of E. Moreover the topology is Hausdorff iff
{0} =NvesV.

Proof. The theorem applies because condition (iv) of the theorem holds
withr=1land W =V. O
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Practice Problems

Let E be a topological vector space.

1

Prove that if A C E is open then so is A + B for any subset B.

. Prove that if V is a neighbourhood of origin then for any subset-A

wehave A C A+ V.

. Show that given any neighbourhood V of origin there/exists-a bal-

anced, closed neighbourhood W of origin, such that WA\C V-

. Let F = {0} be the closure of the set {0}. Prove that

(i) Fequals the intersection of all openneighbourhoods of origin.
(ii) Fis a closed linear subspace.

(iii) Fis compact.

. Show that if A C E is closed and C C E is compact, then A + C is

closed. Is this result true ifwe-take C to be closed?

. Prove that if A, C/CE are compact then so is U, ccy.A.

Show that if A'C Eis closed and C C K\ {0} is compact, then C.A =
{v.aly € Cha € A}is closed. Give a counter example to show that the
condition\0 ¢ C is essential.

. Show-that if A, B C E are compact then so is A + B.

. Let FbeaTVSand T : E — Fis linear. Prove that the following are

equivalent.

(a) T is continuous.

(b) T is continuous at 0.

[Lecture Notes of P.S.Chakraborty]



22 2.2. Finite dimensional TVS

2.2 Finite dimensional topological vector spaces

We have introduced a concept but so far haven’t discussed any examples.
Of course finite dimensional vector spaces with their usual topologies are
topological vector spaces and Tychonoff showed the converse.

Theorem 2.2.1 (Tychonoff). Every finite dimensional Hausdorff topological vec-
tor space has the usual topology.

Proof. Let E be a finite dimensional Hausdorff TVS with tthe topology 7.
Let vi,..., v, be abasis of E. Let T : R™ — E be the map T(x¢,...,xn) =
> xiVvi. This is a bijection and using this we can identify E'with R™. This
means we consider the topology T~'(T) on R™. Sp we have two topologies
on R™, the usual one and another vector space“topelogy, to be denoted 7,
not T-'(T). We will use T : (R™, product tépology) — (R™, T) to denote
the identity map, considered as a map with thejindicated topologies. Since
7 is a linear topology, the operations ot scalar multiplication and addition
are continuous. Therefore so is T/because T(x) = ) x;e; where e;’s are
the canonical basis elements. This shows any open set in T is open in
the usual product topology.< As T is continuous any compact set in the
usual topology is compagt in F,/In particular S*' = {x € R"[||x|, = 1}
is compact in 7. Since J4is Hausdorff and 0 ¢ S™', we can find an open
set U in T containing origin and disjoint from S™~'. We wish to show U
is inside the unitéball. Or it will be enough to exhibit an open set in T
containing the‘originrand inside a ball. That is achieved as follows. Using
the continuity of the scalar multiplication map we can find another open
U’ € T containing origin and an € > 0 such that (—e, e)U’ C U. Since U is
disjoirttfrom S™~!, we have for all t € (—¢, €) and for all x € W/, ||t.x||, #
1. /In"eother words Vx € W, ||x|2 ¢ {‘%‘IO < |t| < €}. Therefore for all
xell/|[x||l2 < 1 < 2. So, T contains a neighbourhood U’ contained in the
open ball of radius 2. This shows T~ is continuous at origin. Since linear
topologies are translation invariant and T is linear we conclude that T is
continuous at any other point. H

Corollary 2.2.2. In a Hausdorff TVS E every finite dimensional subspace F
is closed.

Proof. Let {x,} be a net in F converging to x. Let us consider the span of F
and x. This is finite dimensional and therefore has the usual topology. But
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a subspace of a finite dimensional space is closed. Therefore x must be in
F. .

This shows if we are looking for more examples we must consider in-
finite dimensional spaces. This course is primarily about them Before we
venture into that world we ask ourselves is there a topological characteris
zation of finite dimensionality. This is addressed in the following theorem

Theorem 2.2.3 (André Weil). Every locally compact, Hausdorff TV.S'is finite
dimensional.

Proof. Let E be a locally compact, Hausdorff TVS. Thus there exists a com-
pact neighbourhood C of origin. Then the dilate ;C.iS"also a compact
neighbourhood of origin. Using compactness of C wee conclude that finitely
many translates of JC covers C. Thus there exists“a finite set S so that
C C S+ 1C. Let F be the linear span of S. Wé haye just proved that being
finite dimensional F is closed. It sufficesctosshow that C is a subset of F.
That will follow once we show that givemany open neighbourhood of ori-
gin V,C C F+ V. Note that C C F +~J€, Iterating this we get C C F+ 55.C
for all n € N. Using continuity of ‘scalar multiplication we conclude that
for all x € E, there exists e,“>+0.and V, an open neighbourhood of x
satisfying t.Vx C V for alltywith'{t| < e,. There exists x;,...,x so that
C C UM,V,,. Choose N.largeenough with 27N < ¢,,,Vi. Let x € C be
arbitrary. Then x € V4, for some i. We have 2 Nx € V. Thus 27NC C V.
Therefore C C F +A/Sirice V is an arbitrary neighbourhood we conclude
that C C F. ButF being finite dimensional is closed. O

2.3 .Examples of TVS

It is customary that any definition is accompanied by a preferably long list
of examples. We will also do so, but little later. We won’t spend much
time in this generality, instead soon we will concentrate on a convenient
subclass of topological vector spaces called locally convex spaces. To mo-
tivate introduction of such a subclass we begin with examples some of
which aren’t particularly nice.
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Example 2.3.1. Fix p € (0, c0). Define

e% = {X — (Xn)neN : Z ’Xn’p < OO}

The inequality (a + b)? < 2P(aP + bP),Va,b > 0 implies {f is a K vector
space. For all r > 0 define V; = {x|)_[xn[? < r}. The collection B =
{Vy[r > 0} is a filter base on (% each of whose elements contain origin,
absorbing and balanced. Let us verify condition (iii) of the-hypothesis of

corollary 2.1.13 Let (xn), (Yn) € V;/20+1. Then

D B+ yalP<) (xnl + fynl)?

<2 D (IxnlP & oY

<2p+1 T -

2p+l

Therefore V, zp+1 4+ Vy 2041 € V;. 80\by eorollary 2.1.13| B generates a
unique vector space topology on (J].

Example 2.3.2. Let (Q, &, u) be ameasure space. Let 0 < p. Define
LP(Q, 6, u) = {fQ +K|f is measurable and J [fIPdu < oo}

For all r > 0 define<V, == {f € LP(Q, S, u)| [[fPdp < r}. The collection
B = {Vi[r >(0} is 4 filter base on LP(Q, S, ). As in the last example
replacing stim ‘by’/integrals we conclude that B generates a vector space

topology:

Answering what is bad about these examples takes us to the important
concept of the dual of a TVS.

24 Dual ofaTVS

Recall that in point set topology first nontrivial result one learns is the
Urysohn lemma guaranteeing the existence of nontrivial continuous func-
tions. We are also after something similar. Let us begin with a closer look
at continuous linear maps.
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Theorem 2.4.1. Let E bea TVS over K and ¢ : E — K be a nonzero linear map.
Then the following are equivalent.

(i) & is continuous;
(ii) ker(d) is closed;
(iii) ker(¢) is not dense in E;

(iv) there exists a neighbourhood V of O € E such that $(V) is bounded, or
equivalently ¢ is bounded on V;

(v) there exists an open neighbourhood V of 0 € E so that (V)£ K.
(vi) If K = C then these are equivalent to R is continuous;

Proof. (i) = (ii), (iv) = (v) are trivial.

(il) = (iii): If E = ker(¢) = ker(¢) , the Jastiequality holds because
ker(¢) is closed. Then ¢ = 0. This contradicts that ¢ is nonzero.

(iii) = (iv) : Choose x € E and a balan¢ed neighbourhood U of 0
such that (x + U) N ker(¢p) = 0. Therefore,d(x) ¢ —dp(U). But ¢p(U) is
balanced as U is balanced and hence ‘¢ (U) is bounded because a proper
balanced subset of K is bounded.

(v) = (i): Assume that V'is a-balanced neighbourhood of origin and
®(V) # K. Since ¢ (V) is alsobalanced it must be bounded. So, there exists
M > 0 so that ¢ (V) C Bel0pMY, where Bx (0, M) = {x € K||x| < M}. Then
for any € > 0, d(5V) € Bk(0, €) establishing continuity of ¢ at origin.
Since ¢ is linear, this shows ¢ is continuous.

(vi) &= (i)«This follows from the simple fact that if (93$)(x), (TJP)(x) €
R are definedby d(x) = (Rd)(x)+v—1(Id)(x) then (Tb)(x) = —v—1(RP) (v/—1x).
That is (%) = (Rd)(x) — vV—1(Id)(vV/—1x),Vx € E. Therefore ¢ is contin-
uous iff R, 1s continuous. ]

Definition 2.4.2 (Dual of a TVS). Given a TVS E, the collection of continu-
ous linear functionals on E is denoted by E* and is called the dual of E.

2.5 Generality could be dull

Now we will show what is wrong with some of the examples.
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Proposition 2.5.1. Consider the probability space ([0, 1], Bo,1),A) be the
Lebesgue measure space on the unit interval. Then for0 < p < 1, (£LP([0,1]))* =
{0}. In other words these spaces do not admit any continuous linear func-
tionals.

Proof. Suppose there exists a nonzero continuous linear functional ¢. Since
image of ¢ is a linear subspace it must be K. So, there is some\f so that
|d(f)| = 1. Consider the continuous map

g:00,13 s J I£(t)[P dt.
0

By the intermediate value theorem there exists s such that g(s) = % f(]) [f(t)[Pdt >
0. Let g1 = f.Xj0,51, 92 = T-X(s,1- We have f =gi=~"9,,If]P = |g1[P +|
Therefore,

1 1 1
J |91(t)lpdt=%J If(t)]pdtzJ' lg2(t)|Pdt.

Since [¢(g1) + d(g2)l = [d(f)

= > 1/ there exists i with |p(g;)| > 5. Let
f1 = 2gs, so that [ (f)| > 1

()l > p
and

1 1
J If1(t |Pdt—zpj lgi(t)[Pdt = 2P~ ‘J [f(t)[Pdt.

0 0

By iteration we get a sequence f,, such that

1 1
QLA > 1, | falPde =207 [ pioPat.
0 0
Note that 2P~" < 1, therefore {f,,} is converging to zero. Then {¢(f, )} must
contverge to 0 but this contradicts | (f, )| > 1. H

Now we must ask why is this happening? The following proposition
gives a hint.

Proposition 2.5.2. Let E be a TVS and ¢ be a nonzero continuous linear
functional on E, then there exists a proper convex neighbourhood of origin
in E.

Proof. Let V. = {x||dp(x)| < 1}. It is a proper convex neighbourhood of
origin [l
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To understand the implications of this simple looking observation we
need to explore convex neighbourhoods of origin further.

Theorem 2.5.3. Let V be a convex neighbourhood of origin in a TVS E. Then
there is an open, convex, balanced subset of V containing origin.

Proof. Let V be a convex neighbourhood of origin. Then there existsa
balanced open neighbourhood of origin U C V. Let W be the convex hiill
of U. Please recall it is defined as follows

W = {meim EN, AL, ..., Ay € [0,1],27\i =1,x; @ u,\ﬁ}.

i=1

Since V is convex and U C V, we have W C V. Also,UC W, the interior
of W

The interior of W is convex. Let x,y € W. FBor any A € [0,1] we have to
show that z = Ax + (1 —A)y € W, or equivalently there exists an open
neighbourhood of origin V' satisfying"z:+yV’ C W. That follows once
we observe that there is an open neighbourhood of origin V' satisfying
x+ V', y+ V' C W. For example.we/could take V' = V; NV, where V;,V,
are open neighbourhoods of originawith x + V;,y +V, C W. O

W is balanced. The sét W.is'balanced because the convex hull of a balanced
set is balanced. Now.let x € W. Then0.x =0 e U C W. Let0 # z € K
with [z| < 1. Get'a balanced neighbourhood of origin W’ with x4+ W’ C W,
Then z.x + 2.W! C W because W is balanced. Therefore z.x € W. O

So given any neighbourhood of origin V we have exhibited an open,
convex, balanced neighbourhood of origin Wcv. O

2.6 The Minkowski functional

Here is an an alternative way of describing absorbing balanced convex sets
which turns out to be quite useful.
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28 2.6. The Minkowski functional

Definition 2.6.1. The Minkowski functional of an absobing set A is defined
by
pa =inflt >0:t 'x € AL

Theorem 2.6.2. Let A be a convex absorbing subset of a vector space E and pa
its Minkowski functional. Then

1. pa is subadditive, i.e., pa(x +Y) < pa(x) +paly), Vx, y &E.
2. pa is positively homogeneous, i.e., p(Ax) = Ap(x), VA € R.o,x"€ E.

3. Moreover if A is balanced then p A also satisfies p x(Ax) = [Alpa(x), VA €
K,x € E.

4. If E is a topological vector space and A is open'thenn A = {x € E: pa(x) <
1}

Proof. (1)For all € > 0 we have A, pfsuch that pa(x) < A < palx) +

€,Paly) < u<paly)+eand %,% € A. The convexity of A implies

x+y AN 08 EEA
A4 ur AHpRA  A+pp '

Therefore pa(x +y) KA +'W< pax) +pal(y) + 2e. Since € is arbitrarily
small, we obtain subadditivity.

(2), (3) Easily follows from the definition.

(4) Let x € /A. There exists an open neighborhood V of origin such that
x + V C A Since scalar multiplication is continuous there exists € > 0
such that e.x, € V. Then (1 + €)x € A. Therefore pa(x) < (1+ e)f1 <1
Convérsely suppose that x € E satisfies pa(x) < 1. Then there exists € > 0
such that —>—— € A and pa(x) + € < 1. Exploiting the convexity of A

pal(x)te
we'get'x = (pa(x) +e€)=—"—+ (1 —pa(x) —€).0 € A. O

Palx)+e

Definition 2.6.3. A real valued sub-additive function p defined on a vector
space E is called a seminorm if p(« - x) = |x|p(x), Va € K, x € E.

In this terminology theorem 2.6.2]can be restated as follows.

Theorem 2.6.4. Let A be a convex absorbing balanced subset of a vector space E
and p A be its Minkowski functional. Then p o is a seminorm. Moreover if E is a
TVS and A is open then A ={x € E:pa(x) < 1}.

[Lecture Notes of P.S.Chakraborty]



2.6. The Minkowski functional 29

The converse is also true. Before that we state a simple lemma.

Lemma 2.6.5. Let p be a seminorm on a vector space E, then (a) p(0) = 0; (b)
p(x) —py)l < plx—y),¥x,y € E; (c) p(x) = 0.

Proof. (a) This follows from, p(0) =p(0-x) =10 - p(x) = 0.
(b) Note that

p(x)—py) =px—y+y)—py) <plx—y)+ply) —ply) =pl=a.

Interchanging x and y we obtain the other inequality p(y) —p (x) < ple=y)
needed to complete the proof.
(c) We have p(x) =p(x —0) > [p(x) —p(0)| = Ip(x)| = 0. O

Theorem 2.6.6. Let p be a seminorm on a vector space E. ThemA = {x : p(x) <
1} is a convex, balanced, absorbing set and p = pa.

Proof. Only thing we need to verify is p = pa-df x € E and s > p(x) then
s~ 'x € A. Therefore pa (x) < p(x). On the gther hand if 0 < t < p(x), then
t'x ¢ A. Hence p(x) < pa(x). O

Definition 2.6.7. Let p be a seminorm on a vector space E. Then B, ={x €
E : p(x) < 1} is called the unit.epen semiball or just semiball associated
with the seminorm p.

In view of these results'we-will explore implications of the existence of
a continuous linear functional.

Theorem 2.6.8. Lef BExbe a TV'S and ¢ be a nonzero continuous linear functional.
Then there exists'a seminorm p such that there is a constant C > 0 with |d(x)| <
Cp(x),Vx E

Proof. We know that V := {x||[¢(x)| < 1} is a proper convex subset of E con-
taining origin. By theorem we get a convex, balanced, open neigh-
bourhood of origin U contained in V. Let p be the Minkowski functional
of U. Then U = {x|p(x) < 1}and |p(x)| < 1,Vx € U.

Claim: If p(x) = 0 for some x € E, then ¢(x) = 0.

Proof of claim. Since p(x) = 0,% € U,Ve > 0. Therefore [p(Z)] < T or
ld(x)| < €,Ve > 0. O
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30 2.6. The Minkowski functional

Let x be arbitrary. Then we have two possibilities. If p(x) > 0, then
% € U. Therefore !cl)(zp’zx) )| < 1 or equivalently |p(x)| < 2p(x). If
p(x) =0, then ¢(x) = 0 as well, therefore we also have |p(x)| < 2p(x). So,
in either case we have |[d(x)| < 2p(x). H
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Chapter 3

Hahn-Banach theorems

Hahn-Banach theorems are of two kinds. We havet{Hahn-Banach exten-
sion theorems and Hahn-Banach separation theorems. These theorems are
equivalent in the sense that one could have fifst proved separation theo-
rems and then use them to deduce the extension theorems or one could do
the other way. Separation theorems havé'geometric interpretations while
extension theorems are analytic in nature.

3.1 Hahn-Banach extension theorems

Theorem 3.1.1 (Hahn Banach extension theorem first version). Let E be a
real vector space andp s E /— R a positively homogeneous subadditive func-
tion. Let F C E be a subspace and ¢ : F — R a linear map satisfying ¢(x) <
p(x),Vx € F. Then & admits an extension § to E satisfying (x) < p(x), Vx €
E.

Proof. Stepl: Let F; = F+Rx,, where xo € E\F. Let us denote a prospective
candidate for ¢(xo) by ¢o. Then we must have

d(x) +Ado < p(x+Axp),Vx € F,A € R. (3.1)
Considering the cases A < 0 in (3.1) we get

d(y) —ply —x0) < Po < plx+x0) —P(x),Vx,y € F (3.2)
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To showwe must show that sup, . ($(y) — p(y —xo)) < infrcr(p(x +
Xo) — ¢(x)) or equivalently

dy) —ply —x0) <plx+x0) —d(x),Vx,y € . (3.3)

But this follows from ¢(x) +¢(y) = d(x+y) < plx+y) < px+xo)+p(y—
Xo) because p satisfies triangle inequality and we can take any.element
from the interval [sup, . (d(y) — p(y — x0)), infyer(p(x + xo)==d{x))] as
¢o. Thus we have established the existence of an extension ¢y of ¢ to Fy.
Also from we conclude that ¢ (x) < p(x), Vx € Fy.

Step 2: Let P ={(F1, 1) : F C Fy, o1 € F, O1lr =nd1(X) < p(x),Vx €
Fy}. This is a POset with partial order given by (F}, $7) > (F1, ¢;1). Every
chain in P has an upper bound and therefore"by"Zorn’s lemma P has a
maximal element, say (F, $). We claim thatF must be E else by applying
step 1 to F we can obtain a further extension contradicting the maximality.

O

Theorem 3.1.2 (Hahn Banach extension theorem second version). Suppose
F is a subspace of a vector space E;p,i18,a seminorm on € and ¢ : F — K a linear
map such that |p(x)| < p(x), X F. Then there is a linear functional & defined
on E such that $lr = ¢ and /()| < p(x).

Proof. Case 1 (K = R): We have p(—x) = p(x) and we are done by theo-
rem (3.1.1).

Case 2 (K £ C): Det ¢ = R, then there exists real linear ¢, on F such
that ¢l = dnlet d(x) = §1(x) — ids(ix), then dlg = ¢. Finally given
any x €.F, I\g C such that [A| = 1,Ap(x) = |P(x)|. We have,

P(x)| = b(Ax) = $1(Ax) < p(Ax) =p(x). m
Now we can show that the converse of proposition holds.

Proposition 3.1.3. Let E be a TVS admitting a convex neighbourhood of
origin other than the whole space. Then there is a nonzero continuous
linear functional.

Proof. Let V be a convex neighbourhood of origin other than the whole
space. Then by theorem we get a convex balanced open neighbour-
hood of origin A contained in V. Let p be the Minkowski functional of
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A. Since A = {x|p(x) < 1} and A is a proper subset there is x, so that
p(x0) = 1. Define a linear functional ¢ on F = Kx, by ¢(xo) = p(xo). Then
lp(x)| < p(x),Vx € F. By theorem we get a linear functional ¢ such
that |p(x)] < p(x),¥x € Eand P(xo) = Pp(xo) # 0. Also note that for all
x € A, |d(x)] < p(x) < 1. Therefore $(A) is bounded and consequently by
theorem d is continuous. [

3.2 Hahn-Banach separation theorems

Now we will discuss Hahn-Banach separation theorems. Becatse of their
geometric interpretations these theorems are also called.geometric forms
of hahn-Banach theorems.

Theorem 3.2.1. Let E be a topological vector space over'R and A be a convex open
neighborhood of the origin. Let xo & A, then there s a‘iiyperplane separating xo
from A, in other words there is a continuous linear fumctional { € E* such that

U(xg) = Tand £(x) <d )\ Wx € A.

Proof. In a TVS scalar multiplication iscontinuous and A contains the
origin. Therefore given any x~¢ &, the sequence x/n converges to 0,
hence eventually enters the open heighborhood A. This shows that A
is absorbing. Let pa be the Minkowski functional of A. Then by theo-
rem (??) we know that™py is subadditive, positively homogeneous and
A ={x € E:palx)r< 1}/ Since xo ¢ A, we have pa(xp) = 1. On the
one dimensional space spanned by x, define {(Axo) = A. Then for A > 0,
(Ax) = A < paAxo). IfFA < O, then €(Axg) = A < 0 < pa(Axp). In any
case for anyx from the subspace spanned by x, we have {(x) < pa(x). By
theorem we can extend { to a linear map denoted by the same sym-
bol { enE=such that {(x) < pa(x),Vx € E. Then { is continuous because if
x € (AN A, then —1 < {(x) < 1. ]

Theorem 3.2.2. Suppose A and B are disjoint nonempty convex sets in a topo-
logical vector space E. If A is open there exists ¢ € E* and y € R such that

Rp(x) <v <RP(y),Vx € A, Vy € B.
If the scalar field is R then R = .
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Proof. We will first do the case where the scalar field is R. Fix ap € A and
bo € B. Putxp = bp—apand C = A—B+x,. Then C is open because it is a
union of open sets A —b 4 x¢, b € B. Clearly C is convex and contains the
origin. Also xo € C, because A and B are disjoint. Using theorem
obtain a continuous linear functional ¢ such that ¢(xy) = 1 and ¢(x) <
1,vx € C. If a € A,b € B, then ¢(a —b +x9) = d(a) — d(b)+1 < 1.
Therefore, d(a) < ¢(b). Lety = inf{d(b) : b € B}. Then d(a) <.y, Va € A.
Since A is open we must have ¢(a) < y,Va € A.

If the scalar field is C, there is a continuous real linear map ¢, satisfies
the assertion. If ¢ is the associated complex linear map whose real part is
¢4, then ¢ € E* and does the job. O

Corollary 3.2.3. Let B be a closed and convexsubset of a locally convex
space Eand x¢ ¢ B then there exists ¢ € E* suchithat R (xo) < inf{RP(x) :
x € B}.

Proof. Let A be a convex neighborhood,of X, disjoint from B. Now apply
theorem (3.2.2)) O

Lemma 3.2.4 (Topological lemma). Eet E be a topological vector space, C C E
be a compact set and D C E be a elosed set. Then C + D is closed.

Proof. Since you are familianwith nets we will prove this using nets. Let
{X« + Yataea C C £ D bea convergent net with limy(xy + y«) = z. Since
C is compact thete exists a subnet {xp} converging to some x € C. Then
limgypg = limpg(xp Fyg —xg) =z—x € D. So,wehavez =x+y €
C+D. O

Theorem 3.2.5. Let E be a locally convex space. Suppose A,B C E are con-
vex sets with A compact and B closed, A N B = (). Then there exists a linear
continuous map ¢ : £ — Kand «, 3 € R such that

RoO(x) K a< P <RP(y),Vx € A, Vy € B.

Proof. Consider the convex set C = B — A. By the topological lemma C is
closed and 0 ¢ C, because A N B = (). Since E is locally convex there exists
a convex open D C E \ C containing the origin. In particular CN'D = (.
By theorem (3.2.2)) we get a continuous linear map ¢ € E* and y € R such
that

RP(d) <y <Rd(c),vd € D,Ve € C.
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Since 0 € D,y > 0. The inequality Sid(c) > v,Vc € C gives RPp(b) —
Ro(a) >y >0,Vb € B,Va € A. Let B = infpep R (b), x = sup, ., Rd(a).
Then 3 > « + vy and we are done. ]

3.3 Locally convex spaces, a convenient class of
topological vector spaces

Since existence of proper convex neighbourhoods tantamount toexistence
of continuous linear functionals the next definition looks natutal.

Definition 3.3.1. A topological vector space is said to bedocally convex if
there is a neighbourhood base at origin consisting of cenvex sets. A locally
convex topological vector space will be referred as.LES or'LCTVS.

Theorem 3.3.2. An LCS has a basis of neighbouthoods.of origin consisting of
open, convex, balanced subsets.

Proof. Follows from theorem[2.5.3] O

Given the correspondence between ‘convex, absorbing, balanced sets
and semiballs the following restlt is‘ebvious.

Theorem 3.3.3. Let E be a locally convex space. Then there exists a collection of
seminorms {py : « € Aysuchithat the associated semiballs give a fundamental
system of neighbourhoeds of origin. Conversely given a collection of seminorms
{p«lox € A} there exists’a unique locally convex topology such that the associated
semiballs generate a fundamental system of neighbourhoods of origin.

Proof. We only need to argue the converse direction and that follows from
the followingtheorem. O

Theorem'3.3.4. Let E be a vector space over K and € be a collection of absorbing,
convex, balanced subsets of E. Then there exists a unique vector space topology on
E turning it into a locally convex space so that the collection B consisting of finite
intersections of elements of 4 == {r.C|r > 0, C € €} forms a filter base generating
the filter of neighbourhoods of origin.

Proof. We have to employ corollary(2.1.13
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(i) Since elements of ¢ are balanced they contain origin. Therefore so
does elements of 5.

(ii) Intersections of balanced and absorbing sets are balanced and ab-
sorbing.

(iii) Only thing we need to is that given any V € ‘B there exists W € ‘B
such that W+ W C V. Note that V is convex because intersections of
convex sets are convex. Also %V € B. So we can take W = %V. l

3.4 Examples of locally convex-spaces

So far our discussion is quite abstract in_the sense that we haven’t dis-
cussed much of examples. Only example we have talked about is that of
LP spaces and that was used to illustrate a“pathological property of lack
of continuous linear functionals., Now we will address that. We will be-
gin with examples of locally convex-spaces. We have already seen that
locally convex topologies on“K-vector spaces can be specified in terms of

semi norms. So, it is enoiugh to" produce seminorms. This does not look
difficult.

Example 3.4.1. Let E.be a vector space and ¢ : E — K be a linear func-
tional. Then pg : E 9% — |[d(x)| € R is a seminorm.

Definition 3:4.2. Let E be a K-vector space and it’s algebraic dual be E’ :=
{¢ : E'= K| is a linear functional}. Given any subspace A C E’, we use
o(E, A), to denote the locally convex topology on the vector space E pre-
scribed by the collection of seminorms {p4 : ¢ € A}.

Two instances of this is most useful.

Definition 3.4.3 (Weak* topology). If E is a locally convex space then using
the canonical embedding of E inside E** we can consider E as a subspace
of E** and the topology o(E*; E) is called the weak-* topology on E*. A net
{da} € E* converges in the weak* topology to ¢ iff limy ¢ (x) = $(x), Vx €
E.
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Definition 3.4.4 (Weak topology). Let E be a locally convex space. Then
o(E; E*) is called the weak topology on E. A net {x,} C E converges to x if
limy d(xa) = $(x), Vo € E.

Definition 3.4.5. Let E be an LCS. For any set A C E, it’s (right) polar A°
is defined by
A° = {d € E*[sup|Pp(x)| < T}

XEA

Similarly, for any set A C E* we define it’s (left/pre) polar A by

A={xekE: sup [d(x)| < T}
beA

Theorem 3.4.6 (Banach-Alaoglu-Bourbaki). Let E be an LCTVS and A be a
convex, balanced, neighbourhood of origin of E. Then A° iscompact in the weak*-
topology.

Proof. For x € E, let Sy = {z € Kl|z|] < p(x)} . where® is the Minkowski
functional associated with A. Consider S ;= [ ¢ Sx with the product
topology. Let x € E and ¢ € A°. Then for &> 0,x € (p(x) + €).A. There-
fore |$p(x)| < p(x) + e. Since € is arbitrary,\d(x)| < p(x) or equivalently
¢(x) € Sx. Therefore we can defines®; A° — S by ®(d)x = d(x). Obvi-
ously @ is one to one and allows us to identify A° as a subset of S. This
identification respects topology. “This means @ : (A°,weaks) — ®(A°)
is a homeomorphism. To see this observe that if {$p,} is a net in A°, then
dr — ¢ € A° in weak*-topology iff (b)) — D@ (¢) in S. By Tychonov’s
theorem S is compact and it is clearly Hausdorff. Therefore to show A° is
compact it sufficestoshow that ®(A°) is compact. Which in turn follows
once we show thatitisclosed. Let {p»} C A°beanetand ®(¢dp,) =P, € S.
Suppose Py~ Pyp€ S. In other words lim,, = P, Vx € E. We have
to show that there exists ¢ € A° such that ®(¢) = . That will fol-
low once we show that the association ¢ : E 5 x +— 1, is linear and
sup, . I9(x)| < 1. Let us show them one by one begining with linearity.
Leta,beK,x,y €E,

Yiaxtby) = HMWPx(axiby) = lim dalax +by) = lim ada(x) +limba(y)
= limayy, +limby, = a, + b,,.

To see ¢ € A° observe that for all x € A, |d(x)] = lim |px(x)| < 1. So, p =
®(¢). This establishes ®(A°) is closed and consequently it is compact. [
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Example 3.4.7 (Smooth functions). Let O C R< be an open subset. Con-
sider the vector space C*(Q) of k-times continuously differentiable func-
tions on Q). For each compact subset K C () and m € Ny (recall we use Ny
to denote {0} U N) consider the seminorm

aO(1+-'-+OCd

Prm(f) = Z Sup|6x§x1 axg‘z...axé‘df(xn'

lolgm X€K

Then the locally convex space given by C*(Q) along with the family of
seminorms {py x|[K C Q is compact } is denoted by €*(Q).*Convergence
in ¢€*(Q) means uniform convergence on compact$ubsets for all deriva-
tives upto order k. We use €(Q) to denote thedocally convex space ob-
tained by considering C*((Q)) along with thedamily {pxm : m € N,K C
Q) is compact }.

Example 3.4.8 (Schwartz space). Let S(IR) be the space of smooth functions
on R¢ with rapidly decaying derivatives, In other words

§(R) ={f:R* = K:Vk,meNop "sup (1+ ||x]2)*ID*f(x)| < oo},

x€RY||<m

where ||x||2 = 4/ Z;L X7. This is called the Schwartz space. Equipped
with the family of seminorms

Pm(B % sup (14 [x]2)ID*f(x)|, k, m € N,

x€RY |o|<m

Schwartz spage is a locally convex space. It’s dual is the space of tempered
distributions. Obviously we could have defined Schwartz space §(V) for
any finite dimensional real vector space V. Fourier transform is a continu-
ous isomorphism from §(V) to $(V*).

Definition 3.4.9 (Strict inductive limit). Let E be a vector space and {E|x €
A} be a collection of subspaces with E = UE,. Suppose each (E4, T«) is a
locally convex topological vector space. They are compatible in the sense
thatif E,, C E4, then the topology of E, coincides with the relative topol-
ogy inherited from E,. Let

¢ :={U C E|U is convex, balanced, absorbing , U N E, € N4},
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where N is the neighbourhood filter at origin of E,. To see that this is a
rich collection for each « take a convex, balanced neighbourhood of origin
U,. Let U be the convex hull of U,U,. Then U is a convex, balanced and
absorbing subset so that for each «, UNE, is a convex balanced neighbour-
hood of origin in E. By theorem we get a locally convex vector space
topology 7 on E called the strict inductive limit topology of E,’s. We use
the notation (E,T) = s-lim(E,, T ) to denote (E,T) is the strict inductive
limit of (Eo, Ty )’s.

Proposition 3.4.10. Let (E,T) = s-lim(E,, T«). Then T, contains$ithe.rela-
tive topology of E inherited as a subspace of the topological’space’E.

Proof. Let V, be a neighbourhood of origin in the relative,topology of E,.
Then V. = V N E, where V is a neighbourhood of origin,in"E. We know
that

V 2 N5l for some U; € € e5 >, 00=t,..., k.

Therefore V, O ﬂ}<:1 €;(U; N Ey). This shows that V, is a neighbourhood

in the topology of E. O
Theorem 3.4.11. Let {E,, }nen be a sequence of locally convex spaces with E,, C
En11, Y1 and the topology of E,, is the relative topology inherited from E, 1 for
all n. Suppose E = UE,, and E = s=limEx,. Then the relative topology of E,, as a
subspace of E coincides with the original topology. It is for this reason we use the
adjective strict.

Lemma 3.4.12. Let X be a locally convex TVS, X, a linear subspace equipped
with the subspace topology-and U a convex (balanced) neighbourhood of the ori-
gin in Xo. Then there exists a convex (balanced) neighbourhood V of the origin in
X such that V.0 Xe.= U.

Proof. There exists a neighbourhood W of origin in X such that U = WNX,.
Since X.is.lecally convex there is a convex(balanced) neighbourhood W,
of originiin X such that W, € W. Let V be the convex hull of UUW,. Then
by construction V is a convex neighbourhood of origin in X and U C V.
Therefore U = U N Xy C VNXy. Letx € VN Xp. As U and W, are convex
we may write x = Ay + (1 —A)zwithy € U,z € Woand A € [0,1]. If
A=T,thenx=yec U IfO< A< Tthenz=(1—-A)""(x—Ay) € Xo. So,
z € WoNXo €WnNXo = U. This implies by convexity of U, x € U. Hence
VNnX,=1U O

[Lecture Notes of P.S.Chakraborty]



40 3.4. Examples of LCS

Proof of theorem. Let n € N. Only thing we need to show is that the topol-
ogy of E, is coarser than the relative topology. Let U,, be a convex bal-
anced neighbourhood of origin in the topology of E,,. By the lemma we
obtain U, ;, a convex balanced neighbourhood of origin in E,,;; so that
U,,+1NE,, = U,. By induction get a convex balanced neighbourhood U, 4
of the origin in E,,  such that U, N En 1 = Up 1. Hence for any k
we get U, NEy = U, Let U = Ui U, 4. Then U is a convex, balanced
neighbourhood of origin in E with U N E,, = U,,. Thus U,is,0pen in the
relative topology. O

Example 3.4.13 (Test functions D(Q)). Let Q C R%¥be open and C>(Q)
be the collection of compactly supported smooth functions with support
contained in Q. For each compact K C Q, let €2(K) be the collection
of smooth functions with support contained in K. Let us fix a collection
of compact sets {Ky, Jnen so that K, 2 KJ)1,% = 0,vyn and Q = UK,,.
Equipped with the seminorms {px mim €\N U {0}}, C*(K) becomes a lo-
cally convex topological vector space. Note that C*(K,) C C*(K;41),Vn
and the topology of C*(K,,) coincides with the subspace topology. We
also have C2®(Q) = UC*®(Ky) and 'C*(Q) with the strict inductive limit
topology of {C*(K,,)} is denoted’by D(Q). This topology is also referred
as LF topology meaninglimits of Frechet spaces.

Proposition 3.4.14..A sequence {fy }x converges to 0 in D(Q)only if (i) there
exists a compact set"k- C Q so that supp(fyx) C K,Vk and (ii) for each
multiindex o, {D*fy} converges to 0 uniformly on K.

Proof. Only:thing we need to show is (i). Suppose (i) does not hold. Then
there exists a’sequence {x, } without a convergent subsequence and a sub-
sequence {fy, } with fy, (x,) # 0. Then the seminorm

PO =3 2 sup (/I (xn)l
n=1 x€(Kn\Kn-1)

where the sequence of compact sets {K,, } satisfies l°<n D Kn1,Ko=0,vn,Q
UKy, and x,, € Ky, \ Ky,_; defines a neighbourhood of origin U = {f[p(f) <
1}. None of the fy s belong to U. This contradicts lim f,, = 0. O

Remark 3.4.15. From the inclusion C2(Q) C C*(Q), C*(Q) gets a sub-
space topology. But D(Q) is a strictly finer topology. To show this we
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need to exhibit a sequence {f,,} converging to zero in the relative topology
but not the LF topology. Choose f € D(R) with support [—1,1] and let
fn(x) = f(x)/n. Then f,, € D(R). and

1
anHoo = sup |fn(x)| - EHf”OO — 0.

x€eR

Also,
1

1
100 = sup — 1t (x/n) = ey

(k)
up o 1£09)]| oo — .

Therefore f,, — 0, in the topology of C*(R) but {f,,} does not cenverge in
D(Q) because supp(f,) = [-n, n] is growing arbitrarily large:

Definition 3.4.16. A seminorm p on a vector space(t"is called a norm if
p(x) = 0 implies x = 0. Norms are often denoted by || || A normed linear
space (E, || - ||) is a vector space E equipped with amorm || - ||.
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Practice problems

1. (On compactly supported smooth functions) Purpose of this exercise
is to give you some idea about compactly supported smooth func-
tions. Let f : R — R be a smooth function such that

=0, fort<0O;
f(t)
>0 fort>0.

For example we could take f(t) = e !/t for t > 0%and"f(t) = 0 for
t < 0. Define
fo : R4 3% (1 —||x||5. € R.

(i) Show that f, is compactly supported and infinitely differen-
tiable.

(ii) Show that if f € C*(R%).dand gre L'(RY) are compactly sup-
ported, then

(£4g)('= | x—yglw)dy,

is also in C2¥(R4). (Hint: Show that 20*9) (x) = (aa_; *g)(x).

6x-1

(iii) For e S\0xlet fc(x) = C(e)fo(%) where C(e) = (ffo(f)dx)_]
Letth €\ C¥(RY),0 < k < co. Define h. = hx f.. Show that

supp(he) C {x|3y € supp(h), [x —y|]2 < e} = Ke.

Also show that D*h. — D*h uniformly on R¢ for all multiin-
dex o with || < k.

(iv) Show that C*(R?) is dense in LP(RY) for 1 < p < oo.

2. Letf € C®(R), then show that the limit lim._, (f::o @dt + [ Tdt)
exists. This limit is denoted by P.V [1] (f).

3. Let E be a TVS and F be a subspace. Show that with the quotient
topology E/F is a TVS and this is Hausdorff iff F is closed.
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3.5 Assignment II, due on 11/02/25

Throughout these exercises () C R4 stands for an open set.

1.

Let E, F be locally convex spaces with topologies prescribed by fam-
ilies of seminorms 3, Q respectively. For a linear map T : E — F the
following are equivalent.

(a) T is continuous.

(b) T is continuous at zero.

(c) Forall q € Q thereexistsn € N, py,---,pn € B, > Osuch that
q(T(x)) < Cmax; pi(x).

. Let {E,} be a sequence of locally convex spaces,and E be their strict

LF limit. Let F be a locally convex space.<Show'that a linear map
¢ : E — Fis continuous iff ¢|g, is contindous fer all n.

. Show that the inclusion map C°(Qj te L?(Q) is continuous for 0 <

p < oQ.

. Show that a linear functional'¢ D (Q) — Kis continuous iff ¢(f;) —

0 for all sequences {f;} C4D(Q) converging to zero.

. Let ¢ € (D(Q)). Define (0;:d)(f) .= $(—0:f). Show that 0;¢ is a

distribution. Alse shew-that 0; : D(Q) — D(Q) is continuous.

. Let f € L"(R)."Show that D(R) > g — fx g € D(R) is continuous.

LetL!

Lo€

(OQ)be the space of locally integrable functions defined by
L 5.(Q)={f : Q — K|f is measurable and for all compact K C Q,

JK If] < c0.}

Show that for all f € L] _(Q) the map D(Q) 5> g — [ f(x)g(x)dxisa

Loc

distribution denoted by the same symbol.

. Show that H: D(R) > f — [ f(x)dx is a distribution called Heavi-

side distribution.
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Assignment

10.

11.

12.

13.

. Let f € CX(Q). Now we have two interpretations of the symbol

0:f. We can differentiate as a distribution and consider the resulting
distribution or we can differentiate as a function and consider the
associated distribution. Show that both these distributions are same.
This explains the negative sign in problem

For each a € Q, show that the map 6, : D(Q) > f — f(a) is a
distribution called the Dirac distribution at a.

Show that the distributional derivative % = do.
Show that P.V. [1] : D(Q) 5 f - limy o ([0 et + [ Wat) is
a distribution, called the principal value of 1!

Show that the map R 5 x — log(Jxhistin L] .(R). Also show that

alog(Ix]) Foe
Og xX o 1
S =PV.[1].
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3.6 Normed spaces as examples of LCS

Here is our definition of normed linear space. Since we are discussing
locally convex spaces our definition looks a bit convoluted but we will
immediately argue that this definition is same as the usual definition.

Definition 3.6.1. A Hausdorff locally convex topological vector space with
topology specified by a single seminorm is called a normed linear space:

Proposition 3.6.2. Let p be a seminorm on a vector space E. Then the
topology generated by p is Hausdorff iff p(x) = 0 only if x = 0

Proof. Let p(x) = 0 and x # 0. Then x € V,VV € Ny. But this contradicts
the Hausdorff hypothesis. O

Definition 3.6.3. A seminorm p : E — R is said teybeva norm if p(x) = 0
only if x = 0. Often norms are denoted by || - ||.

Therefore we can also define normed linear spaces as topological vec-
tor spaces with topology specified by a nerm: We will use the notation
(E, || - ||e) to denote a normed linear space E, that comes equipped with a
norm || - ||g. If there is no scope of confusion and the subscript Ein || - ||e
appears a bit notationally overwhelming we may drop it from notation.
These are metric spaces with the metric associated with the norm || - ||

given by dy.(x,y) = [[x ~yli

Theorem 3.6.4. Let E.Q E be normed linear spaces and ¢ : F — K be a continu-
ous linear functional‘then there exists a continuous linear functional § : E — K

so that Glr = band | ) = ||d||. Such a & is called a norm preserving extension
of ¢.
Proof. Consider the seminorm p(x) = |¢[/[[x||. Then we have [$p(x)| <

p(x),Vx_€"F. By theorem [3.1.2) we obtain a linear functional ¢ on E so
that §lr = ¢ and [§(x)| < p(x) = [|$|l[x],¥x € E. Therefore || <
|d||. Since ¢ extends ¢ we obviously have the other inequality required
to show [|d = [[¢]. =

Corollary 3.6.5 (Corollary to Hahn-Banach Theorem). Let E be a normed
linear space and x € E. Then there exists x* € E* such that x*(x) =
[l [Pl =1
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Proof. Let F be the span of x and ¢ : F — K be the linear functional given
by ¢(Ax) = Al|x||,VA € K. Then ||¢|| = 1. Let x* be a norm preserving
extension of ¢. O

Corollary 3.6.6 (Corollary to Hahn-Banach Theorem). Let E be a normed
linear space and E* it’s dual. Then the norm of x € E satisfies,

Ix|| = sup{] < x*,x > | : |x*|| < 1},
where < x*,x > denotes x*(x).

Proof. Let x € E, then for any x* € E* with ||x*|| <, we'have | < x*,x >
| < [[x*|||Ix]| < ||x]|- This shows that

1x|| < sup{l < x*,x > s [%[P< 1.

For the other inequality using the HahnBanach theorem obtain x* of norm
one such that x*(x) = ||x||. O

Now that we have showndthat E* is a nontrivial space it makes sense to
recognise one crucial property ‘enjoyed by duals of normed linear spaces,
namely completeness. Stefan’Banach initiated systematic study of these
spaces and he called them B spaces. Frechet started calling them Banach
spaces. Let us officially record the definition.

Definition 3.6.7 (Banach Space). A complete normed linear space is called
a Banach space

Proposition 3.6.8. Let E be a normed linear space and F be a Banach space.
Then L(E, F) is a Banach space. In particular E* is a Banach space.

Proof. Let{T,}be a Cauchy sequence in £(E, F). Then Ve > 0, 3N such that
[Th — Tml] < €,¥n,m > N. Then for any x € E,

| Tax — Timx|| < €]|x]| forn, m > N. (3.4)
Using completeness of F we get lim T,,x = Tx. Also
Tlox + By) =lm T, (oex + By) = lim Ty, (x) + BT (y) = T (x) + BT(y).

[Lecture Notes of P.S.Chakraborty]



3.6. Normed spaces as examples of LCS 47

Therefore T is linear and it is bounded because
ITO)| = lm || T (%) || = lim || T (x) 4+ (T (%) = T (X)) || < (e 4+ TN

Letting m tend to infinity in (3.4) we get ||T, — T|| < ¢,vyn > N. Thus
T =1imT, € £(E, F) showing completeness of £(E, F). H

Proposition 3.6.9. Let E be a Banach space. A subspace F C E is complete
iff it is closed.

Proof. 1f part: Let {x,} C F be a Cauchy sequence. Then dising com-
pleteness of E we know limx,, = x for some x € E. Since Ris closed
limx, = x € F. Thus Fis complete.

Only if part: Let {x,} C F be converging to x. As- iscomplete x € F.
Therefore F is closed. O

Exercise 3.6.10. Show that a finite dimensional subspace of a normed lin-

ear space is always closed. Hint: Any two norms on'‘a finite dimensional space are
equivalent.
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Chapter 4

Applications of Hahn Banach
theorems

We will begin with few applications of the Hahn-Banach extension theo-
rem.

4.1 Canonical embedding into second dual

Definition 4.1.1. Let jg : E S\E*%be the map defined by jg(x)(x*) =<
x*,x >. Then

e (e ﬁuli ] | <x®x > = [x]|.
Therefore jg is an"isometric embedding of E into E**, often referred as
the canonical embedding of E into E**. The norm closure of j¢ (E) is the
completionof'E. We say E is reflexive if j is an isomorphism.

Proposition 4:1.2. Let E be a normed linear space. Then the completion of
E is a Banach space.

Proof. The norm closure of jg (E) is the completion of E. Being closure of a
subspace it is a complete normed linear space or which is same as a Banach
space. [

Remark 4.1.3. Can there be a non-reflexive normed linear space E such that
there is an isometric isomorphism T € L(E,E**), i.e., an isomorphism T
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satisfying || T(x)| = ||x||, Vx € E? A counter example was given by Robert
James. It is in his honour we denote the canonical embedding by j.

Definition/Proposition 4.1.4. Let E, F be Banach spaces and T € L(E, F). Then
T* : F* — E* defined by T*(¢)(x) = (¢ o T)(x) defines a bounded linear
map, called the adjoint of T with ||T*|| = ||T||. Also I} = Ig+, where Ig, I~
be the identity mappings of E, E* respectively. If S € £(F, G) then{SoT)* =
T* o S

Proof. Let ¢ € F* then

TP = sup{IT"(p)(x)| : x € E, JIX['< 1}
= sup{|p(T(x))] : x € B[x[[)< 1)
< [lolITi-
Therefore || T*|| < ||T||. We give two proefs.of the other inequality ||T|| <
IT=1-
First proof.

1Tl sup{||TOS : x € E, [|x|| < 1}
= sup{|pT(x)):x € E,p € F*, ||x]|, || < 1}
sup{IT ()] : d € F*, ||d]| < 1}

AN 0

N, N

Second proof<lLet x € E, € F*. Then we have

T Oe()) (@) =je(x)(T7d) = T () (x) = d(T(x)) =jr(T(x)) ().

In.othér words
T** OjE :jFOT. (41)

In categorical parlance this means j is a natural transformation. (Soon we
will elaborate on this.) Therefore,

ITl = sup [[TO)[| = sup [[HTE))[ = sup TGN < sup [[T™(x)|| = [T

XEBE XEBE xXEBE X**E B

Using [|T*[| < [|T]| for T* we get [[T**|| < [[T*]|. Thus [[T|| < [[T~||. 0

[Lecture Notes of P.S.Chakraborty]



4.2. Categories and functors 51

Let us look back and reflect on what have we done just now. To any
normed linear space E we have associated a normed linear space, namely
E*. Also to any T € L(E,F) we have associated a T* € L£(F*,E*). This
association satisfies two more properties, (i) If = I¢- and (ii) S € £(F, G)
then (So T)* = T* o G*. Now in mathematics whenever some structure
occurs frequently we introduce terminology so that we can talk about the
structure and investigate its properties. In this case the relevant structure
is of categories and functors.

4.2 Categories and functors

Definition 4.2.1 (Locally small category). A locally smallxcategory € con-
sists of a class Ob(C) called objects of € and given.any two objects A, B €
Ob(C), a set More(A, B) called morphisms of C\When there is no scope
for confusion we will drop € from the notation,Mote. If f € Mor(A, B),

then we may also write f : A — Bor A L B™We will denote Mor(A,A)
by Mor(A). Given A,B,C € Ob(C)thereis a map o : Mor(A,B) x
Mor(B,C) — Mor(A,C) called composition and for each A € Ob(C)
a morphism I € Mor(A), called‘thejidentity morphism of A such that
Vf € Mor(A,B),g € Mor(B, €),¥h € Mor(C,D) we have o(o(f,g),h) =
o(f,o(g,h)) and o(Ia, f) = = of, Iz). We denote o(f, g) by g o f. In this
notation the conditions become associativity ho (go f) = (ho g) o fand
folay =f=Igof.

Example 4.2.2. The category Sets has sets as objects and functions as mor-
phisms.

Example‘4.2.3,/'The category Gp has groups as objects and group homo-
morphisms+as morphisms. The usual composition of functions define
composition.

Example 4.2.4. Let G be a group. Then we can define a category with only
one object * and Mor(x) = G. The identity element of G plays the role of
I, while the group multiplication defines the composition. This example
shows morphisms may not be functions. Also in a sense the notion of
category generalises the notion of groups.
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Example 4.2.5. The category Nlsk the category of normed linear spaces
over K has normed K vector spaces as objects and bounded linear maps
as mrphisms.

Example 4.2.6. The category Ban has Banach spaces as objects with Mor(E, F) =
L(E, F).

Example 4.2.7. The category Ban,; has Banach spaces as objectswith Mor(E, F) =
{Te L(EF) [T < T

Definition 4.2.8. Let C, D be categories. A covariant (contravariant) func-

tor F: € — D associates to an object A € Ob(C) an object F(A) € Ob(D)
and to a morphism f € More(A, B) an element F(f) € Mory (F(A), F(B))(F(f) €
Morqp (F(B), F(A)) such that

1. Forall f, g so that the composition gofiis defined we have F(g)oF(f) =
F(g o f)(F(f) o F(g) = F(g o f)).
2. Forall A € Ob(@),F(IA) = I]:(A).
Covariant functors are often‘called functors.

In this terminology we can’state what we have already proved.

Example 4.2.9. The-dualization functor * : Nlsx — Nlsk is the contravari-
ant functor sending B ¢ Ob(Nlsk) to E* and T € £L(E,F) to T*. Since
dualization is/contravariant applying it twice we get the covariant functor
second dual.

Definition 4.2.10. Let F,G : € — D be functors. Then a natural transfor-
mationn : F — G associates a morphismn € Morp(F(A), G(A)) for each
objectA of C so that for each f € More(A, B) we haveng oF(f) = G(f) ona.
This is also expressed by saying the following diagram commutes.

F(A) 2~ G(A)

Example 4.2.11. The James map gives a natural transformation j : Id — *x.
We have verified the relevant condition in (4.1).
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4.3 Reflexive Banach spaces

Proposition 4.3.1. A closed subspace of a reflexive Banach space is reflex-
ive.

Proof. Let F C E be a closed subspace with i : F — E the inclusion map.
Let y** € F**. We have to exhibit y € F such that jr(y) = y**. Since E is
reflexive there is x € E such that i**(y**) = jg (x). It is enough to show-that
x € F. In other words i(x) = x. Because then 1**(y**) = je(x) = je 91(¥) =
1*(jr(x)). If we can show i** is one to one then we will get y** =jp(x)./So
we need to show two things, (i) x € Fand i** is one to one.

Proof of x € F. Suppose x ¢ F. Then by Hahn-Banach thete exists x* € E*
such that x*(F) = 0 or equivalently i*(x*) = 0 and x*(x) =, 1""We have the
following chain of equalities

1= %) = (elx),x") = A7 (y™),x") (Y17 (x7)) = 0!
This contradiction shows x € F. O
Injectivity of i**.Let y* € F* be arbitrary‘and x* be a norm preserving exten-
sion of y*, in other words (x*,i(y))~= (y*4),Vy € F. So, (i*(x*) —y*,y) =
(x*,1(y)) — (y*,y) =0,y € F. Thusqy* = 1*(x*). In other words i* is onto.

Suppose i**(z**) = 0 for somewz®wc F**. Then for all x* € E* we have
(z**,1*(x*)) = 0. Since i* is‘Onto, this means z** = 0 W

Proposition 4.3.2. Let/E be a'Banach space. Then E is reflexive iff E* is
reflexive.
Proof. Only if part: Let E be reflexive. We have to show every x*** ¢ E***
is of the form.jg-(x*). So, given x*** define x* by

(x*,x) = (x™,je(x)),Vx € E. (4.2)

Claim: jg- (x*) = x

Proof of claim. We have to show (x***,x**) = (je«(x*),x**), Vx™* € E**. So,
let x** € E** be arbitrary. Then using reflexivity of E we get x** = jg (x) for
some x € E. The following chain of equalities

show x*™** = jg«(x*). O
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If part: If E* is reflexive then by the only if part E** is reflexive. By
proposition (4.3.1), je (E) is reflexive. Therefore so is E. O

Proposition 4.3.3. Let E, F be isomorphic Banach spaces. Then E is reflex-
ive iff F is reflexive

Proof. 1t is enough to show one of the implications because the-other fol-
lows by symmetry. We will show the only if part. Let T/ By~ F be an
isomorphism. Then T** : E** — F** is an isomorphism«Since/James map
is a natural transformation we have T** o jg = j§ o T./The left hand side is
surjective because E is reflexive. Therefore the right hand'side must be sur-
jective as well. Since T is an isomorphism this implies jr is surjective. [

4.4 Hilbert spaces

Definition 4.4.1. A Banach space‘is said to be a Hilbert space if it’s norm
is associated with an inner product:

Exercise 4.4.2. Let (E, [ ]|) be’a Banach space. Then E is a Hilbert space iff
% +ylI* + |x — yll& = 26x|I* + [lylI*), Vx,y € E. This identity is calledthe
parallelogram identity:

Proposition 4.4:37 Let E be a finite dimensional Banach space. Then any
two norms ont are equivalent.

Corollary 4.4.4. Any finite dimensional subspace of a Banach space is
closed.

Proposition 4.4.5. Let E be a locally compact Banach space then E must be
finite dimensional.

Exercise 4.4.6. Let 3{; C J(, be finite dimensional Hilbert spaces. Show
that any linear functional on H{, admits a unique norm preserving exten-
sion to H;.
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4.5 Duals of some Banach spaces

We identify duals of some standard Banach spaces and their dual norms.
We begin with the simplest.

n

Proposition 4.5.1. Let (¥, denote K™ equipped with the norm ||x||, = (>_;_;
for 1 <p < ooand |x||, = max; [x;| for p = co. Let q € (1, 00] be the con=
jugate exponent of p. This means q satisfies % + % = 1. Then the dual-ef
(P is isometrically isomorphic with £J.

Proof. Define @ : (K™, |- ||q) — (K™, |- |,)* by @(y)(x) = > /xy;~Then
by Holder’s inequality |®(y)(x)| < |[ullqllX|lp, VX, y. Thereforey||p(y)| <
llyllq- To show the oppsite inequality ||®(y)|| > |ly||q weconsider the fol-
lowing cases separately (i) 1 < p < oo and p = 1. /Forw'e K define
sign(u) = u/uif u # 0 and sign(u) = 0 otherwise:If p»= 1 then the con-
jugate exponent is co. Let iy be such that [y;,| = max;lyi| = ||y[|e. Con-
sider the vector x € K™ with x; = 0 for i # ig'and %, = sign(yi,). Then
IIx][i =1and |®(y)(x)| = [yi,| = ||y||c- This'shows that ||O(y)|| > ||ylle- If
p > 1, then given y € K™ consider the veetor.x with x; = sign(yi)lyi|9".
Then [Ixll, = [yll3’" and [®(y)(x)] =Afy 19} Therefore [[®(y)] > x) —
llullq- Since ||@(y)|| = |ly||, Vy the‘map D is one to one. The domain and
codomain of ®@ both being n-dimensional ® must be onto. In other words
® is an isometric isomorphism. H

Proposition 4.5.2. Let {2 = {X € K® : } . [xi|? < oo} for 1 < p < o0.
We have already seen!that/{? is a banach space equipped with the norm
Ix]lp = (3_; xi[P)"/®, Thédual of € is isometrically isomorphic with £9.

Proof. O

Remark 4.53. Next proposition requires Radon-Nikodym theorem. If you
are familiar with the result for complex measures then you can consider
the case K = C. Else you have to consider the case of real scalars only.

Proposition 4.5.4. Let (Q, A, P) be a probability space and 1 < q < oo.
Suppose p is the conjugate exponent of q. Define ® : LP(Q, A,P) —
(L9(Q, A, P))* by

D(f)(g) = Jf.gdP.

Then @ is an isometric isomorphism for 1 < p < oo.
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Proof. By Holder’s inequality || ®(f)|| < [/f||,. We will first show that ©
is an isometry and then we will show ® is onto. To show that ® is an
isometry as before the argument splits into two cases.

Letp = 0o,q = 1. If |[f| = O, then there is nothing to show. Let
||If||c > € > 0. Consider the function

_sign(f(x))Xweqif(w)> [ fllo—e} (X)

ge(x) = P{w € Q: [f(w)] > |[fllo —€})

Here for a set A € A, xa denotes the indicator function of A. Then g. € L'
and ||gc|l1 = 1. Note that ®(f)(ge) = [ fge = [|f]loo €. Since € could be
arbitrarily small | @ (f)|| > ||f||c-

If p < co or equivalently 1 < q, given f € LP let us)take

g(x) = sign(f(x))f(%)[*§}

Then ||g||d = [|f[|} and @(f)(g) = ||f||}«This Shows that || @ (f)|| > ||f]|,.

Only thing remains to be showneis surjectivity of ®@. For that we adopt
the following strategy, given a contintious linear functional ¢ € (L9(Q, A, P))*
we first produce a measure yg on'(Q), A) absolutely continuous with re-
spect to P. Then the Raden-Nikodym derivative % is absolutely inte-
grable. We will show that itis-actually in L and d)(%) = .

Let ¢ € (L9(Q, A, P51 < q < oo. Define vy, : A — Kas vg(A) =
¢(xa). Then bydinearity we conclude that v, is finitely additive. Let
{AnJnen be a countable collection of mutually disjoint measurable sets and
By = UXK_;ARk € N,B = U®_;A,. Then |xs, — Xxsllq — 0. Here we
need q < oo¢ Therefore using continuity of ¢ we conclude that v, (Byx) —
V¢ (B )¢\ This shows countable additivity of vy. In other words v, is a
complex measure in case K = C, else it is a signed measure. Clearly
Vpa<</ P. Let us denote the Radon-Nikodym derivative % by f. Then
f-e.LP(Q, A, P). We wish to show actually f € L?(Q, A, P) and O(f) = ¢.
Note that v, (A) = d(xa) = [ - xadP for all A € A. By linearity we get
for all simple functions g

o(f)(g) :=Jf-gdP=¢(g>. 4.3)

We wish to establish that f € LP(Q, A, P) and 4.3|for all g € L9(Q, A, P).
We will establish this by dividing the problem in two cases.
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Letq =1,p = co0. Given any A € A, let ga be the simple function

(x) = sign(f(x))xa
galx) = —P ( A) 5

Then ga € L'((Q, A, P)). Let {ga n} be a sequence of simple functions con-

verging to ga pointwise and bounded in absolute value. Then by bounded

convergence theorem the sequence {ga .} converges to ga in L' ((Q, A;P)):

Note that

$(ga) =limd(gan) = lime- gandP = Jf- gadP = JA %dP.
Therefore, .
f
| FeardP <lolgal < [9lllanl < WM

Since this is true for all measurable A, we musthave f € L>*°(Q, A, P) and
Iflle < [|®]. Now given an arbitrary g(e~L'((Q, A, P)), let us obtain
a sequence of simple functions converging to’g pointwise and [gn(x)| T
lg(x)|, Vx € Q. Since we have already, established that f € L*((Q, A, P)),
by dominated convergence theorem we conclude 4.3/ for our g.

Let1 < g <oo,1 <p < oco0.Obtaina sequence of simple functions {f }
such that (i) [f,,(x)| T If(x)], ¥x € Q.and (ii) lim f,, (x) = f(x), Vx € Q. Take

) sign(f(x))

g (X)) = [f ()P —
[l

Since sign(f(x})J,is bounded in absolute value by 1, each g,, is a bounded
function. Obtain asequence of bounded simple functions {gnm} converg-
ing pointwise to g». Then by bounded convergence theorem ¢, con-
vergessto.gy in L9((Q, A, P)). Therefore we conclude that the relation
holds for,g,,. In other words we have

blgn) = | - gnd.

d |f,,|(P—1)d

Also
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Therefore,
[flIf P~

16] > Ib(gn)l :J TATE)
nllp

dP > [[fallp-

So,
1101 > [l enlp " > [ il P,

By an application of Fatou’s lemma we conclude that
J|f|p < limian]fllfnl(p_”dP < |l d[%

Now an application of Holder’s inequality provesf4.3lforall g € L((Q, A, P)).
O

4.6 Dual of Cy(X), for a'locally compact Haus-
dorff space X

We wish to identify the dualwf the Banach space Cy(X;C) of complex val-
ued continuous functionsion.a locally compact spaceX vanishing at infin-
ity. For X = [0, 1] this was dene by F. Riesz in 1909. A. Markov extended
this to some noncompact spaces and the version in this generality is due
to S. Kakutani. He obtained this in 1941. We will see the proof by Garling.
Idea behind his proof is the cute observation that on a totally disconnected
space it is easyto.construct measures. Using the canonical continuous sur-
jection from"@X, the Stone-Cech compactification of X to X he obtains an
embedding of C(X) into C(f3X). Then an application of Hahn-Banach the-
orem allows him to extend the given linear functional to C(3X). Now one
appeals to the existence of clopen base in X and obtains a Baire mea-
sure. Finally one appeals to extension theorems. The result is somewhat
lengthy, so we need to follow the development carefully.

Definition 4.6.1. Let X be a compact Hausdorff space. A bounded linear
functional p € (C(X))* is said to be Hermitian if p(f*) = p(f), where f*
is the function x +— f(x). In other words for every self-adjoint f, i.e., f
satisfying f = f* or equivalently for every real valued function f, we have
p(f) € R.
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Proposition 4.6.2. Let X be a compact Hausdorff space and p € C(X)".
Then there exists unique Hermitian functionals p;, p2 so that p(f) = p;(f)+
ip2(f), Vf € C(X).

Proof. 1f there are such p, p, then we will have p(f*) = p;(f) + ip2(f).

Therefore we must have p;(f) = %(p(f) + p(f*)) and p,(f) = %(p(f) —
p(f*)). We take these expressions as definitions of py, p, and verify that
they are bounded Hermitian linear functionals on C(X) satisfying p(f}. =

p1(f)+ip2(f), Vf € C(X). Uniqueness is obvious from the construction. | (3

Definition 4.6.3. A function f € C(X;C) is said to be positive if f,is real
valued and f(x) > 0, Vx € X. This is denoted by f > 0. A Hérmitian linear
functional p € (C(X))* is said to be positive if p(f) > 0 fotall f)> 0. This is
denoted by p > 0. Given two bounded linear functiohalsyp;, p, we write
P1 = p2 to say both p;, p, are Hermitian and p; —pg >.0.

Proposition 4.6.4. Let p € (C(X;C)* be a bounded ‘Hermitian linear func-
tional. Then there exists unique positive/linear functionals py so that
p = py — p_ and if p = p; — p, is another such decomposition then we
must have p; < py,p- < p2.

Proof. Let f > 0. Since p is Hermitian, for any 0 < g < f, we know in
particular g is real. Since p is Hermitian, for such g’s p(g) € Rand p(g) <
lp(g)l < [lellllgll < llell[|f[|- That means the set{p(g) : 0 < g < f}isbounded
and we can legitimately define-p. (f) = sup{p(g) : 0 < g < f}. Taking g =
0, f we conclude that p/, (f)>"max{p(f), 0}. We define p_(f) = p (f) — p(f).
Then p_(f) > 0 foreach+> 0. Now we will establish that we can extend
p as a linear functional: That is done in steps.

Step 1: Claim p (1) + p(f2) = p+(f1 + f2), Vfy,f2 > 0:

Proof of claime=-tet 0 < g; < fi,i = 1,2. Then0 < g1 + g, < i1 + fa.
Therefore p. (f1) + p+(f2) < p4+(f1 + f2). To show equality we have to
establish’the other inequality. Let € > 0 and 0 < g < (f; + f;) be such
that p, (f; + f2) < p(g) + €. Define g;(x) = min{g(x), f1(x)}, Vx € X. Then
g1 € C(X), satisfies 0 < g7 < fy. Define g = g — g7. Then 0 < g, and
g = g1 + g2. We must have g, < f, as well because otherwise if for some
X, g2(x) > f2(x) then for such an x we must have

0 < fa(x) < ga2(x) = g(x) —min{g(x), f1(x)}.
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Thus g(x) > min{g(x), f;(x)}. Therefore g(x) > f;(x) and g;(x) = f;(x).
So, g(x) = g1(x) + g2(x) = f1(x) + g2(x) > f1(x) + f2(x), a contradiction
establishing g, < f. So,

o4+ (f1 +1f2) < p(g) +e=p(g1) +p(g2) + € < pi(f1) + p+(f2) + €.

Since € is arbitrary we have the other inequality required to establish our
claim. O

Step 2: Claim : For a self-adjoint element f € C(X) express f.as f = f; — f;
with f1,f, > 0 and define p (f) = p,(f1) — p,(f2).Ofcourse we have to
show this is well defined.

Proof of claim. Firstly we define f; = max{f,0} and f- = f — f,. Then
fi € C(X) and satisfy f = f, — f_. Indeed we can decompose every real
valued continuous function as a difference 6ftwo nonnegative continuous
functions. Now suppose f = f; —f,.= fj»—f}, be two such decompositions.
Then f;+f}, = f}+f,. Therefore by st€p1, p (f1)+p+(f5) = p+(f;)+p+(f2)
and consequently

o+ (f) = PR ), ¥ p+(f2) = p4 (f]) — p ()

becomes well defined. O

Step 3: Claim/ For0'< a € Rand 0 < f € C(X), pi(a-f) = a- p4(f).

Proof pf claim: This is immediate once we note that

pi(a-f) = sup{p(g):0<g<a-f}
= sup{p(a-g):0<g<f}
= a-sup{p(g):0<g<f}
= a-py(f) U

Step 4: Claim : For all real valued continuous function f we have p, (—f) =
—p(f).

Proof pf claim. 1f f = f, —f_where f. > 0, then —f = f_ —f, and the claim
follows. O
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Now for an arbitrary continuous function if we define p_ (f) = p (93(f))+
ip4+(J(f)) where R(f), J(f) are respectively the real and imaginary parts of

the function f. Then p. is a positive linear functional. Clearly p_ := p; —p
is a linear functional and we have already noted that it is a positive linear
functional. 0

Here is a convenient way of deciding whether a linear functional is
positive or not.

Proposition 4.6.5. Let p : C(X) — K be a linear functional. We, are-not
hypothesising boundedness of p. Then p is positive iff p is bounded with
llp|| = p(Ix), where Ix : X — K denotes the constant functionx — 1 € K.

Proof. Only if part: Consider the semi-inner product'on) C(X) given by
(f,g) = p(f*g). Then Cauchy-Schwarz inequality gives

(f, g)I* = lp(f*g)I* < p(f*f)p(g2g) =.(f, f)(g, g).

Putting f = Ix we get [p(g)I* < p(L)plig) < |gl*p(Ix)?. The last in-
equality follows from p(||g|[*Ix — Jg|*), > 0, a consequence of positivity.
Therefore ||p|| < p(Ix). Obviouslyp(lx) < ||p|| because ||Ix|| = 1. This
completes proof of ||p|| = p(Ix)h Ifpart: Without loss of generality we as-
sume that p(Ix) = ||p|| = l=lt is ehough to show that 0 < f < Ix implies
0 < p(f) < 1. Suppose p(fl=2 € C\ [0, 1] for some f. Then we can find
an open disc centred at z, with radius r > 0 which contains [0, 1] but not z.
Then for any x € X;we have |[f(x)—zo| < 1. Therefore ||f—zoIx| < r. Hence
|z — zo| = |p(f =ZoIx)PKL ||f — zoIx]|| < 7. This contradicts [z — zo| = . O

Proposition 4.6.6. Let p be a Hermitian linear functional. Then |[|p|| =
[+ 1]+ [[o]F

Proof. Byrtriangle inequality we get
loll < llp+I + [lo-II = p+ (1) — p—(I) = 2p (1) — p(I)I.

For the other inequality note thatif 0 < f < I, then —I < 2f —1 < L. So,
|2f =1|| < 1Tand 2p. (I) —p(I) = sup{p(2f—1) : 0 < f < I} < sup{||p||||(2f—
Do < £ <I< el u
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Definition 4.6.7. Given a topological space X, the Baire o-algebra Bax is
the smallest o-algebra of subsets of X, so that every element of C(X;R)
becomes Bayx measurable.

Definition 4.6.8. Let X be a compact Hausdorff space. A measure p on
Bx, the Borel o-algebra of X is said to be regular if it satisfies the following
conditions.

1. Outer regular on Borel sets:

VA € Bx, u(A) =inf{p(U) : A C U, U'is open}.

2. Inner regularity on compact sets:

Vopenset U C X, u(U) = sup{(K)JK C U, K is compact}.

Theorem 4.6.9 (Riesz-Markov-Kakutani). Let X be a compact Hausdorff topo-
logical space and p € (C(X;C)* be a.positive linear functional. Then there
exists a unique regular finite measure w on the Borel o-algebra Bx such that

p(f) = [fdp.

We will learn the proof by Garling. His prove has two very clear parts.
There is a functiohal analytic part and a measure theoretic part. We will
do the functional'analytic part and for the measure theoretic part we will
state it clearly'with a clear reference.

Proof of Garling. Let X be the Stone-Cech compactification when we con-
siderX as-a discrete set. Then X is a compact Hausdorff space. Then
using the universal property of Stone-Cech compactification there exists a
unique map ¢ : X — X so that ¢(t(x)) = x,Vx € X, where t: X — X
is the canonical embedding. Let C(¢) : C(X;C) — C(pX;C) be the map
C(d)(f) = fo ¢. Since ¢ is surjective, C(P) is an injective isometry. Let
p=poC(d)" € (C(d)(C(X;C))*. By the Hahn-Banach extension theo-
rem p admits a norm preserving extension denoted by the same symbol
to a linear functional on C(BX;C). Then p(Igx) = p o C($p) '(C(d)Ix) =
p(Ix) = |lp|| = ||@||- By proposition we conclude that p is a positive
linear functional on C(3X;C). Let A be the Boolean algebra of subsets of
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X which are both closed and open. Then for each A € A, xa is a contin-
uous function on X and the span Alg of {xa : A € A} is an involutive,
associative algebra of continuous functions on X containing the constant
functions that separates points of BX. Therefore by the Stone-Weirstrass
theorem Alg is dense in C(fX) in the norm topology. If we denote by
o(A) the o-algebra generated by A, then each xa, A € A is 0(A) measur-
able. In fact o(A) is the smallest o-algebra with respect to which eyery
element of Alg is measurable. Now using the density of Alg in C(pX)we
conclude that Bagx = o(A). Define fi: A — [0, 00) as fi(A) = p(xA). Pos-
itivity of p implies {i takes values in [0, c0). By linearity of p,«we get that
fi is finitely additive. Let us show it’s countable additivity-‘Let A = UA,,
be a countable union of disjoint elements of A. Since A is\a closed subset
of a compact topological space it is compact. Each A% iS'open, therefore
by compactness of A there is a finite subcover. That means except finitely
many n’s rest of the A,,’s are empty. So, countablé“additivity reduces to
finite additivity. Thus fi is a premeasure with [i(fX) = p(xpx) = ||p||- By
Caratheodory’s extension theorem {i admits-a unique extension to a mea-
sure denoted by the same symbol fi on“Bagx."Now it’s time to invoke the
measure theoretic input in the argument.

Theorem 4.6.10. Let w be a finite-measure on the Baire o-algebra of a compact
Hausdorff space Y. Then w admits ai1 extension to a reqular measure on the Borel
o-algebra By.

This result is available in section 7.3 of Dudley, Real Analysis and Prob-
ability. Now using.this result for the compact Hausdorff space 3X we ob-
tain a regular measure still denoted by the same symbol i on Bgx. For
each A € A weé have [ xadft = p(xa). Using linearity of integral and § we
get p(f) =([ fdfi. Finally using continuity of p, density of Alg in C(BX)
and bounded-convergence theorem we get

p(f) = dea,w e C(BX).

Let u = fio ¢! be the push-out of fi to a measure on (X, Bx) using the
continuous map ¢. It is easy to see that p is regular. Let f € C(X;C). Then
by the abstract change of variable theorem we have

deu = Jfo bdf = JC(d))(f)dﬂ,Vf e C(X).
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Therefore for all f € C(X) we have

o() = po C(d) " (C($)(F) = P(C()(F) = qup)(f)da - deu-

Only thing remains to be shown is uniqueness of . Let v be another
regular Borel measure on X such that p(f) = [fdv,Vf € C(X): Thanks
to the outer regularity to show pu(A) = v(A),VA € By it is.enough to
show that u(U) = v(U) for all open U. Let us fix an open set U. By
Urysohn lemma we know that given any compact set&K\C U, there ex-
ists a continuous function fx : X — [0, 1] such that fg(x) =1,Vx € K and
supp(fx) € W. Therefore pu(K) < p(fx) = [frdp < pfd). By inner reg-
ularity, u(U) = sup{p(fx) : K € U, Kis compact } Clearly the right hand
side also describes v(U). Hence we have u(Uh="v(U) for all open U. [

4.7 Markov-Kakutani fixed point theorem

Now we will discuss applications,of-Hahn-Banach separation theorems.
We begin with a cute application of theorem yielding a proof of
Markov-Kakutani fixed point theorem for locally convex spaces. This ar-
gument is due to Dirk{Werner.

Theorem 4.7.1 (Markov-Kakutani fixed point theorem). Let C be a compact
convex set in a locally,convex space E. A continuous map T : C — C is said to
be affine if T{Ax + (1 — A)y) = AT(x) + (1 —AN)T(y),vx,y € C,VA € [0,1].
Every commuting family {T;}ic1 of continuous affine endomorphisms of C has a
commonfixed point.

Lemma 4.7.2. Let C be a compact convex set in a locally convex Hausdorff space
Eandlet T : C — C be a continuous affine transformation. Then T has a fixed
point.

Proof. Let A ={(x,x) : x € C}be the diagonalin Cand I' ={(x, Tx) : x € C}.
If T has no fixed point then ANT = (. Both A and I" are compact convex
sets in E x E. By the Hahn-Banach theorem we get continuous linear
functionals ¢, ¢, and «, B € R, « < 3 such that

R(P1(x) + d2(x)) < o0 < B < R(D1(y) + d2(Ty)).
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Consequently R(d, (Tx) —p2(x)) = B — o > 0. Iterating this inequality we
get R(P2(T™x) — d2(x)) = n(Pp — «) — oo for arbitrary x € C. This makes
the sequence {#id, (T™(x))}, unbounded contradicting the compactness of

R, (C). O

Proof of Markov-Kakutani fixed point theorem. Let C; be the fixed points of
Ti. Then C; # 0, C; is compact and convex. We need to show NC; # (:
But that will follow once we establish finite intersection property. Since
TiT; = TjTi, Ti(C;) € Cj. Hence Ti|c; has a fixed point by lemma. In other
words C; N C;j # 0. An obvious induction shows NicrCi # 0, ¥ finite-F C
L. U

4.8 Bi-polar theorem

We have already seen the concepts of left and rightpolar. They allow us to
describe closures of certain sets in locally convex'spaces. There are various
versions of this result. We will do the realvetsion.

Definition 4.8.1. Let E be a real vector space. The real polar of a subset
A C E is defined as

AT = {PerEisup d(x) < 1}

XEA

The real prepolar of a set-A'C L* is defined as

YA={x € E:sup d(x) < T}
beA
Remark 4.8.2. This concept is related but little different from the earlier
notion of polar.|The earlier notion is also referred as the absolute polar.

Theorem.4.8.3. Let A C E be a subset of a locally convex space E over R. Then
"(A") ="Co({0} U A). In other words closure of the convex hull of {0} U A is the
real pre-polar of the real polar of A. Instead of "(A") we will also use A™.

Proof. Since A™ is a closed convex set containing 0, A we have A™ DO
Co({0O} U A). Suppose the inclusion is proper and xo € A™ \ Co({0}U A).
By corollary we get a bounded linear functional ¢ € E* such that

0 < sup{d(y)ly € Co({0}UA)} < d(xo)-
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Let « > 0 be an element of the open interval (sup{$p(y)ly € Co({0} U
A}, d(x0)). Then P := a'dp € AT C E*and P(xo) > 1. Thus xo € A™, a
contradiction. O

Exercise 4.8.4. Let E be an LCS and A C E. Then the closure of the convex
hull of the balanced hull of A is given by °(A°).

Here is another application of a similar argument.

Lemma 4.8.5 (Mazur). Let C C E be a convex subset of a locally convex space E.
Then C = C", where the left hand side denotes the closure ifi the«original topology
of E and the right hand side denotes the closure of C in the weak topology of E.

Proof. The weak topology is coarser than the or1gmal topology and conse-
quently we have C C C' . Suppose Ixo € C'\ G, By corollarywe get
a bounded linear functional ¢ € E* suchfthat

R (xo) < infRy)ly € Ch

Let o € (Rd(xo), inf{Rd(y)y€ €} ) Consider F == {x € E : Rd(x) > o).
Then C C F and F is convex,\weakly closed. Therefore c” C F. Since
Xo € C" we get xo € F-But clearly x, ¢ F. This contradiction completes
the proof. O

4,9 Krein-Milman theorem

Definition 4.9:1. Let E be locally convex Hausdorff topological vector space
and K C\E be a convex subset. A point x € K is called an extreme point if

x =ty # (1 —t)z, for some t € (0, 1) implies y = z = x. The set of extreme

points will be denoted by Ext(K).

Theorem 4.9.2 (Krein-Milman). Let E be a Hausdorff, LCS and K C E be a
compact convex subset. Then K is the closed convex hull of the set of extreme
points of K. In particular this means that the set of extreme points is nonempty.

Definition 4.9.3. Let K C E be a nonempty compact convex subset. A face
of K is a nonempty closed, convex subset F of K such that ty + (1 —t)z € F
forsomet € (0,1),y,z € Kimpliesy,z € F.
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Proof. Let § := {F C K|Fis a face of K}. Consider the partial order F; > F,
iff F; C F,. By Zorn’s lemma choose a maximal element F € . We will
showthat F is a singleton {x} for some x. Then it will follow that Ext(K) # (.
Suppose x # y are two elements of F. Since E is Hausdorff, E* separates E.
There exists ¢ € E* such that Rd(x) < RP(y). Let a = sup{Rd(u) : u € F}
and F' = {z € FR$(z) = «}. Since F is compact the supremum is attained
and F' is nonempty. Therefore F' is a face of F and is properly contained.in
Fbecause x € F\ F. This contradicts maximality of F. Therefore F must be
a singleton set.

Let L := CoExt(K). Since K is closed and convex we haved C\K. As-
sume xo € K\ L. Then by corollary there exists ¢ €. E*'such that
Rb(xo) > sup, .y RP(x). Let o« = sup, . RP(x) and F =H{x e K|Rd(x) =
«}. Then Fis a face of K. Let z € Ext(F) C Ext(K). Notethat FNL = ()
because > ¢(xo). So, z ¢ L. This contradicts Ext(K)'C [ O]

We will close our discussion on Hahn-Banach and its applications by
proving Banach-Stone theorem as an application”of Krein-Milman theo-
rem.

Theorem 4.9.4 (Banach-Stone). Let’X, . be compact Hausdorff spaces. Then
C(K) is isometrically isomorphic with €(L) iff K is homeomorphic with L.

Remark 4.9.5. There is a bit of ambiguity in our notation for C(K), C(L) etc.
We have not specified the field-of scalars. We will prove it for real scalars.
That means for us C(K), C(L) denotes C(K,R), C(L, R). We do this because
we have not talkedéabout'complex measures. However we will write our
argument in a manner-so that it works for the complex scalar case as well.

Proof. Given x\¢ K we denote by 6, the Dirac delta mass at x. The ex-
treme points_of the unit ball of C(K) are precisely measures of the form
Ax)dgwhere A(x) € K,|A(x)] = 1. Let T : C(K) — C(L) be an isometric
isomorphism. Then T*(B¢(1)«) = Bc(k)»- [
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4.9. Krein-Milman theorem
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Chapter 5

Baire Category Theorem and._its
Consequences

For a play we need a stage and the actors. Wethave got our stage namely
topological vector spaces. In fact we have various classes of them like,
LCTVS, Banach spaces, Hilbert spaces ete. We have also got some idea
about continuous linear maps. These are|the actors of the play. Now let
us ask what was the first result welearntin our linear algebra course and
can we extend it to this framework."We could have developed the theory
in the generality of Frechet spaces but simplicity demands instead we do
it in the framework of Banach spaces.

5.1 Baire Category Theorem

Theorem 5:1.1%(Baire Category Theorem). Let X be a complete metric space.
If U,, is a'sequence of open dense sets in X then NU, is also dense in X.

Proof. Let d be a distance defining the topology of X. Let B be an open ball
and we want to show that B N U,, # ¢. Clearly it suffices to show that
for any closed ball B N U,, # ¢. Replacing X by B it suffices to show that
NU,, # ¢. We shall define a sequence x,, and positive real numbers 1, such
that (i) B’ (xn, ™) € U, N B(xn_1,7n_1) and (ii) v, < 1/n. Here B'(u, )
denotes the closed ball with center u and radius r. Start with x; € U,
and r; < 1 such that B/(x;,71) € U;. After defining Xj,--- ,xn_1 choose
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xn € U, NB(xn_1,7mh_1) and r, < 1/n such that (ii) holds. One can do this
because U,, is dense and U,, N B(xn_1, Tn_1) is open. Clearly d(xn, Xn4p) <
T, < 1/n for eachn > 1 and p. Hence x,, is a Cauchy sequence and by
hypothesis it converges to some x € E. Since xnp, € B'(xn, ) for all
p>1,%x € B (xn, ) C U, for each n. Therefore x € NU,,. O

Corollary 5.1.2. Let X be a complete metric space and C,, a sequence of
closed sets such that X = UC,,. Then at least one of them has nonempty
interior.

Proof. On the contrary suppose every C,, has emptyiinterior. Let U,, =
X\ Cy, then U,,’s are dense open subsets of X and by Baire’s theorem NU.,,
is dense. On the other hand

mun:m(x\cn):X\(Ucn):X\X:(b

a contradiction. 0

5.2 The uniform boundedness principle and an
application

Theorem 5.2.1 (UniformiBoundedness Principle). Let {Ty : E — Flyea bea
family of continuotis linear maps such that for each x € E there exists My such
that sup || To (%) || < M||x]|, then there exists M such that sup || T« || < M.

Proof. Let' G = {x € E: V&, [ T«(x)|| < n|x||}. Then clearly each C,, is
closedand they cover E. Therefore at least one of them say Cy contains
a ballvof radius r around xo for some r and xo. Hence || T (x| < kx|
whenever ||x — xo|| < r and consequently for x with ||x — x¢| < T using
b (o + 7 we get

I Tae (¢ = x0) | < [T O} + [ Tex (0 I < Kel|x[] + K] [xo| < K(2[x0| + 7).
Therefore sup || T«|| < w O

Corollary 5.2.2. Let E be a Banach space. Let X be a weakly bounded
subset of E. That means for all $ € E*, ¢$(X) is a bounded subset of K.
Then X is a norm bounded subset of E.
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Proof. Letj:E — E** be the canonical embedding. Then by hypothesis

Vo € EY,IM, such tat sup ||j(x)(d)|| < My

xeX

By the uniform boundedness principle there exists M such that

sup [[x|| = sup [i(x)]| < M.

xeX xeX

5.3 A typical application

Let 1 < p < oo and {«,} be a sequence of scalars such that > «, 3, con-
verges for all {B,} € {,. Then {x,} € {,4. To see this consider the linear
functional Ty € £ given by Tn({Bnl}) = 2:21 on Br. From convergence

of ) «,fn we conclude that the hypothesis 0of UBP is met. Therefore UBP
gives us M such that M > sup, || TnJ}-= supy, 1/ Zl:; |y |9. Therefore

> ol <M < oo

5.4 Quotient spaces

Now that we have some idea‘about bounded linear maps on normed lin-
ear spaces we can ask how about extending some of the results of linear
algebra to normed linear spaces. The first theorem we learnt was the first
isomorphism theorem. Recall that first isomorphism theorem says if T is
a linear map from a linear space E onto another linear space F then T in-
duces antisomorphism qt : E/ker T — F. Now if we want to extend this
to normed-linear spaces first thing we need is the notion of quotients.

Definition/Proposition 5.4.1. Let E be a normed linear space and F C E a
closed subspace. Then ||[x]|| := inf{||x + y|| : y € F} defines a norm on the
vector space E/F.

Proof. Letxi,x; € E. Then Vy;,y, € F we have
X1 +y1 +x2 + Y2l < [x1 +yal| + [Ix2 + y2|-
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Taking infimum over both sides as y1,y> varies over F we get ||[x; +x2]|| <
| xq]]|+ || [x2]||- Similarly we get ||[Ax]|| = [Al||[x]||. Finally note that ||[x]|| = O
iff x = limy,, for some sequence {y,} C F. Since F is closed, this happens
iff x € F. In other words [x] =0 € E/F. O

Lemma 5.4.2. Let E be a normed linear space. Then E is complete iff convergence
of >_ ||xn|| implies convergence of Y xn.

Proof. Only if part is easy and we only show the if part. Let’{x,} be a
Cauchy sequence in E. Then we can extract a subsequence {x4,, } such that
[Xny.s — Xne || < 75, Vk. Then the series > |[xn, < X, | converges. By
our hypothesis 5 I, (Xn,,, — Xn,) converges. That means x,,, — X, con-
verges. In other words the subsequence {x,,, } converges. Since the original
sequence is Cauchy from the convergence ofia subsequence we conclude
convergence of the whole sequence. O

Proposition 5.4.3. Let E be a Banach space and F C E is a closed subspace.
Then E/F with the quotient norm'is a Banach space.

Proof. Let ) ||[xnl|| < oo to'show.completeness of E/F it is enough to show
convergence of ) [x,].-Horleach n obtain y, € F such that |[x,, + yn| <
[xnl|| + 5. Then Y [ yn|| < oo and using completeness of E we
conclude convergénce of 5 (xn+Yy ) say to xo. In other words || >N, (x, +
Yn) —xo|| = 07Since Y |y, € F we have

N N
1S bend = olll < I Y (¢ +yn) —x0]l = .
n=1

=1

Thus-we have established lim Z::] xn) = [xol. O

5.5 Open mapping theorem and its main corol-
lary

Theorem 5.5.1 (Open Mapping Theorem). Let T : E — F be a continuous
surjection, then T is an open mapping.
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Lemma 5.5.2. Let T : E — F be a bounded operator from a Banach space E to
another Banach space F. Let By and By be the unit balls of E and F respectively.
Suppose that T(Bg) closure contains vBr for some v > 0, then T(Bg) contains
T’BF.

Proof. Lety € tBr and & € (0,1) such thaty’ = &'y € rBr. By the
assumption, there exists x; € Bg such that ||y’ — T(x1)]| < (1 —8)r. Since
T((1 —8)Bg) contains (1 — 8)rBy, there exists x, € (1 —8)Bg such that [[y.—
Tx)—=Tx2)|| < (1 — §)%. Since T((1 — 8)?Bg) contains (1 — 8)*tB, there
exists x3 € (1 —8)?Bg such that ly — T(x1) = T(x2) — T(x3)|| L 70 = 5)3.
Continuing this process we get a sequence x,, € (1 —8)™ ' Bg stich that

Yy —=Tlxa) =Tlx2) = = Tlxa) | < (1L B
Since ) _ ||xn|| converges and E is complete the series ) x,, converges to x’
say. Since T is continuous T(x/) = y’ and ||[x/JK< % (1—8)"' = &' Put
x = 0x’, then clearly x € Bg and T(x) = éy'/= y. O

Open Mapping Theorem. We have to show that the image of an open ball
around zero under T contains an open ball around zero. Since T is sur-
jective, F = UT(nBg). But by the'corollary to the Baire theorem we get
closure of T(mBg) contains an‘openball V =y + eBf. Putr = 5— and take
z € rBr. Since y,y + 2mz € V, there exists sequences y,,y’,, € T(mBg)
such that limy, =y, limy", y + 2mz. Hence z,, = yn —y’,, € T(2mBg)
converges to 2mz, and thus 5 -z, € T(Bg) converges to z. Thus we can

apply the previousdemma and conclude the proof. O

Remark 5.5.3 (A'typical application). Let || - ||1, || - |2 be two norms on a
linear spaceé E turning E into a Banach space. Suppose there exists C > 0
such that\|[x||;/< CJ/x||2,Vx € E. Then there exists C’ such that ||x|; <
C’|Ix|[75¥x e E. To see this just observe that the identity map from (E, || - ||.)

to (E,|| -{|1) is a bijective continuous surjection. By the open mapping
theorem this mapping has a continuous or equivalently bounded inverse.
We can take C’ to be the norm of the inverse.

Theorem 5.5.4 (Closed Graph Theorem). Let E, F be Banach spaces and T :
E — F a linear map such that the graph of T, T = {(x, T(x)) : x € E}is a closed
subset of E x F. Then T is continuous.
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Proof. The vector space E x F is a Banach space with the norm ||(x, y)|| =
Ix|lg + |lyll¢- By hypothesis I' is a closed subspace of a Banach space, hence
I becomes a Banach space. Define 7t; : I' — E as 71((x, T(x))) = x and
7 : E x F — F, as m((x,y)) = y. By the open mapping theorem 7;' is a
continuous linear map from X to . But T = 7,07, ', hence continuous. [

Proposition 5.5.5. Let || - ||y be a norm on C([0, 1]) turning it into a Banach
space. Also ||, — f||n — 0 implies lim f, (x) = f(x), Vx € [0, 1].".Then || - ||
must be equivalent with the sup norm.

Proof. Because of remark it is enough to show that the identity map-
ping from (C([0, 1]), ||-||sup) to (C(I0, 1]), ||-|l»v) is continuous. We can appeal
to closed graph theorem provided we show thatthe graph of identity map-
ping is closed. In other words if lim ||f;, — f{|s;p*= 0, lim || f, — g|| = O then
we must show g = f. But that follows from, g(x) = lim f, (x) = f(x). H

5.6 Practice problem set-3

1. Let E be a Banach space,and F a finite dimensional subspace. Show
that F is closed.

2. Let E be a finite dimensional Banach space. Can you give a dense
proper subspace of E?

3. Let E belan infinite dimensional Banach space. Give a dense proper
subspace of E.

4. Let E be a Banach space and F a closed subspace. We say F is alge-
braically complemented if there is another closed subspace F' such
that F @ F' = E. Suppose F is finite dimensional. Then show that F is
algebraically complemented.

5. Let E be a Banach space and F a closed subspace. We say F is topo-
logically complemented if it is algebraically complemented and the
norm on E is equivalent to the norm on the {;-sum of F and F' where
F, F' are endowed with norms obtained from E as its subspaces. Show
that if a closed subspace is algebraically complemented then it is
topologically complemented.
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6. Let E be a Banach space and ¢ : E — K be an unbounded linear
functional then show that ker ¢ is dense in E.

7. Let E be a Banach space and ¢ : E — K be a linear map. If ker ¢ is a
dense proper subspace then show that ¢ must be unbounded.

8. Let E be a Banach space and ¢ : E — K. Then ker ¢ is closed iff ¢ is
continuous.

9. Show that there is a bounded linear map L : {, — R such that

(@) liminfx < L(x) < limsup x.

(b) L(x) =limx, if L(x) = {xn} is a convergent sequence.

() L(x) = L(S(x)) where S : {5, — { is the shift operator given by
S(x)n = (X)n+1-

10. Let E, F be Banach spaces and T,, € £(E; ) besuch that for all x € E,
the sequence {T, (x)} is convergent. Then show that sup, ||T.|| < oo.
Let T(x) := lim T,,(x). Then show that'T € L(E;F). If x,, — x, then
show that T,, (x.) — T(x).

11. Show that for each n, k theré exists C,,x > 0 such that for all poly-
nomials P of degree lesscthan or equal to 1, in k variables with K
coefficients we have

sup N [R(x)| < Cn,kJ PG

————dx.
xE€B(0jr) CRK B(0;r) VO]’(B(()»T))

12. Given any/two‘isomorphic Banach spaces E,F define their Banach
Mazur distance as

Sem (€, F) t=inf{||T||.|IT~"|| : T € £L(E, F) is invertible with T~ € £(F, E)}

Then'show that dgm(E, F) > 1 and dgm(E, F) = 1 along with dim E <
oo implies E, F are linearly isometrically isomorphic.

13. Let F C E be normed linear spaces with F closed and q : E — E/F
be the quotient map. Note that g is a surjection of norm less than
or equal to 1. Show that whenever we have a normed space G and
T € L(E;G) with F C ker T there exists unique T e L(E/F; G) such
that T=T o q.
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14

15.

16.

17.

18.

19.

20.

Let F C E be normed linear spaces with F closed. Suppose we have a
normed linear space G and a surjective bounded linear map q : E —
G with F C ker q, ||q|| < 1 so that whenever we have a normed space
Hand T € £(E;H) with F C kerT there exists unique T e L(G;H)
such that T = T o g, then G must be isomorphic with E/F.

Let E be a normed linear space and F C E be a complete subspace.
Show that E is complete provided so is E/F.

Let F C E be a closed subspace of a Banach space. “Show that @ :
(E/F)* — FX = {x* € E* : (x*,x) = 0,Vx € FYgivenby ®O(¢)(x) =
¢([x]) is a linear isometric one to one onto map.

Let F C E be a closed subspace of a Banachyspace. Define ¥ : F* —
E*/F+ as follows: given ¢ € F* by Hahn Banach obtain a norm pre-
serving extension ¢. Define ¥(dp) =={d]. Show that ¥ is a linear
isometric isomorphism.

Let F C E be a closed subspaceof a Banach space. If E is reflexive
then show that so is E /F.

Let E be a reflexive Banach space. Show that for all x* € E*,3x €
E, [l = T, x" () =]

Goal of this exereise is showing the collection of continuous nowhere
differentiable functions is a dense Gs subset of C[0, 1].

(a) Let F,, = {f € C[0,1] : Ix¢ € [0,1], such that Yy € [0,1],[f(y) —
f(x¢)] < nly — x¢|, }. Then show that &, is closed.

(b) Let f € C[0, 1] be differentiable at x. Then show that f € U, ;.

(c) Finally show that J,, has empty interior.

(d) Conclude that no where differentiable continuous functions form
a dense G subset of C[0, 1].
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Chapter 6
Hilbert Spaces

We will introduce Hilbert spaces and develop them. Hilbert spaces are
easy to classify but that is not the end of story sowe indicate what makes
Hilbert spaces interesting.

6.1 Inner product spaces

Let us quickly recall some notions yoware already familiar with.

Definition 6.1.1. Let J{ be-ajvector space. A pre-inner product on H is a
sesquilinear map (-, -) ; FHx"d — K such that

1. (u,v) = (v, wWiva, Ve H.
2. (u, ov £PwW) = oc(u,v) + B(u, w), Ve, p € K, Vu,v € H.
3. (u, ) =0Vu € H.

Definition 6.1.2. A Pre-Hilbert Space or a pre-inner product space is a
pair consisting of vector space along with a pre-inner product.

Proposition 6.1.3 (Cauchy-Schwarz Inequality). Let }{ be a vector space
equipped with a pre-inner product, then

l<uw,v>| <V {uuy/(v,v),vuve H
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Proof. Let (u,v) = re'?,r > 0. Note that if the scalar field is R then 0 €
{m, 0}. We will divide the proof in cases. The first one is(u,u) = (v,v) = 0.

0 < (u—e v, u—e %)

= (wu)+ (v,v) —e P u,v) — eie(Tu)

—2r < 0.

Thus we get r = 0 proving the inequality in this case. Next case is both
(u,u) and (v, v) are not simultaneously zero. Without loss of generality we

can assume that (v,v) # 0. Let t = —%, then,
0 < (ut+tv,u+tv)
B 2 2wyl
= (u,u) + [t (v,v) V)
_ () N 2, v
= (w,u)+ R, )
[(uv)?

Now transferring |<<L‘L)’,Vv>>|2 to.the other side and multiplying both sides by
(v,v) we get the result. ]

Corollary 6.1.4. We have (u,v) = 0 whenever (v,v) = 0.
Corollary6.1.5. N = {v € H{ : (v,v) = 0} is a subspace.

Proof.<Clearly N is closed under scalar multiplication. Only thing we need
to show that it is closed under addition. Let u,v € N. Then by the C-S
inequality we get (u,v) = 0. Thus (u+v,u+v) =0. O

Corollary 6.1.6. /(u,u) =sup, ., ,_; (W, V)]

Proof. If (u,u) = O then both sides are zero. Otherwise by the C-S in-
equality left hand side is less than or equal to right hand side and taking
v =u/4/(u,u) we get the other inequality. O

Definition 6.1.7. Let J{ be a vector space. An inner product on ¥ is a
sesquilinear map (-, -) : H x H — K such that
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1. (-,-) is a pre-inner product.
2. Positive definiteness: (u,u) =0 = u =0.

An inner product space (3, (-, -)) is a pair consisting of a vector space H
along with an inner product on H

Definition/Proposition 6.1.8. Let (3(,(-,-)) be an inner product space, then
the map || - || : H{ — R, given by

e { S

0, forv =0.

is a norm on H. This norm is referred as the normiassociated with the
inner product (-, -).

Proof. Letu,v € H. Only thing we need to(verify'is |[u+ v|| < |[u|| + [[v].
That follows from,

u+v|]* = @4v,u4+dh=NYa|* + |[v||* + 2R((u,v))
2 2 2
<l B4 B2 ] =l + (viD

]

Definition 6.1.9. Aninner product space (X, (-, -)) is called a Hilbert space
if H is complete with,respect to the norm associated with the inner prod-
uct.

Definition 6.1.10. Let J{;, J{, be Hilbert spaces. A linear map U : J{; —
I, is-calledvunitary if it is one-to-one, onto and preserves inner products

that is, (tkx, Uy) = (x,y), for all x,y € H;. The Hilbert spaces H(;, H, are
called unitarily equivalent if there is a unitary U from H; to J,.

Proposition 6.1.11. Let 3{;,H, be Hilbert spaces with dense subspaces
S1,S;, respectively. Let U : S; — S, be a bijection such that (Ux, Uy) =
(x,y), for all x,y € S;, then U extends to a unitary map denoted by the
same symbol U from H; to H,.
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Proof. Observe that ||[U(x)|| = ||x||, for all x € 8;. Therefore U converts
Cauchy sequences to Cauchy sequences. If x is an element in J{; there is
a sequence {x,} of elements of S; converging to x. Now {U(x,,)} is also
Cauchy and therefore converges to some limit. Define Ux as this limit.
Clearly this is well defined. By playing the same game with U~ we con-
clude that the extended map is bijective as well. Continuity of the inner-
product combined with the density of S;’s give (Ux, Uy) = (x,y), for all
X,y € H,. ]

Definition/Proposition 6.1.12. Let (Hyye, (-,-)) be a pre-Hilbert space. Let
N ={v e Hpre : (v,v) = 0. Then (u+ N,v+ N) = (u,v) defines an
inner product on H,../N. Completion of H,,./N with respect to the as-
sociated norm is called the Hilbert space associated with the pre-Hilbert
space Hp .

Proof. By corollary (6.1.4) the sesquilinear form (-, -) is well defined. Only
thing we need to verify is positive definiteness. Let u € J{,,. be such that

(u+N,u+N) = (u,u) =0. Thenaw'e N and consequently u+N = N. [

6.2 Key properties of Hilbert spaces

Now we will discuss key properties of Hilbert spaces.

Proposition 6:2.1.Let } be a Hilbert space and C C H be a closed convex
set. Thendor all’x ¢ C there exists unique Z € C such that ||[x — Z|| =
inf{|[x —z|| : z.€ C}. Verbally this means C has a unique point closest to x.

Proof. Uniqueness: Let z;,z, € C be equidistant from x. In other words
fx %.z7]| = ||x — z2]|. Then by the parallelogram identity

Hox —z1) + (x —22) [ + [|(x — z1) — (x = 22)|* = 2(Ix — 21 |* + [Ix — z2*)

Therefore

zZ1+ 2,

-2 &

= [l — z2|*.

1
2 2
17+ 2 llzr — 227 = [|Ix — z4
4
So, either z; = z, or else their midpoint % is a point from C closer to x.
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Existence: Let ¢ = inf{||x — z||? : z € C}. Then there exists a sequence
{zn} C Csuch that ¢ < ||x — zu|* < ¢ + L. Then using parallelogram
identity we get

Z1 +Z2H2
2
<2 c+T/n+c+1/m)—4c=2(1/n+1/m).

1zn = zm 1> = 2(Ix — znll* + [Ix — zwm[I*) — 4lIx —

Since JH is complete and C is closed {z,,} converges to some Z € C/Using
continuity of corm we conclude

x — 2| = im ||x — z,,|| = ¢ = inf{||x — z||* : z € &} O

Proposition 6.2.2. Let J{y C I be a closed subspace ahdx & J{,. Let Z be
the unique solution to the minimization problem min{|[x— z|| : z € Ho}.
Then (x — Z,z) =0,z € H,.

Proof. We do it for complex scalars. The real caseis easier. Let A € C and
z € Hy. Then
e — 2] < X —2—Az|*

So, for all such A and z
—2R(x — 20z) + [A?||z]|? = 0.
Write A = [Ale'?, fix 0, divide\by |A| and let |A| go to zero to conclude
—2R(x —2,e"%2) > 0.
Since 0 is arbitrary we must have (x — z,z) = 0. O

Definition 6.2.3. Let S C H be a subset. Then S+ = {x € H : (x,y) =
0,vy €S

Proposition 6.2.4. Let S C J{ be a subset. Then the following holds.
1. St is a closed subspace.
2. S+ = (S+)* is the closure of linear span of S.

3. SNSt C {0} If0 € S then SN St ={0}.
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Proof. Obvious. L

Theorem 6.2.5 (Projection theorem). Let 3y C J be a closed subspace. Then
every x € H can be written uniquely as y + z where y € Ho,z € Hy. The
mapping Psc, : x — y is a bounded linear map from 3 to itself so that P5, =
P

0°

Proof. Lety = argmin{||x —u|| : u € Ho} and z = x —y=-H; by
proposition (6.2.2). To see uniqueness of the decompositiofinnote that if
x = Y1 +2z1 = Yz + 2z with yy,y2 € Ho,z1,z2 € Hy, then'y; —y, =
23 —z1 € HoNHy = {0}. Clearly Py, : x — y is linear<To see it is bounded
let us calculate ||x||?, keeping in mind (y, z) = 0.

IXII* = ¢y + 2,y +2) = (YY) + (z,2) = [[YII2LNal*Z [yl1* = [P, ()%

Therefore Py, is bounded with norm bounded by 1. If 7, # {0} then
IPscll =1 O

Theorem 6.2.6 (Riesz Representatient Theorem). Let ¢ € F(*, then there is
unique wgy € H so that d(v) =Atwg,v)” Moreover ||d|| = ||[ug||. The mapping
¢ — ug gives a conjugate lineamisometry from H* to H.

Proof. Let Hy = ker ¢p<"Notethat ¢ = 0 if and only if ker p = . So, if
¢ = 0 we can take uy, ='0. Let us now consider the case ¢ # 0. Then H, is
a proper subspace, So there exists v € Hy satisfying ¢(v) = 1. By the first

isomorphism theorem of linear algebra Hg = Cv. Let uy = wz then
( > 0,if we
Uy, W) =
¢ 1,if we 3.

Thus $(w) = (ug, w), Vw. An application of Cauchy-Schwarz inequality
yields || = [luq |- =

Definition 6.2.7. Let H{ be a Hilbert space.

1. Orthogonal set: A subset S C K is said to be orthogonal if every
element of S is nonzero and v,w € S,v # w implies (v, w) = 0.

2. Orthonormal set: A subset S C K is said to be orthonormal if it is
orthogonal and every element of S has norm one.
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3. Orthonormal basis: A maximal with respect to inclusion orthonor-
mal set is called an orthonormal basis to be abbreviated as O.N.B. It
exists by a simple application of Zorn’s lemma.

4. An orthonormal set S is said to be complete if H{ = Span S.

Definition 6.2.8. Let X be a set and f : X — R, be a function. Let I =
{F C X : Fis a finite set }. This is directed by inclusion. The limit of the net
{sr =D ,cr f(x)}res if exists is denoted by } ., f(x).

Theorem 6.2.9 (Bessel’s inequality). Let ‘B be an orthonormal set. Then for/all
v e Hwehave Y, o [(u,v)|> < |[V]]%.

Proof. LetF C B be a finite subset. Then {(u, v)u : u € FlUlv—)__ Zr(u, v)u}
is an orthogonal set and by exercise (6.2.10) we have

2wyl + v =3 (wvull® =y

Therefore Y ¢ [[(w,v)ul|* < |[v[[>. The net By—" > ¢ [[{w,v)u|? is a
montone net bounded by |v||*. Hence it ‘cofiyerges to Y, .o [(u, v)[* <
IvII*. O

Exercise 6.2.10. Let S be a finite orthogonal set. Then || > s ul|* = X s [/

Proposition 6.2.11. Every orthonormal set can be extended to an orthonor-
mal basis.

Proof. Let B be an orthonermal set. Consider the partially ordered set
P ={B" : B O B, B isan O.N.B} ordered by inclusion. Clearly every
chain in this partially.ordéred set has an upper bound it has a maximal
element B’. This'gives-an orthonormal basis containing ‘B. O

Lemma 6.2,32. Let-S be an orthonormal set and x € J(, then the orthogonal
projection.of x on span of S is given by } |, ¢ (v, x)v.

Proof.Neteithat (x — ) | .s(v,x)v,w) = 0,Vw € S. Therefore
=Y AP =1l =Y v+ Y A+ (vl

ves veSs veSs
=[x — Z<V, x| + Z (A, + (v,x))]* [By pythagoras
veS veS
> [x =) (vxv|? (6.1)
veS
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Thus ) ,.s(v,x)v = argmin{||x —u| : u € Span S}. O

Proposition 6.2.13. Let S C J{ be an orthonormal set then the following
are equivalent.

1. Sis an orthonormal basis.
2. Sis complete.
3. Forallx € 3, ||x||* = 2, cs (v, x)I?

Proof. (1) = (2) : Let 3{, be the closed linear span of S. I 7y C I, then
choose v € H \ Hyp. The vector w := v — P4, v must bexnon-zero because
otherwise v = Py, v € H,. Since w € Hg,SU {HVW"—H} is an orthonormal basis
properly containing S. This contradicts maximality of S!

(2) = (3) : Letx € H. Then for any finite'setF C S, (x—3 (v, x)v) L
v, Vv € F. Therefore by pythagoras’ theerem

X1 = ) 1w, )EARIX = (v, x)v]? (6.2)
veF veF

Using completeness of S, forveach € > 0 we get vi,..., V() € S and
scalars A1, ..., An(e) so that(x— Z]n:(f) Ajvi|| < e. If we call the finite set

{V], oG .,\)n(e)}, Fe then by
n(e)
B> wv> <lx— Y Avill* < € (6.3)
j=1

Therefore themet F — x — 3 ¢ (v, x)v defined on the directed set of fi-
nite-subsets of S converges to 0. In other words the second term in (6.2)
converges to 0. This proves [|x||* = limr Y, ¢ (v, x)|*.

(3) = (1) : If possible let x € F{\ S be such that {x}US be orthonormal.
Then (v,x) = 0,¥v € S. Therefore ||x|* = >, cs1(v,x)|* = 0, a contradic-
tion to orthonormality of {x} U S. O

Corollary 6.2.14 (Abstract Fourier Expansion). Let S be an orthonormal
basis. Then for all x € H{ we havex = ) | _s(v,x)v.

Proof. Since ||x||* =limg Y}, |(v, x)|?, from wehavelimg ||x—) (v, x)V| =
0 or equivalently x = limg ) (v, x)v =) s(v,x)V. O
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Proposition 6.2.15. Any two o.n.b have same cardinality.

Proof. Let 3 be a Hilbert space with two orthonormal basis A, B. We will
prove the proposition in the infinite dimensional case only. Fix a countable
dense subset K’ of K. Let,

Ha ={veH{aeA:(v,a)#0}is finite and (v, a) € K',Va € A}

Then HA is dense in H{ and is in bijection with U?_;A™ x K™ which is
in bijection with A. Define f : B — (4, such that ||b — f(b)|| < /8, for
all b € B. Orthonormality of B implies ||[b — b’|| > 1 whenever we have
two distinct elements of B. Thus given any two distinct elements’b, b’ € B
we have [[f(b) — f(b’)|| > 1/2. That is to say that f is.one to one. This
shows that the cardinality of A is greater than or equal to that of B. By
symmetry we get the other inequality and conclude both A and B have
the same cardinality. O

Proposition 6.2.16. Let J{ be a separable Hilbert space. Then any o.n.b is
countable.

Proof. Fix a countable dense set S¢ LetvA be an o.n.b. Define a function
f: A — S such that ||f(«) — «|| <y1/2./Then f is one to one because, given
any two distinct &, &’ of A, we have

1(00) = f(o)]| = [Joe — o i) — o] — [|f(e') — || > 1 —1/2—1/2=0.

This shows that A 4s countable. ]

6.3 Applications of Riesz representation theorem

Proposition 6.3.1. Let H{ be a Hilbert space and T : H{ x H{ — K be a
sesquilinéar form. If there exists a positive constant C such that

IT(uw,v)] < Cllu|||[v]], Vu,v € K.

Then there is a unique bounded linear map T € B(H) such that ||T|| <C
and

T(u,v) = (T(u),v), Vu,v € H.
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Proof. Consider the linear map ¢,, : H — K,v — T(u,v). Then by the
Riesz representation theorem there exists T(w) such that | T(w)|| = ||du]|
and <T(u),v> = ¢y (v) = T(u,v) for all v € H. Of course we need to verify
that the map u — f(u) is linear. Note that

(Tl u+B-v),w) = T(x-u+p-v,w)
&T(uw,w) + BT(v,w)

= (o0 T(w),w) + (B - T(v)m),
= (oo T(u)+ B - T(v),W:

Thus we have
Tlot-u+p-v)—o-T(w) —p - EWMWY=0, vweX
In particular taking w = T(oc ‘w4 B — o :F(u) ) -T(v) we get
T(a-u+p-v) L& D) —p-T(v) =0.
That is to say that T is a linear map. To see that it is bounded note that

ITZ o)l = sup [T(wv)l < Cllul.

villv]| =1

Uniqueness of T.is\obvious because if there were two such maps T, and
T,, then

(ﬂ (u) — ﬂ(u),v} =T(uw,v)—T(u,v) =0,V e H.
Againtaking v = T (u) — 'E(u) we see that T, (u) = Tvz(u). ]

Remark 6.3.2. Similarly one can show that if we have Hilbert spaces J{;, 3(;,
and a sesquilinear map B : H{; x 3, — K such that

IB(w,v)| < Cllul|||v|l, Vu € Hq, ¥V € H;

where C is a positive constant then there exists a bounded linear map T :
Hy — H, of norm less than or equal to C and

B(u,v) = (T(u),v),Vu € H;, v € H,.
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Corollary 6.3.3. Let T € B(J). Then there is a unique linear map denoted
by T* such that

(T*(w),v) = (u, T(v)), Yu,vekH. (6.4)
Moreover || T*|| = ||T|| and T** =T.
Proof. Note that [(u, T(v))| < ||T|||[u]/|[v]]- So, we can apply the previeus
proposition to the sesquilinear form (u,v) — (u, T(v)) to obtain alinear
map T* such that (6.4) holds. To see the statement about the norms;
T = sup [T (u)]

w:||u||=1

= sup sup [T"(u),v)l

willull=1 vil|vl|=1

= sup sup [{u, T(¥))
wilul=1vifvl|=1

= sup || T(v)|, ~bwcorollary (6.1.6)
vi[v][=1

= [Tl

O

Corollary 6.3.4. In thesetp of proposition (6) there exists a unique bounded
linear map T" € B(H)'such that ||T’|| < C and

T(w,v) = (u, T'(v)),Vu,v € 3.
Proof. Take T/ = T*. O

Definition 6.3.5. A bounded linear operator T € B(¥) is called self-adjoint
ifT=T*

Exercise 6.3.6. A bounded linear map U on a Hilbert space is a unitary iff
U*U = UU* = I, where I stands for the identity operator.
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6.4 Practice problems set 4
1. Let E be a real Banach space and U : E — E a bijective map such that
[Ux = Uy|l =[x —yll, ¥,y € E.

Such maps will be referred as bijective isometry. Fix x;,x3°€ E. For
any bijective isometry ¢ define

d(x1) + d(%)

X1+ X2 H
2

def(¢) = [ o(*

)_

(a) Show that def(¢) < 12l

(b) Let py : E — Ebe py(z) = U(x ) PUX,) —zand U = U T o
pu o U. Then def(U’) = 2def(U):

(c) Conclude def(U) = 0 and Muis affine.

2. Let E be a Banach space. et X be a weakly bounded subset of E.
That means for all ¢ € E*, ¢(X) is a bounded subset of K. Then X is
a norm bounded subset of E.

3. Let H be a Hilbert/space and u,v € H. Let I, I}, be the spans of
u, v respectively. Suppose

lv Eul\="1inf{|[v —w| :w € H} = inf{||lu—w| : w € H,},
then show thatv = u.

47We know that every closed convex subset in a Hilbert space has a
unique element of maximum norm. However this exercise shows
there may not be any element of maximum norm. Let {¢, : n € N}
be an orthonormal basis for the Hilbert space J(. Let

C = {xe H Y (1 +%)Z|<x,q>n>|2 < 1}.

Show that € is a closed, bounded and convex set, but it contains no
vector of maximal norm. (Hint: Define T(x) = > (1 + %)(cbn,xﬂbn.
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Then T € B(H) and € = {x € H : ||T(x)| < 1}. This shows C is closed
and convex. Also for every

xI2 = 3 Kbl <Z(1+ ) (b <

5. LetS = {¢, : n € N} C L?([0,1],dA) be an orthonormal set. Show
that the following are equivalent

(a) Sisan orthonormal basis.
(b) Forallx € [a,b], Y o i|[ dn(t)dt] = (x — a)
> 1f If bn(t dtlzdx——(b—a)z.

6. Let H be a Hilbert space and T : }{ x H — K.bea sesquilinear form.
If there exists a positive constant C such that

IT(w,v)| < Cllu|l|lvl], Y, ve H.

Then there is a unique bounded linear map T € B(H) such that || T|| <
Cand

T(uw,v)= (), v), Vu,v € H.

7. It we have Hilbert spaces H7,H,, and a sesquilinear map B : H; x
H, — K such that

IBlwv)| < Cllul[||v]l, Vu € 3y, Vv € H,

where Cds'a positive constant then there exists a bounded linear map
T : Hy—"J(, of norm less than or equal to C and

B(u,v) = (T(u),v),Vu € H;,vv € H,.

8. Let x,y : [0,1] — R be C'-functions such that || $* ||2 + |82, = ¢,

then | [ y(t)Frdtl < 3%

4|5 =

9. The b111near form T is called coercive if Ja > 0 such that T(u,u) >
allul|?, Vu € K. By exercise @ we know that there exists T € B(H)
such that T(u,v) = <T(u) v). If T is given to be coercive.
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(i) Show that T is one to one.

(ii) Let Ran be the range of T. Consider $ : Ran — H given by
S(u) = v where u = T(v). Show that S is bounded. and using
this show that fRan is closed.

(iii) Show that T is onto i.e., Ran = K.

(iv) Conclude given ¢ € I there exists unique u € J{ such that
T(uw,v) ={(d,v),Vv € H.

10. Let (Q, &, u) be a probability space and &’ C & a‘sub-o-algebra. Let
f be a nonnegative measurable L; function. Lét Iy (&’) be the space
of square integrable &’ measurable functions. Then L,(&’) C L,(6)
is a closed subspace. Let P be the corresponding projection. Show
that

(@ If 0 < f < Cthen AN € &, u(N) = 0 and a & measurable g
such that on N¢,0 < g, < Cand g = Pf a.e. Such a g will be
called a version of Pf.

(b)

J fdu = J Pfdu, VA € &'
A A

(¢) Let fp=f7An, then IN € &', u(N) = 0 such that outside N, each
Pf,. hasa version g,, such that0 < g, <nand g, < gn.1,Vn >
1. Letg = lim g,,. Show that

J fdu :J gdu, VA € &'. (6.5)
A A
Such a g is called the conditional expectation of f given &’ and

is denoted by E(f|&’). This is an &’ measurable integrable func-
tion unique upto a p null set.
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Chapter 7

Spectral theory

In this chapter we explore the structure of linear<opérators on Hilbert
spaces. We will begin with compact operators and prove spectral theo-
rem. Then we move on to bounded operators and prove spectral theorem.
Finally if time permits we will move to spéctral’theorem for unbounded
self-adjoint operators.

7.1 Compact operators

Let J(, X be Hilbert spaces:'We are interested in exploring the structure of
L(F(, X), the collection efsbounded linear maps from 3 to K. To begin our
exploration we begin by asking examples of bounded linear maps. Those
examples may lead to further curiosities and the ball will get rolling.

Let 7 be a Hilbert space and u € JH. The vector u has two kinds of
life. On the one hand we can think of it as an element of J. If we wish to
emphasize'this roll we use the notation [u) instead of u and we read [u) as
a ket-vector, On the other we can also think of u as a linear functional on
H and by the Riesz representation theorem every linear functional arises
in this manner. When we wish to emphasize this roll we use the notation
(u] instead of u and call it a bra-vector. Given a bra-vector (u| from H
and a ket-vector [v) from H, the action of the linear functional associated
with bra-vector (u| on the ket-vector |v) is not denoted by (ul(|v)). It is
instead denoted by (u,v). This notation is due to Paul Dirac. Given a pair
of vectors u € H,v € K where H, X are Hilbert spaces, [v)(u| : H — X
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stands for the linear map w — (u, w)v. In particular P,, := |u)(u/ is the
orthogonal projection onto the span of u.

Let us check whether [v)(u| : 5 — X is bounded or not? Let w € K.
Then

[(W) ul) (WD = [l (e, wivl] = [, willvIl < fefllivIlwi-

Taking supremum as w varies with |[w|| = 1 we get |v) (u| is beunded with
|v) {ul|] < [jufl||v]]. An operator of the form [(u, w)|||v|| is called a,rank one
operator. A finite linear combination of rank one operatersis called a finite
rank operator. Given a bounded linear map how can‘we tell whether it is
a finite rank operator or not? That’s answered in the following exercise.

Exercise 7.1.1. Let J{, X be Hilbert spaces. .A betumnded linear map T €
L(F,K) is a finite rank operator iff T(JH) C K is,a finite dimensional sub-
space.

Remark 7.1.2. We have finite rank operatoers and a mechanism to recognise
them. This is an instance of a récognition principle, albeit a rather easy
one.

Now that we have a supply‘of bounded linear maps namely finite rank
ones we can ask several“questions.

1. Is the collection of finite rank operators closed?

2. If not then we’can get more bounded operators by forming the clo-
sure of the set of finite rank operators.

3. Can there be a recognotion principle for the closure?
Exercise 7.1.3. Show that the set of finite rank operators is not closed.
To describe the closure we need the following concept.

Definition 7.1.4. Let 7(, X be Hilbert spaces. A linear map T : H{ — K is
said to be compact if T(Bs¢) is compact, where By is the unit ball of J{. The
set of compact operators from H to X is denoted by B, (I, K) or Lo (I, X).

Remark7.1.5. It is immediate that the concept of a compact operator can be
defined for maps between Banach spaces as well. We have defined it for
Hilbert spaces because we are not going to study the Banach space case.
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Example 7.1.6. If T is a finite rank operator then by the Heine-Borel theo-
rem image of unit ball under T becomes relatively compact. Therefore T
becomes compact.

Exercise 7.1.7. Show that a compact operator is bounded.

Proposition 7.1.8. Let J(, X be Hilbert spaces. Then £, (J,X) is a closed
subspace of £(H, K).

Proof. Let {T,,} C Lo(F(,K) be a sequence converging to T € £(I{,%K). We
have to show that T is compact. Let € > 0. Enough to find.an enet for
T(Bgc). Getan N so that | T — Tn|| < €/3. Since Ty is compact there exists
a finite set F C B4 so that

Vx € By, Ixg € F, such that || Ty (x) — Tadxw) [ €/3.
Then for all x € By,
ITO) =To)l < NTO) = TG+ ITRET S/ T )| + [T () — T ()|

€
< T = Tofllixl + ST = Tl e
< €.

In other words F is an e-net.for T(B4). ]

Corollary 7.1.9. Let T =Tlim'l;, be a limit of finite rank operators. Then T
is compact.

Proof. Immediately follows once we note that finite rank operators are
compact. O

Proposition'71.10. Let T € B(J() then T is compact if and only if T con-
verts weakly convergent sequences to norm convergent sequences. That
is

((v,un) = (v,u), W e H) = || T(u,) — T(u)|| — 0.

Proof. Let {u,}xca be a weakly convergent sequence with u as its limit.
The sequence {T(u,, )} weakly converges to T(u) because

Vv, T(un)) = (T (v), un) = (T*(v),u) = (v, T(u)
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In order to utilize the hypothesis that T is a compact operator note that the
set {u, : n € N} is weakly bounded. Hence by corollary it is norm
bounded. So there exists M such that sup{||u,|| : n € N} < M. Since T is
compact any subnet of {T(u,, )} has a convergent subsequence and the limit
must be T(u), because {T(u,, )} weakly converges to T(u). Since the limit of
the convergent subsequence of any given subsequence does not depend
on the subsequence the original sequence must be convergent with the
same limit, i.e., || T(un) — T(u)|| — O.

Conversely, let {T(u,,)} be a sequence in T(B(0, 1)). By Banach-Alaoglu
theorem we can conclude that {1, } has a weakly convetrgentsubsequence{u,,, }.
Then the corresponding subsequence {T(u,, )} converges: This shows that
T(B(0,1)) is relatively compact or equivalently.has compact closure. [

Corollary 7.1.11. Let 7(, X be Hilbert spaces and R € £(¥),S € £L(X), T €
Lo(H,XK), then TR € Ly(H,K),ST € Lo (FHX).

Theorem 7.1.12. Let J( be an infintite dimensional Hilbert space and T € B(J)
be a nonzero self-adjoint compaget operator, then

Ay = sup{{uyTuppAlul| = 13 = sup{(u, Tw) : luf| <13

A =iffe, Tu) : [Ju|| =1} =inf{(u, Tu) : |ju|| < 1}

are attained/ Let.u{, u_ be the vectors where A\, /\_ are attained, then at least
one of the following holds,

Tui = /\iui.

Proof.” Let F(u) = (u, Tu), then this is a real valued function because,

Flu) = (Tu,u) = (u, T"u) = (u, Tu) = Fu.

Also for [|u]| < 1, [F(w)] < [[ul[*||T|| < ||T||. Therefore A makes sense. Let
{u,} be a sequence such that ||u,| < 1and F(u,) — A,. Since a Hilbert
space is reflexive by Banach-Alaoglu theorem its unit ball is weakly com-
pact the sequence {u, } has a weakly convergent subsequence. Without
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loss of generality we can assume that u,, — u,, weakly. Then,

[F(un) —Fluy)l = [{un, Tun) — (uy, Tuy )
< un, Tun — Tug )+ [(un —ug, Tuy)
< [[Tun = Tug || + un — wy, Tug )|
— 0.

Since T is sompact the first term goes to zero and the second term'goes to
zero because {u,, } weakly converges to u,. Therefore F(u, ) =dim F(u,,) =
Ay. Let{e, : n > 1} be an infinite orthonormal set. Then {e,} weakly
converges to zero, hence {T(e,)} converges to zero in.nerm! Therefore
{F(en)} converges to zero. Thus A, > 0. If ||uy|| < Wthere exists € > 0
such that ||(1 + €)u, || = 1, and F((T + €)uy) = R e)F(uy) > Flu,).
Similarly we obtain u_ such that F(u_) = A_.

A both can not be zero: Suppose that A = A~ =0. Then for any u of unit
norm, F(u) = 0. Thus for any u, we get (1 Tuy = 0. Then by polarization
we get

2(v, Tu) = (u+v, T(w+ v)) # i {u+1iv, T(u+1iv)) = 0.
Therefore T = 0 a contradiction to-T # 0! ]

Without loss of generality we assume that A, # 0. Then (u;, Tu,) =
A, > 0. Therefore, F{ie, ) # 0.
Claim:ve X, |v]| =N,v.Lu, = v 1 Tu,

Proof of Claim: Let vy = (CosO)v + (Sin6)u,, then ||ve| < 1 and

Fvgder= Cos?0.F(v) + Sin?0.F(u,) + Cos0Sind(v, Tu )
+SinBCosO(uy, Tv)
— Cos?0F(v) + Sin?0F(u, ) + Sin209R(v, Tu, )

We know that the function 6 — F(vg) attains its maximum at 6 = 7t/2.

Therefore
dF(ve)

do

|9:n/2 = %<V, Tu+) =0.
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Instead of v if we put v/—1v we obtain J(v, Tu,) = 0. Therefore (v, Tu,) =
0. O

Thus, Tu; € ur* = Cu,. Let Tu; = Au,, and
Ar =Fluy) = (ug, Tuy) = 7\Hu+Hz = A
If A_ # 0 we similarly conclude that Tu_ = A_u_. O

Lemma 7.1.13. Let T be a self-adjoint operator on a Hilbert space I{. Then

[(w, Tu)|
[

IT[| = sup{ :lull %03 (7.1)

Proof. Let M be the right hand side of By, Cauchy-Schwarz inequality
we see that M < ||T||. Let u, v € K, then

(u+v, T(u+v)) = (u Tuy+ tu, Tv) + (v, Tu) + (v, Tv)
(Wu—v, Tlu—v)) = A, T~ (u, Tv) — (v, Tu) + (v, Tv)

Subtracting and taking absolutevalues we get
2[(u, Tv) + (v, TuRSTu +v, T(u +v)) — (u—v, T(u —v))| (7.2)

If T is the zero-eperator then clearly ||T|| < M. So, we can assume T # 0.
Let u be an.atbitrary unit vector such that Tu # 0. Letv = % Then,
(u, Tv) = (T, v) = || Tu|. Putting these in[7.2 we get

4| Tuf=ltw +v, T(w+v)) — (u—v, T(u—v))|
KM+ V]2 + Ju—v]2)
=M2(J[u))* + [[v]I*) [ by parallelogram identity

—4M [since |[u|| = [[v[]| =T.

Therefore ||T| < M, establishing the other inequality required to show
(7.1). [

Theorem 7.1.14 (Spectral Theorem for Compact Self-adjoint Operator). Let
T # 0 be a compact self-adjoint operator on J(. Then there exists a sequence {A, }
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of real numbers and a sequence of mutually orthogonal vectors {e} such that
Anl =0, [len|| = 1Vn and

T=> Anlen)(enl, (7.3)

where the sum appearing in is norm convergent. The expansion is
called a spectral resolution of T.

Proof. Let T =T,H ) = H. Now we will successively define
1. Hilbert spaces H(™ for n > 0 such that H(+1) C H(),
2. Compact self-adjoint operators T : H(M) — (),
3. Vectors e, 1 € H™ orthogonal to H(™+!) andiscalars A, 1 forn > 0.

This will be defined in a manner so that if Q™) dénotes the orthogonal
projection onto H(™*1) then

T+1) T(TLJQ(TL) £ Q(n)T(n) (7.4)
TM = A 1 PNCH T ™), forn > 0, (7.5)
ITMHD) < AN (7.6)

This is achieved through.repeated applications of theorem (7.1.12). As-
sume that we have defined (T, H®)) fork < n. f T™) =0 then T+ =
0,Ant1 = 0,e,1 anarbitrary unit vector in K™ and K"+ = H(™ N
{en 1}, Otherwise apply theorem for the operator T(™).

(/\+(T(n))/u+(T(n)))/ if /\+(T(n)) P —/\—(T(n))

Ant1,€R =
(Anid ) {(/\_(T(“)),u_(T(“)))OtherWise'

Then T™e, 1 = Ayy1enst and consequently A, 1Pe ., = TP, |
P, T. Let Q™ = L) — P, ., and H™ V) be the range of Q™). If we
take T = T Q™M) then all the conditions will be met. To see
observe that

ITD) < [TM]| = Ansal, by lemma (7-1).
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Adding for 0 < n < k we obtain,

k
T = Z Ant1Pe, .y + T+

n=0
Since {e,} converges to zero weakly |A,,| = ||T(en)|| converges to zero.
It follows from the inequality (7.6) that ||[T™)| converges to zéro. This
proves (7.3). O

Definition 7.1.15. Let T € B(J{), then A is an eigenvalue of T with eigen-
vector u # 0 if Tu = Au. The subspace E) = {u € J< Tin= Au}is called
the eigenspace corresponding to the eigenvalue A.

Corollary 7.1.16. Let T # 0 be a compact operatorwith a spectral resolu-
tion given by (7.3). Then A # 0 is an eigenvalueiff A equals one of the A,,’s.
Also E\ = span{e,, : An = AL

Proof. Let A be the orthonormal set’ censisting of e,’s. Extend it to an
orthonormal basis A’. Let A # _0.be“an eigenvalue with eigenvector u.
Then by corollary U =N (En, wen + 3 jcanald . There-
fore Tu = ) | An(en, u)en. On the other hand Au = ) A(e,, u)e, +
2 weana o w)a. Using Tl = AU we obtain,

{o,u) =0,Va e A"\ A (7.7)
Alen, u) = A (e, u), Vn. (7.8)

Equation (7)), tells us u belongs to the closed linear span of e,’s. Hence
there exists\ni such that (e,,,u) # 0. Using equation (7.8) for that n we
conclude A ='A,,. O

Corollary 7.1.17. Let H, X be Hilbert spaces and T € B (JH,K) be a com-
pacteperator. Then there exists a unique compact self-adjoint operator in
Bo(H), denoted by |T| and referred as the modulus of T so that T*T = [T|?.

Proof. Since T is compact, so is T*T. Also (u, T*Tu) = [|Tu|* > 0,Vu.
Therefore every eigenvalue of T*T must be nonnegative. Let T*T = } A, P,
be the spectral resolution of T*T, where A,,’s are the distinct eigenvalues.
Then define [T| = Y v/A,P,. Since lim /A, = 0, this sum is norm con-
vergent. Also |T|? = T*T. Uniqueness follows because if S is any such
operator then S must have the spectral resolution of |T|. O
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Our next result is a structure theorem for arbitrary compact operators.
This is done via polar decomposition of an operator tobe defined shortly.

Definition 7.1.18. Let J{, X be Hilbert spaces. A linear map U : H — X is
said to be a partial isometry with initial space ' C 3 and terminal/final
space K’ C X if

1. UH') =XK;
2. U|g.cu_ = O and
3. (Uu, Uv) = (u,v),vu,v € 3.

Exercise 7.1.19. Let H, K be Hilbert spaces and U : H —"K be a bounded
linear map. Then show that the following are equivalént.

1. uuu =u.
2. uruur =ur.
3. UU* is an orthogonal projection.
4. U*U is an orthogonal projection.
Also show that these are equivalent.to saying that U is a partial isometry.

Theorem 7.1.20 (Polar decomposition). Let I, K be Hilbert spaces and T :
H — XK be a compact linearymap. Then there is a partial isometry U : H — K

with initial space Ran(|T\).and final space Ran(T) so that T = UJT|.

Proof. 1t is enough to‘define an inner product preserving onto map from
Ran(|T|) to Ran(T)- Define U : |T|u — Tu. Then forall u,v € H we have

(UTIE(TV)) = (T, Tv) = (u, TTv) = (u, [TI*v) = ([Thy, [Thv).

This shows U is well defined and a partial isometry. The equation T = U|T]
is immediate. O

Remark 7.1.21. Later we will show that given any bounded operator T &
L (3, X) there exists unique selfadjoint operator whose square is T*T. In
other words |T| makes sense in that generality. Given that fact the proof of
polar decomposition works for bounded operators.
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Corollary 7.1.22 (Singular Value Decomposition). Let T # 0 be a compact
operator. Then there exists countable orthonormal sets {e,, }, {f,,} and a se-
quence of positive scalars {s,(T)}, sn(T) \, 0, such that

T=D) sn(T)lfn)(enl (7.9)

where the sum is norm convergent. The scalar s, (T) is called.the n-th
singular value of T. A representation of the form [7.9|is called ‘a singular
value decomposition. Such a decomposition may not be{unique, however
sn(T)’s are unique and s, (T) is called the n-th largest'singular value of T.

Proof. Let S = T*T. Then S is compact and nonzerg because if Tu # 0
then (u, Su) = [|[Tu/|* > 0. Hence S is nonzerd and‘eigenvalues of S must
be nonnegative. Let {s,(T)?} be the sequenee 6f nonzero eigenvalues of
S arranged in decreasing order repeated‘according to their multipliciities.
Then there exists an orthonormal family {e,} so that |T| = }_ s (T)len)(enl.
Let f,, == U(en) where U is the partialisometry in the polar decomposition
of T. Then

U(IT) = D sn(Wl(len) (enl) = D sa(T)Ifn)(enl,

where the second equality~is justified by the facts that U is a bounded
linear map and théjsum’is norm convergent. Uniqueness of s, (T)’s are
obvious because-they are precisely the eigenvalues of [T|. O

Corollary 7.1.28.-Let T be a compact operator on a Hilbert space . Then-
for all nrwe have s, (T) = s,.(T*).

Proof LetT = ) s, (T)Ifn)(en| be a singular value decomposition. Then
= Y sn(T)len)(fnl. Therefore TT* = 3~ s, (T)?|f,)(fn|. Consequently

sn(T) = Vsn(T)? = sn(T). 0

Theorem 7.1.24 (Min-max principle). Let T be a self-adjoint compact operator
with (w, Tu) > 0 for all u. Such operators are called positive. Then A, (T), the
n-th largest eigenvalue of T satisfies

Ani1(T)= min  max (u, Tu).

dim(S)=mn ulS$S
[lefl=1
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Proof. We have to show inequalities in both directions. To show that the
left hand side is less than or equal to the right hand side, given a subspace
S of dimension n we have to show that there exists u € S* of norm 1 with
Ant1(T) < (u, Tu). For the other inequality suffices to show there exists a

subspace Sy of dimension n so that A,,;1(T) > max s, (u, Tu).
[luf[=1

Let us begin with the second assertion. Let T = )} A,,(T)len)(en| be the
spectral resolution of T. Take Sy = span{ey, ..., e,}. Then we have

For the first assertion let {v4, ..., v} be an orthonormalbasis of S. Suffices
to find ay,...,an 1 with >_ Iajl2 = 1 so that u = ) <ai€; is orthogonal to
vj, Vj. Because such an u will satisfy

n+1 I+ 1

(W Ty = > A(Mlail? > Any [TOX 16517 = A (T).
j=1 el

Consider the n x (n + 1) matrix whose-(i, j)-th entry is (vi, e;). Rank of
this matrix is at most n. Therefore thete exists a vector (aj, - ,an41)t in
n+1

the null space of this matrix. In,other words Z]—:] aj(vi, e) = 0,Vi, or

equivalently Z;ZT aje; sV O
Corollary 7.1.25. Let }.be a Hilbert space and T € By (H) be a compact
operator. Forn € N, let s,, (T) be the n-th largest singular value of T. Then
forn € Ny,

Sne1(T) = min max || Tul.

dim(S)=n ulS$S
llufl=1

Proof. LetR = T*T. Then s,(T)? = A, (R) and by the Min-max principle,

As1(R)= min max(u, T*Tu) = min max || Tu/?.
dim(s)=n wls dim(s)=n wls

Using monotonicity of the square root function on the non-negative real
axis we get the result. O
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Corollary 7.1.26. Let J{ be a Hilbert space. The mapping
Sn i Bo(H)>T—s.(T)eR

is continuous for all n € N. Here s,,(T) denotes the n-th largest singular
value of T and B (H) is endowed with the norm topology.

Proof. Let {Tyx} C Bo(H) be a sequence converging to T. Then
Ve > 0,3N such that | Ty — T|| < €, Vk >AN:
Therefore,
| Tul] — e < || Teu|| < ||Tul| + €, Vk Z>AN pu With |ju|| = 1.

Hence by corollary [7.1.25| we get for alhn.c N, for all k > N, [s(T) —
Sn(Tk)| < E. OJ

Corollary 7.1.27. Let T be a compact operator and R be a bounded oper-
ator. Then we have already seenithat both TR and RT are compact. Also
$n(TR) < |IR|[sn(T), sn(RT) < [IRifsn(T), ¥Vn € N.

Proof. By the min-max‘principle we have

Sn1(RT) = min% max ||RTu|| < ||R|| min max ||Tu|| = ||R[|sn1(T).
dim(S)=n Huﬁsl dim(S)=n Huﬁsl
U= ull=

Also,
Sn(TR) = s (R*T*) < ||IR*||sn(T) = ||R]|sn(T). O

Definition 7.1.28 (Trace class operators). A compact operator T is said to
be-trace class if }_ s, (T) < oo. The collection of trace class operators on a
Hilbert space J{ is denoted by B; (H) or L, (H).

7.2 Practice problems

1. Let H be a Hilbert space. Show that there are dense subspaces of
codimension 1.
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2. Let (Q, %, P) be a probability space with 2 countably generated. Then
show that L2((Q, 2l, P)) is separable.

3. Consider the normed linear spaces with respective norms given by,

J_C:I: - {(Cn)neN . Z T":l:4|cn|2 < OO}/

=l

Ilen)l1E = ) I lenl®.

Show that (H, || - ||+) are Hilbert spaces Let ¢ € 4 Show that
there exists (dn)n = € H_ such that ¢((cn)n) = > dncn.

4. (*) Let Q be an open connected subset of the complex plane. Let

B2(Q) ={f:Q — C|fis holomorphicj W(2)|>dz < oo}
6}

(a) Show that B2(Q) is an inner prodwct)space with inner product

(f, gf= L f(z)g(z)dz.

Let ||f||z2(q) be the associated norm.

(b) Fix w € Q and ‘c¢hooese R > 0 such that closed ball of radius R

centred at w is contained in Q). Show that |[f(w)| < Hf]!'g%.

(c) Conclude'that B2(Q) is complete.

(d) Show that for allw € Q, f — f(w) defines a bounded linear
functional on B?(Q).

5. Areeproducing kernel Hilbert space is a Hilbert space J of functions
on a'set, Q, so that
(i) For any f # 0, there is x € Q with f(x) # 0.
(ii) For any x € Q, thereis f € J{ with f(x) # 0.
(iii) For any x #y € Q, there is f € I with f(x) # f(y).
(iv) Forany x € Q, there is Cy so that [f(x)| < Cy||f]|5, Vf € H.
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Prove that

(a) for any x € Q, there is k, € I so that Vf € I, f(x) = (k, ),
(b) each ky # 0and x #y = ki # ky;
(c) finite linear combinations of {k, }xcq is dense in K;

(d) K(y,x) =K(x,y) where K: Q x Q — C is the function

K(X/y) = <ky/ kx> - kx(y)
called the reproducing kernel of J;

(e) foranyn e N,xq, -+ ,xn € Q, 0y, -+, &n &C,'We have
Z GGK (X vz 0.
ij=1

Such a function is called.a positive definite kernel. This is actu-
ally positive semidefinite‘though.

6. Let K : O x O — C.be a positive definite kernel. For x € Q, let
ky : Q — C be the function k, (y) = K(x,y). Let co(Q) be the func-
tions on Q of theform ZI‘; 1 Giky, for finitely many points xq, - -+ , Xm.
Consider the sesquilinear form (-, -) : co(Q) X co(Q) — C

<Znikxi’z Cjkxj> = Z ﬁiCjK(Xi/Xj)-
i=1 i=1

ij=1
(a), Show that this is a well defined preinner product.
(b) Prove that for all f € ¢4(Q), (ky, f) = f(x),Vx € Q.

(c) Let H be the Hilbert space associated with the preinner product
space co(Q). Show that H is a reproducing kernel Hilbert space.

7. Let T € B(J(). Show that the following are equivalent.

(a) T = PT for some finite rank orthogonal projection P.
(b) T =TQ for some finite rank orthogonal projection Q.
(c) T=P'TQ’ for some finite rank orthogonal projections P’, Q’.
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(d) Tis a finite rank operator.

8. (*) Let T be a finite rank operator. Then show that both kernel and
cokernel of (I — T) have same dimension. Now show the same for
compact operators.

7.3 Banach Algebras

Definition 7.3.1. A Banach algebra A is a Banach space along with'an as-
sociative and distributive multiplication denoted (a, b) —_ a.b,such that
|a.b|| < CJ|al|||b]| for all a,b € A for some positive C.

Remark 7.3.2. Let A be a Banach algebra. Then there exists an equivalent
norm ||.||" on A such that for all a,b € A, ||a.b||" <Afal/"fb]]’.

Proof. Suppose ||a.b|| < Cl|a||||b||Va,b e A

Case 1: C < 1, take ||a|" = ||a]|

Case 2: C > 1, define ||a||’ = C||a||

In view of the above remark given.any Banach algebra we will assume
that the norm satisfies ||a.b|| < || a[jjb]|for all a,b € A. O

Proposition 7.3.3. (1) Let A be a,Banach algebra. Then A=A®Cisa
Banach algebra provided,

(X,O().(y,ﬁ) = (Xy—F(Xy—i—BX,OCB)
O ol =[xl + l«]

(2) x = (x;0)gives an isometric embedding of A in A as an ideal.
(3) e =40, 1) satisfies (x, «).e = e.(x, &) = (x,«) and ||e|| = 1.

Definition 7.3.4. A Banach algebra A with an element e such that ex =
x.e =xVx € A, ||e|| = 1is called a unital Banach algebra.

Remark 7.3.5. The previous proposition says every Banach algebra can be
isometrically embedded into a unital Banach algebra. Henceforth unless
otherwise stated a Banach algebra means a unital Banach algebra.
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Example 7.3.6. Let K be a compact Hausdorff space. C(K) be the space of
all continuous complex valued functions on K. For f, g € C(K), Define

(f+glp) = flp)+4glp)
(f.g9)(p) = f(p).g(p)
Ifll = suppex!f(p)l

C(K) is a commutative Banach algebra.

Example 7.3.7. Let E be a Banach space. Then £ (E), the space of all bounded
linear maps from E to itself is a Banach algebra under operator norm.

Example 7.3.8. Let K be a compact subset of €jor'C"* with nonempty in-
terior. Then A = {f € C(K) : f istholomorphic} is a Banach
algebra.

interior of

Proposition 7.3.9. Let G be a locally. compact group. Let pu be a Haar mea-
sure on G. Recall that p satisfies

Jf(gh)du(h) - Jf(h)du(h)-
Then A = L;(G, ) is aBanach algebra with multiplication defined by
(£ 72) = [ F(g)falg ™ Mu(g).
Proof. (1) fy% €, €L;:
[ famantn <[] mr(glitalg " hidugldnn

= [itolan(o) [Ita(miauin)
= |fll1lIf2[l1

Therefore we have proved

fixf, € L1(G)and
If1 %2l < [[fallalIf2]5
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(2) (f] *fz)*fg :f1 * (fz*fg) 0

(f1 % f2) * f3(w) = |[(f1 xF2)(v)f3(v 'udv

= nJﬂ (W)f2 (W) f3 (v u)dwdy

— "Jﬁ (W) f2(v)fz(v'wu)dwdv
= “f1 * (f2 x f3)(u)

]

Example 7.3.10. Let C'[0, 1] be the space of once continuously differen-
tiable functions. Define ||f|| = supxeio11/f(x)|+supxefo,i1f (x)|. Then under
pointwise multiplication C'[0, 1] is a Banach algebra.

Theorem 7.3.11. Assume that A is a Banach‘space as well as a complex
algebra with a unit element e # 0, in whiehymultiplication is both left
and right continuous. Then there is a normon A which induces the same
topology as the given one and makes A a Banach algebra.

Proof. Define m : A — L(A) by, m(x)(z) = xz. Clearly 7t(x) is linear.
It is continuous because multiplication is given to be right continuous.
IIx|]| = [|xe|l = ||(x)(e)|| £ llt(x]]||le||, So 7t is one to one. We also have
|t(x)7(y) || < ||7e(x) ][] Yit(e)|| = 1. So mt(A) is a Banach algebra pro-
vided it is complete.For that it is enough to show that 7t(A) is closed. For
that suppose 7t(x,) *¢ Tin L(A). Then x,, = 7t(x,)(e) — T(e) = x.
T (y).= limm(x,)(y) = limx,y = xy = 7t(x)(y)
by continuity of left multiplication. So T = 7t(x). O

Definition 7.3.12. A linear map ¢ : A — B is called a homomorphism if

dlxy) = d(X)bly), ¥x,yecA
)| < |Ix|]| ¥x € A

A nonzero homomorphism into the complex numbers is called a complex
homomorphism
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Proposition 7.3.13. If ¢ is a complex homomorphism on a Banach algebra
A then ¢(e) = 1 and $(x) # O for all invertible x € A.

Proof. Forsomey € A, d(y) #0, (y) = d(y)P(e) gives p(e) = 1.
d(X)d(x 1) = d(e) = 1 gives d(x) # 0. O

7.4 Spectrum

Proposition 7.4.1. Let x € A with ||x|| < 1 then (I — x) istinvertible.
Proof. The series Y ., x™ converges and is the inverse'of (I — x). ]

Corollary 7.4.2. Let G(A) be the set of invertiblewelements of a Banach
algebra A. Then G(A) is an open subset of A,

Proof. Let x € G(A). Fory € A with [jyf| < W, (x—y)=xTI-x""y)

is invertible by the previous propesition because ||x 'y|| < [x7'|||ly]l <
1. O

Definition 7.4.3. Let A be a“unital Banach algebra and x € A. Then the
spectrum of x is defined as {A €C : (A — x) is not invertible}. It is denoted
by 04 (x). We often drep the stbscript A. For a nonunital Banach algebra A

the spectrum of an.element x is defined as o ;(x) where A is the unitization
defined before.

Definition 7.4.4. The spectral radius p(x) of x € A is defined as
p(x) = sup{]Al: A € o(x)}.

Definition 7.4.5 (The resolvent set). The complement of spectrum of x € A
is'called the resolvent of x and is also denoted by p(x). We have also used
same notation for spectral radius. Both notations are standard. You have
to make out from the context.

Definition 7.4.6 (The resolvent function). Let x € A. Then for A € p(x), the
function A — Ry (x) = (A14 —x) 7! is called the resolvent function.

Proposition 7.4.7. Let x be an element of a Banach algebra A. Then o(x) is
a nonempty closed and bounded subset of C.
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Proof. o(x) is closed:

Enough to show that it's complement is open. Suppose A is such that (A—x)
is invertible. Then by the proof of the previous corollary the ball of radius
W around A is contained in o(x)¢. Hence o(x)€ is open.

o(x) is bounded:

If A is such that [A| > |[x[| then (A —x) = A(I — %) is invertible. Hence o(x)
is contained in the ball of radius ||x||.

o(x) is nonempty:

If possible let o(x) be empty. Then f(A) = (A —x)~! is a holemorphic
function defined on the entire plane. For A > ||x||, we have

_ (1 X\T
fA) = A (1 7\)
= X
= A1) XA, singélS [N T
;x 51nceH7\H 5
A
So, [[fM|I < Al ]m
« 1L
AN N

Hence f is a bounded entirefunction. Therefore it must be constant. From
the previous estimates we seethat lim,_,..f(A) = 0. Hence f is the constant
function 0. But 0 is not invertible so we get a contradiction. O

Theorem 7.4.8 (Gelfand-Mazur). Let A be a Banach algebra such that every
nonzero element issinvertible then A = C.

Proof. Suppese’A; # A, € o(x), then (x —A;) = 0 = (x — A;). Hence,
o(x) consists of a single point say A(x), and x = A(x)L. x — A(x) gives an
isomorphism between A and C. O

Lemma 7.4.9. Let R be a commutative ring over C. Then ab is invertible
iff a and b are invertible.

Proof. Suppose ¢ = (ab)™! = (ba)~'. Then a~' = bc because, (i) abc = 1
(ii) bca = abc = 1, the first equality uses commutativity. O
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Proposition 7.4.10. Let p be a polynomial. Then for any x € A, o(p(x)) =
plo(x)).

Proof. Let A € C.

plz)—A = CH(Z—N), for somec #0,A1,--- ,Ap €C

A (x) for seme i
A € p(o(xPsince A = p(A;)

H.
m
Q

Aeplo(x)) = A=npu) for'some p € o(x)
= p&) =M= (x — n)q(x) for some polynomial q
= 4AJ€ 0(p(x)) by the lemma above

O

Proposition 7.4.11. Let x be an element of the Banach algebra A. Then the
spectraladius satisfies p(x) = Lim[x™[|x = inf|[x™|"/™

Progf. By the previous lemma p(x™) = p(x)",Vn > 1, also p(x) < [x|.
Sopp(x)" = p(x") < [[x||* implying p(x) < inf|x™|'/™ < Lim|jx™||s.

To complete the proof it suffices to show Lim|x"||= < p(x). Let ¢ be a
continuous linear functional on A. Then the resolvent

fA)=A—x)"T=AT1=-ATx)"!

is holomorphic outside the disk of radius p(x). So, g(A) = A(1 —Ax)~' is
analytic inside the disk of radius ﬁ. For |A| < [|x|| we have the power
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series expansion g(A) = Y_ A""'x™. The function A — (¢ o g)(A) is holo-

morphic in the disk of radius ﬁ. Hence it’s Taylor series Y_ ¢(x™)A™"!

converges in this disk. Thus
ld(A™x™)| — 0 if [Alp(x) < 1.
For each fixed ¢ and A we have some constant C(A, ¢) such that
Supn|d(A™x™)| < C(A, §).

For each |A| < ﬁ consider the family of linear functionals on' A" given by
T :d — d(A™X"). We know

Supa[Ta(d)] < C(A, ¢).
By the uniform boundedness principle we get

sup || Ta|| < C(A) for some conistant C(A).
Clearly || T, || = [[A™x™]|, so

1
XM < CRAYIXT ™ for A < —
p(x)

1
— KW < CA)™MAITT for A < —
p(x)

1
= Lim|x™|"™ < A7 for Al < —

P(x)

= Tim|x™||"™ < p(x)

7.5 Abelian Banach Algebras

In this section unless otherwise stated we are dealing with a not necessar-
illy unital commutative Banach algebra A.
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112 7.5. Abelian Banach Algebras

Definition 7.5.1. Anideal m of A is called regular the quotient ring A/m is
unital. In other words if there exists e € Asuch thatVx € A, ex—x € m.

Proposition 7.5.2. Let m be a proper regular ideal of A. If e is an identity
modulo m, then we have

inf{le—x|[|:xem > 1.

Proof. Suppose |e —x|| < 1 for some x € m. Then the powet series y =

> i (e—=x)" converges. Since (e —x)y = }_, -, (e —x)"/ weihave

y = (e=x)+(e—x)y
= ey—xyt+e—x.

Hencee =y —ey +xy +x € m. Forany a'€ A/a = ea+ (a —ea) € m.
Thus m = A, a contradiction! O

Corollary 7.5.3. The closure of any.regular proper ideal of an abelian Ba-
nach algebra A is proper and regular.)In particular any maximal regular
ideal is closed.

Proposition 7.5.4. Any proper regular ideal is contained in a maximal reg-
ular ideal.

Proof. Let e be an identity modulo m. Then any ideal containing m is reg-
ular. Now apply Zorn’s lemma to ideals containing m and not containing
e. O

Proposition7.5.5. Let m be a closed ideal of a possibly noncommutative
Banachialgebra A. The quotient algebra A/m is a Banach algebra.

Proof. Letm: A — A/m be the quotient map. From the definition of the
quotient norm it follows that ||7t(x)|| = inf{||x + m| : m € m}. Given e > 0
get'm, n from m such that ||x + m| < [|[n(x)|| + €, |ly + n| < [|7(y)]| + €.
()7l = lIeOey)ll = [[7((x + m)(y + n))]|
< [x+m)(y +n)f
< (169l + eIl + ¢

Since e is arbitrary ||7t(x)7t(y)|| < ||7t(x)]|||7t(y)]- O

[Lecture Notes of P.S.Chakraborty]



7.5. Abelian Banach Algebras 113

Proposition 7.5.6. Let A be a unital Banach algebra. If an element x € A is
not invertible then x is contained in some maximal ideal.

Proof. Ax is a proper regular ideal. Hence there exists a maximal ideal
containing this. O

Proposition 7.5.7. Let ¢ : A — C be a nonzero complex homomorphism:
Then ¢~ '(0) is a regular maximal ideal. ¢ — ¢~ '(0) gives a bijection
between nonzero complex homomorphisms and regular maximal ideals
of A.

Proof. Since A/Ker() is isomorphic with a field ker(¢) is a'regular max-
imal ideal. To show that the correspondence is bijective observe that for
a regular maximal ideal m, A/m is a Banach algebra with every nonzero
element being invertible. This is so because otherwise by the above propo-
sition we will get a contradiction to the maximality of m. Now by the
Gelfand-Mazur theorem A/m = C. Hence'm =\ker(¢) where, ¢ : A —
A/m is the quotient map. O

Proposition 7.5.8. Let w be a nonzero complex homomorphism of A. Then
leoff < 1.

Proof. We have,

1/n nH'l/n

wOIT=NDOMI™ < ]| |
Now taking limit as'n goes to infinity we get |w(x)| < p(x) < ||x||. There-
fore ||w]|| < 1. O

Proposition 7.5.9. (i) Let Q(A) be the set of all nonzero complex homomor-
phisms..Then under weak* topology Q(A) is a locally compact Hausdorff
space.

(ii) If A is unital, then Q(A) is compact.

(iii) For x € A, X : Q(A) — C defined by X(w) = w(x) gives a homomor-
phism F: A — Co(€Q(A)), called Gelfand transform.

(iv) For A unital we have o(x) = {X(w) : w € Q(A)}. For A nonunital
o(x) ={x(w):w e Q(A)}U{0}.

W) IRl = ().
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Proof. (i) Let Q' = QU{0} and w; be a convergent net in QO'. Suppose w; —
w in weak* topology. Then w(xy) = limwi(xy) = limw;(x)wi(y) =
w(x)w(y). Therefore w is a homomorphism. It may be the zero homomor-
phism. Being a weak* closed subset of the unit ball of A* ()’ is compact.
Clearly {0} is closed. Hence QO(A) is locally compact. Suppose w; # w; €
Q(A). Then there exists x € A such that |w;(x) — w,(x)| > e.for some
e > 0. Note that {w : |w;(x) — w(x)| < ¢/3}and {w : |w,(x) — w(x)}< €/3}
are disjoint neighborhoods of w; and w,. Hence Q' is Hausderff.

(ii) If A is unital then {0} is an isolated point in Q' because for any other
w € Q'w(1) = 1. Hence Q is compact.

(iii) x € Co(Q(A)) because for any € > 0,{w : X(w)[y> €} is compact.
Clearly F is a homomorphism.

(iv) Case 1 A Unital : If A € o(x) then (x — A) is,n0t invertible. Hence there
exists w € Q(A) such that w(x —A) = O-orequivalently A = X(w). So,
A € Range of X. Conversely suppose A = %{w) = w(x), then w(x —A) = 0.
Hence A € o(x).

(v) Follows from (iv). Note that thisdmplies that the Gelfand transform is
contractive. O

Definition 7.5.10. Let Aybewa-commutative Banach algebra then Q(A) is
called the space of charactetrs of A or the spectrum of A.

7.6 Characters of [(G)

Let'Gbe a'locally compact abelian group and y, a left invariant Haar mea-
sure. Then we have seen the abelian Banach algebra L; (G, i). We wish to
identify its space of characters.

Theorem 7.6.1. Let w be a character of Ly (G), that is to say that it is a nonzero
homomorphism from L, (G) to the complex numbers. Then there is a continuous
homomorphism ¢ : G — T such that w(f) = fG f(g)d(g)dg.

Proof. In particular w is a bounded linear functional on L;(G), hence there
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exists ¢ € Lo, (G) such that w(f) = [ f(g)d(g)dg.

w(f +2) — hG(ﬁ*fz)(h)d)(h)dh

_ J f1(g)f2(g "h)b(h)dgdh
GJG

_ f1(9)(J Ly(f2) (W (h)dh)dg
dnG G

— Gﬁ(g)w(l_g(fz))dg

On the other hand

w(fr *xf2) = w(fi)w(fr)
_ w(fz)J e d(9)dg.

G

Therefore ,

JGw(fz)ﬁ(g)cb(g)dg \ JGfl(g)w(Lg(fzndg,whfzeL1(G).<7.10)

Since w is a nehzero homomorphism there exists f, such that w(f,) # 0.
It follows fromn(7.10) that

w(Lg(fZ))

$(g) o(f)

,a.e (7.11)

Note that ¢ is determined upto a set of measure zero. However Part (3) of

proposition (??) along with (7.11)shows that ¢ is almost everywhere equal
w(Lg(f2))

to a continuous function namely =7#—— and we will take this representa-
tive. In particular ¢(e) = 1. To see that ¢ is multiplicative note that given
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arbitrary f;,f, € L;(G),

0 = w(fy*f)—w(f)w(f2)
_ ﬁ(g)fz(g_]h)dD(h)dgdh—(J f1(9)d>(9)d9)(J £5(h)$(h)dh)
UPG JFG G G

_ ﬁ(g)fz(g—‘hw(gg—‘h)dhdg—J J £1(9)f2(W)d(g¥b(h)dgdh
UPGJFG GJG

_ ﬁ(g)fz(h'w(gh')dwdg—J J £1(9)f2(n) (g1 th)dgdh,
JG JG GJG

[ substituiting g~'h = 1/, ]

ror

= |_|_nl@nm@gh - elg)eh)dgdn

Since ¢ is continuous this shows that ¢ is.a homemorphism, that is

¢(gh) = d(g)p(h), Vg, h € G.

It remains to show that [p(g)| = T)¥g &€ G. Suppose there exists o« > 1 such
that the open set A, = {g €« : |$p(g)| > «} is non-empty. Fix a compact
subset K of A of positiveimeasute. Define

¢(g)
f(g) — {cb(g)l if g€k,

0, otherwise

Then ||f||; & [K|,.where |K| denotes Haar measure of K. Let f = W By
proposition (Z.5.8) we have
x - (9) ¢(9)
12> ||wl.[f]| = |lw(f)] = J ——=———=-d
[|ewl[[I£1] Tole) K 99
[$(9)]
——dg>a>1!
L K Y

This contradiction shows that A, must be empty. That is [p(g)| < 1 for all
g € G. Similarly considering d)(g)_1 we conclude that [d(g)| > 1 for all
g € G. Thus we get range of ¢ is contained in {z € C: |z| = 1}.

O
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7.7 Cr-algebras

Definition 7.7.1. A Banach algebra A is called involutive if there exists a
map * : A — A such that a — a* satisfies

(a+Ab)* = a*+ Ab%,
(ab)* = b*a¥,

(@) = q,
=]l
An involutive Banach algebra A is called a C*-algebra if, [xx|| = ||x||* for

all x € A.

x € A is called hermitian or selfadjoint if x = %*;mormal if xx* = x*x,

unitary if x*x = xx* = I, projection if x = x* = x%,

Proposition 7.7.2. Let A be a C*-algebra. 'If x’€ A is normal then ||x|| =

p(x).
Proof. ||x?]]? = ||(x2)**%?| = [|(x%)*i=]|x*x||? = ||x||*. Therefore we have,
1X2]| = lIxI|?, implying [[x*"|| = W&*". So p(x) = |Ix]- O

Proposition 7.7.3. Let A<be'a unital C*-algebra.
1. o(u) C{A: [AJ{=MWfor all unitary u.
2. o(h) C R'fer all hermitian h.

Proof. (1)]|ul]? = lwu|| = |1l = 1 = |ju|| = 1. Therefore o(u) is con-
tainedsin.the unit disc. Also u is invertible with uw=! = u*. Therefore 0
does not\belong to o(u). Therefore by the spectral mapping theorem we
have o(u™') C{z € C: |z| > 1}. On the otherhand ||[u"'|| = ||u*|| = 1, hence
o(u™') C{z € C: |z] < 1}. Therefore o(u') C {z € C: |z| = 1}. Now by the
spectral mapping theorem we are done.

(2)u = e'" is a unitary. Hence by the spectral mapping theorem we
have e'®(") C {z € C : |z] = 1}. The only way this can happen is o(h) C
R. O
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Theorem 7.7.4. Let A be an abelian C*-algebra. If Q is the spectrum of A,
then the Gelfand transformation is an isometric isomorphism of A onto Co(Q),
preserving the x-operation.

Proof. We know |X|| = p(x). On the other hand since A is abelian every
element is normal. So, ||x|| = p(x). Therefore the Gelfand transform x — x
is isometric. Take w € Q, forh € A, w(h) € o(h) C R. x can be expressed
asx = h+ik, with h, k € An. w(x*) = w(h —ik) = w(h) —iWEK)= w(x).
Hence x — X preserves *-operation.

Let F: A — Co(Q), F(x) =X, then F(A) separates points\because if w; #
w> € O, then there exists x € A such that w1 (x) #.;(x). Hence x(w{) #

X(w3z). By the Stone-Weirstrass theoremFA = Co(Q). O

Proposition 7.7.5. Let O be a locally compactddausdorff space and A =
Co(Q). The map w € Q — @ € Q(A) given by &(x) = x(w) is a homeo-
morphism of Q) onto Q(A).

Proof. Let us assume Q to be compaetThen Q(A) is compact and w — @®
is continuous because if w, —=w then x(wy) — x(w)vx € A, or equiva-
lently @(x) — w(x).
w —  is one to one: Suppose,w; # w,, then by Tietze extension theorem
3f such that f(w;) = 0fand f(w,) = 1. w;(f) # w;(f).
w — @ is onto: Jet mybe a maximal ideal of A. Then Jw such that
m = {x : x(w) =0k Let ¢ be the homomorphism corresponding to m,i.e.,
¢:A— A/, (%)= x(w). Then @ = ¢. So w +— @ is a bijective map
between compact Hausdorff spaces. Hence it is a homeomorphism.

If Qis locally compact and not compact then argue through one point
compactification. O

Proposition 7.7.6. Let B C A be a C*-subalgebra of a unital C*-algebra
containing the identity. Then Vx € Bog(x) = 04(x).

Proof. Case 1: Let x be self adjoint.

Clearly 04 (x) C og(x). Suppose A € R\ 04 (x) we want to show A ¢ og(x).
For € > 0,A\c = A +1ie & o5(x), hence (x —A.)~" € B. Using continuity of
inverse in G(A), we get (x —Ac) ' — (x —A) ! in G(A). Since B is closed,
(x —A)~" € B, hence A € o5(x).

Case 2: If x € Bis invertible in A then x*x is invertible in A and so in B (By
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the previous case). Hence x is left invertible in B. Similarly using xx* x is
right invertible in B. Hence x is invertible in B. So, A ¢ o4(x) iff (x —A) is
invertible in A iff (x — A) is invertible in B iff A ¢ o3 (x). ]

Proposition 7.7.7. Let A be a unital C*-algebra. If x € A is normal then
there exists a unique isomorphism ¢ : C(o(x)) — C*(x), the C*-algebra
generated by x and 1 such that ¢(i) =1, d(1) = x where 1 : o(x) — Cis the
function ((A) = A.

Proof. Let B = C*(x) and P = polynomials in x and x*. P iscdense/in
B. Let Q = space of all complex homomorphisms from B te C.\Define
P:Q — o(x) by p(n) =n(x).

P(n) € o(x): n(x —n(x)) =0, hence x — n(x) is not invertible.

1 is continuous: Suppose 1 — 1 in weak”, then n (xh==n(x) in C.

1 is one to one: Suppose 1; and 1, are two homemerphisms such that
M7 (x) =n2(x), then nq|p = n2|p. Since P is dense in.B;1; = 1>.

1 is onto: Suppose A € o(x), then In such that A=n(x). P(n) = A.

1 is a bijective continuous map between: compact Hausdorff spaces and
hence a homeomorphism. 1 induces antisomorphism between C(Q)) and
C(o(x)). This isomorphism compesed with the inverse of the Gelfand
transform gives the required isomorphism. In other words ¢(f) = F'(fo
1) is the isomorphism. ]

Definition 7.7.8 (Continuous Function Calculus). Let x € A be a normal
element. Let f be a complex-valued continuous function on o(x). Then
¢ (f) with ¢ as in the'previous proposition is denoted by f(x).

Proposition 7.7:9. Let/Al be a unital C*-algebra. Then every element of A
is a linear combination of 4 unitary elements.

Proof. Letxne~/A be selfadjoint and ||x|| < 1. u = x + i(] —x)""?isa
unitary.andx = %(u +u*). O]

Proposition 7.7.10. Let K C C be compact. Ax = {x € Alx is normal
and o(x) C K}. If f : K — C is continuous then x € A; — f(x) € A is
continuous.

Proof. By Stone-Weirstrass there ixists a polynomial p(z,z) such that

Sup.cxlp(z,z) — f(z)| < €
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There exists a constant M such that ||x|| < M for x € Ak. Also, since p is a
polynomial 36 > 0 such that

lp(x,x™) =Py, y*)| < eif [lx =yl <8, [Ix[|, [yl < M.

Now if x,y € Ax and ||[x —y|| < §, then [|f(x) — f(y)| < [|f(x) —p(x,x*)| +
P06, x) =Py, y)I + [[f(y) —ply,y7[l < 3e. -

Theorem 7.7.11. For a selfadjoint element x in a C* algebra A thefollowing are
equivalent.

(i) o(x) € [0, c0).

(ii) x = y*y for some y € A.

(iii) x = h? for some h € A.

The set of all selfadjoint elements satisfying any of the above is a closed convex
cone P in A with PN (—P) ={0}
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7.8 Assignment-III due on 28/04/25

1. Let H be a separable Hilbert space. Show that there exists subspaces
{H}sepo,1) such that foreach 0 < s <t < 1,H € H;.

2. (*) Let E,F be normed linear spacesand T : E x F — K be a bilin-
ear map. Show that T is continuous where E x F is endowed with
the product topology iff 3C > 0 such that [T(x,y)| < C|x|||ly[[, VX &
EyeF

3. Let 3, H’ be Hilbert spaces. Consider the sesquilinearformyon the
algebraic tensor product H ®q,4 H' given by

WU, v@V)sxerr = (W, Vg - (Wi g

Show that this is a preinner product. Is H @q14*H" complete with
respect to the associated norm? The associated Hilbert space is de-
noted by H @ H".

4. (*)Let (Q,&,P),(Q, &, P), thenshowthat L?(Q) ® L?(Q’) is unitar-
ily equivalent with L?((Q x Q; & &',P ® P)).

5. (*) Let||-|1, ||-||2 be norms®©n E such that E is complete with respect to
both the norms and there exists ¢ > 0 such that ||x||; < c||x||2,Vx € E.
Then show that both'the.norms are equivalent.

6. (*) Show that £ris not complete in the norm || - |-

7. Let E, F be’Banach spaces and T € L(E;F) be such that Vx € E,3n,
such that T™ (x) = 0. Then show that there exists n such that T"(x) =
0.

8. () Forr > 0, let I}, be the Hilbert space given by

J{‘r - {{Xn}nGZ :Vn e Z/ Xn € C/ H{Xn}Hr = \/Z“ + nZ)r/2|Xn’2 < OO}

Lett > s > 0and T : H, — X be the inclusion map. Then show
that T is a compact operator. (Hint: Show that the image of the unit
ball is totally bounded. )
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Assignment

10.

11.

12.

13.

14,

15.

(*) Let (Q, G, P) be a probability space and K € L*((QAx Q,686,P®
P)). Then show that T : L?(Q) — L?(Q) given by

(Tef)(x) = JK(x,y)f(y)dP(y)

is a compact operator.
Let T € £L(H). Then show that

(@) ker(T) = Ran(T*)*.

(b) ker(T)* = Ran(T*).

(*) Let T € B(H) be normal. Then show<that 67(T) = (), where o,(T)
is the residual spectrum of T.

(*) (Quasi nilpotent) Let {A,, } be a sequence of scalars so that |A,,| | 0.
Define T : {;(N) — £,(N) the linear map

T({Xn}neN = {Un}nEN/ where Yn = )\nxn—o—l .

Compute ||T"|| and cenclude that lim,, || T™||'/™ = 0. Such operators
are called quasi‘nilpetent operator. Let A C B({,(N)) be the unital
Banach algebra generated by T and w : A — C be a unital homomor-
phism. Shew'that w(T) = 0.

Let E¢be a=vector space over K and ¢;;1 < j < n, ¢ be linear func-
tionals'such that Nker ¢; C kerd. Show that there exists scalars
Al < j <nsuchthatd =) Ajd;.

Let E be a K vector space and A be a subspace of the space of linear
functionals on E. Note that E is just a vector space and we are con-
sidering linear maps. Show that (E, o(E;A))* = A. (Hint: use (1c) of
assignment II along with the previous problem)

Let E, F be Banach spaces and T : (F*;weak™) — (E;weak") be a con-
tinuous linear map. Show that there exists a norm continuous linear
map S : E — Fsothat T = S§*. (Hint: Obtain S by the previous
exercise and conclude continuity using closed graph theorem.)
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16.

17.

18.

(***) Let (Q, &) be a measurable space and & : & — P(H) be a spec-
tral measure with J separable. For u,v € 7, let &,,, : & — C be the
complex measure &, (A) = (u, E(A)v). Let 8 be the collection of all
simple functions. Show that

®:8— B(H),s— ) cif(A

where s = ) cixa, defines a *-homomorphism satisfying the follow-
ing properties,

(a) <LL,(D(S) >:J‘ ( )dauv( )
b) [|@(s)v]|* = [Is(x)I*d&y (x).

) [|@(s)|| = inface,e(a)=0 SUP, e IS(X)] = [|s]loae-

Let L (&) be the completion of 8 in the nofm|.: ||o,c. Show that @
extends to a *-homomorphism © : L, (&) B(FH) satisfying (i)-(iii).
We use the notation f fdé¢ to denote @ (f)

Let H be a Hilbert space and {Uicr OB (H) be a family of unitaries
so that Uy = [, Uy o Uy = Ui, ¥, 6 € R. Such a family is referred
as a one parameter unitary group Suppose t — U is a continuous
adjoint

operator

Let TB(H) be a hormal operator with its spectral measure &. Show
that A € o, (Thiff E({A}) # 0 where o, (T) denotes the point spectrum
of T.
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