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Rules of The Game

We do experiments to learn about things. There are people who recognise
their significance and are explicit about it. This explicitness is also at the
core of mathematical methods. So, this semester we will do several of
them.

The Checklist

You are attending classes for several years and if not all, I am sure many
of you use a checklist to assist you in your studies. May be we can do that
officially. Here is a checklist. You should use this list regularly. I wrote
down whatever came to my mind and as we go along we will append
this.

Checklist

• Did I introduce any concept? If so then what is that concept? You
must pay attention to concepts being introduced.

• Was the concept introduced out of thin air or were their attempts to
motivate the introduction?

• Did you feel motivated? Note that what constitutes motivation etc.
are subjective issues but that does not mean we can’t talk about them
and introduce objectivity. If you are not motivated did you raise any
objection? You can still do it. Only condition is, you must be able
to write down your objection clearly. At the end of the day, the sub-
ject of Mathematics is about one and only one thing clarity. Clarity
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of thought expressed through precise linguistic means characterises
this subject.

• Was the concept illustrated through examples? Do you want more?
This has a catch though because you have to answer when do you
consider two examples to be different. Of course I’ll assist you there.

• Do you think the purpose behind the introduction of the concept
has been achieved? If not, you should come back to this question in
future and check again.

• Can you summarise the material covered in this class? Or in this
topic/subtopic?

Later on we may and I am sure we will append this checklist. We will
communicate on this matter through other channels like WA.

Taking Notes

It is better to take your own notes.

Weightage

Classtest 10(5+5), Assignent+Notes+Viva 10, Midsem 30, End semester 50.

[Lecture Notes of P.S.Chakraborty]
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Getting Ready

Functional Analysis is the study of linear algebra coupled with topological
considerations. Even though this could be an almost accurate and possi-
bly shortest description of the subject, in reality it did not start with such
considerations. It is not that one fine morning someone thought let’s see
what happens if we club topology and linear algebra together. No, mean-
ingful subject starts in that way. It came up in our endeavour to answer
very natural questions. As we go along I hope to indicate more impressive
reasons behind topologizing linear algebra. However, for the time being
we will remain content with this naive motivation.

1.1 Nets

Since we wish to topologize linear algebra we begin by asking how can
we specify a topology. This could be done, for example, by specifying the
class of closed sets or equivalently by specifying the operation of taking
closures. We have seen this while introducing topologies associated with
metric spaces. The following proposition shows that the concept of se-
quential convergence allows us to define the notion of closure of a set in a
metric space.

Proposition 1.1.1. Let (X,d) be a metric space and A ⊆ X. Then closure of
A is given by

A := {lim xn : {xn} ⊆ A, is a sequence }
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We also know that such a proposition does not hold in a topological
space unless that is first countable. Is there a natural generalisation of se-
quential convergence so that there is an analog of this proposition in the
setting of topological spaces? This was answered by E.H. Moore and Her-
man L. Smith in 1922, in the article "A General Theory of Limits" spanning
pages 102-121, published in the 2nd issue of the 44th volume of the journal
American Journal of Mathematics. Instead of writing such long sentences
we could have written "this was answered by, E. H. Moore ; H. L. Smith, A
General Theory of Limits, American Journal of Mathematics, 1922, 44 (2),
102-12" and in future will write this way. Here is what Moore and Smith
did. They described a natural generalisation of a sequence called nets and
that allowed them to obtain closure of a set in a general topological space
through what they called convergence of nets. Lets see that.

Definition 1.1.2 (Preorder). A binary relation ⪯, on a set Λ is called reflex-
ive if λ ⪯ λ, ∀λ ∈ Λ. The relation ⪯ is said to be transitive if given any
three elements λ1, λ2, λ3 ∈ Λ satisfying λ1 ⪯ λ2 ⪯ λ3 we have λ1 ⪯ λ3. A
reflexive, transitive binary relation is called a preorder. A preordered set
(Λ,⪯) is a set Λ, equipped with a preorder ⪯.

Definition 1.1.3 (Directed Set). A preordered set (Λ,⪯) is called directed
if

∀λ1, λ2 ∈ Λ,∃λ ∈ Λ, λ1 ⪯ λ, λ2 ⪯ λ.

A preorder with this property is called a direction.

Example 1.1.4. 1. (N,⪯) with n ⪯ m iff n ⩽ m is a directed set.

2. ((0,∞),⪯) with y ⪯ x iff y ⩽ x is a directed set.

3. ((0, 1),⪯) with y ⪯ x iff x ⩽ y is a directed set.

Example 1.1.5. Let X be a topological space and x ∈ X. Let Nx be the set
of neighbourhoods of x. Consider the relation W ⪯ V if V ⊆ W. Then
(Nx,⪯) is a directed set.

Exercise 1.1.6. Are the examples in 1.1.4 special cases of example 1.1.5?

[Lecture Notes of P.S.Chakraborty]
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1.1. Nets 3

Definition 1.1.7. Let (Λi,⪯i)i∈I be a family of directed sets. Then Λ :=∏
iΛi becomes a directed set with (ai)i∈I ⪯ (bi)i∈I if ai ⪯i bi,∀i. The di-

rected set (Λ,⪯) is called the product directed set of the family (Λi,⪯i)i∈I.
Unless otherwise specified we will always endow products of directed sets
with this direction.

Definition 1.1.8 (Net). Let X be a set and (Λ,⪯) be a directed set. A net
{xλ}λ∈Λ in Xwith index setΛ is a map x : Λ ∋ λ 7→ xλ ∈ X. When the index
set is understood we drop it from the notation and just say, {xλ} ⊆ X is a
net.

Example 1.1.9. Every sequence defines a net with the index set (N,⩽).

Definition 1.1.10 (Convergence of nets). A net {xλ}λ∈Λ in a topological
space X is said to converge to some point x ∈ X if for each neighbour-
hood V of x, there exists λ0 ∈ Λ such that xλ ∈ V whenever λ0 ⪯ λ. In that
case we say x is a limit of the net {xλ} and write xλ → x.

Proposition 1.1.11. A topological space X is Hausdorff iff every net in X
converges to at most one point.

Proof. If part: Suppose X is not Hausdorff. Then existsx,y ∈ X such that
∀U ∈ Nx,∀V ∈ Ny,U ∩ V ̸= ∅. For each (U,V) ∈ Nx ×Ny, xU,V ∈ U ∩ V .
Then the net {xU,V }(U,V)∈Nx×Ny

converges to both x and y.
Only if part is left as an exercise.

Exercise 1.1.12. Prove only if part of the proposition 1.1.11.

Now we will show that the analog of proposition 1.1.1 holds.

Proposition 1.1.13. Let X be a topological space, A ⊆ X and x ∈ X. Then
x ∈ A iff x is a limit of a net {xα} ⊆ A.

Proof. Let x ∈ A. If V ∈ Nx, then V ∩ A ̸= ∅, so there exists xV ∈ V ∩ A.
Then the net {xV }V∈Nx

converges to x. Conversely if xα → x and {xα} ⊆ A

then x ∈ A.

Definition 1.1.14 (Subnet). A net {yβ}β∈B is a subnet of a net {xα}α∈A if
there is an order preserving function ϕ : B→ A such that (i) for all α0 ∈ A,
there exists β0 ∈ B such that ϕ(β0) ⪰ α0, in other words ϕ(B) is a cofinal
subset of A and (ii) for all b ∈ B,yb = xϕ(b).

[Lecture Notes of P.S.Chakraborty]
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4 1.1. Nets

Remark 1.1.15. In the mathematical community there is lack of uniformity
regarding the concept of subnet. This is due to Willard and we will stick
to this.

Example 1.1.16. Every subsequence is a subnet.

Example 1.1.17. Consider the sequence of natural numbers {xn = n2 + 1}.
Then the net {ym,n}(m,n)∈N×N of natural numbers defined by ym,n = (m +

n)2 + 1, is a subnet of the sequence {xn}. To see this, note that we can take
ϕ : N × N ∋ (m,n) 7→ (m + n) ∈ N. Note that the net {ym,n}(m,n)∈N×N is
not a subsequence of {xn}.

Example 1.1.18. Net {nk}k∈N be an increasing sequence of natural num-
bers. Let N0 = 0. Let ϕ : N → N be the map ϕ(j) = k if nk−1 < j ⩽ nk.
Thenϕ is monotone. Given any sequence {xn} consider the subnet {yn}n∈N

given by yn = xϕ(n). Clearly {yn} need not be a subsequence. For example
if nk + 1 < nk+1, then {yn} is not a subsequence.

Example 1.1.19. Consider the nets {yλ}λ∈(0,1) and {xα}α∈(0,∞) defined by
yλ = 1

λ
where µ ⪯ λ iff λ ⩽ µ and xα = α with α ⪯ β iff α ⩽ β. Then {yλ}

and {xα} are each other’s subnet.

Definition 1.1.20 (Limit point/Accumulation point/ Cluster point). An el-
ement x in a topological space is a limit point (accumulation point/cluster
pointare also used) of a net {xα} if for all neighbourhood V of x and each
index α there exists β ⪰ α with xβ ∈ V . The possibly empty set of limit
points of the net {xα} is denoted by Lim{xα}.

Proposition 1.1.21. In a topological space X, a point x is a limit point of a
net {xα} iff x is the limit of some subnet of {xα}.

Proof. Let x be a limit point of the net {xα}α∈A. For each (α,V) ∈ A ×Nx

pick some ϕα,V ⪰ α and xϕα,V ∈ V . Now consider the net {yα,V } given by
yα,V = xϕα,V and note that {yα,V } is a subnet of {xα} converging to x.

Conversely suppose a subnet {yβ}β∈B converges to x. Fix α0 ∈ A and
V ∈ Nx. We have to find α′ ⪰ α0 such that xα′ ∈ V . Since {yβ} is a subnet
we have a map ϕ : B → A. Since ϕ(B) is cofinal we can pick β0 ∈ B such
that ϕ(β0) ⪰ α0. Choose β1 ∈ B so that β ⪰ β1 =⇒ yβ ∈ V . Choose
β2 ⪰ β1,β2 ⪰ β0. Then ϕ(β2) ⪰ ϕ(β0) ⪰ α0. Take α′ = ϕ(β2). Then
xα′ = xϕ(β2) = yβ2

∈ V .

[Lecture Notes of P.S.Chakraborty]
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1.2. Filters 5

Remark 1.1.22. Is there a problem in the argument? Can you fix that? Don’t
read. Think and try.

Fixing the proof of proposition 1.1.21. Let x be a limit point of the net {xα}α∈A.
Let B = {(α,V) ∈ A ×Nx : xα ∈ V} and ϕ : B ∋ (α,V) 7→ α ∈ A. For each
(α,V) ∈ A×Nx pick some α′ ⪰ α such that xα′ ∈ V . Thus (α′,V) ∈ B and
(α′,V) ⪰ (α,V). This shows ϕ(B) is a cofinal subset of the directed set A.
Given (α,V) ∈ B, let {yα,V } = xα. The net {yβ}β∈B is a subnet of {xα}. This
subnet converges to x.

Lemma 1.1.23. In a topological space X, a net {xα} converges to a point x iff
every subnet converges to the same point.

Proof. Obvious.

Exercise 1.1.24. Let {xλ}λ∈Λ be a net in a topological space X. Suppose
there exists x ∈ X such that every subnet of the given net admits a further
subnet converging to x. Then the original net {xλ} must be converging to
x.

1.2 Filters

The concept of filters is due to Henry Cartan. This also serves the same
purpose as nets in the sense that it allows us to describe the closure of a set
in a topological space. One drawback of nets is the directed sets involved
are not internal. This drawback is addressed in the notion of filters. Precise
meaning of this remark will become clearer as we go along.

Definition 1.2.1. A filter on a set X is a family F of subsets of X satisfying

1. ∅ /∈ F and X ∈ F.

2. A,B ∈ F =⇒ A ∩ B ∈ F.

3. If A ⊆ B and A ∈ F then B ∈ F.

A free filter is a filter F with ∩A∈F = ∅. The filters that are not free are
called fixed.

[Lecture Notes of P.S.Chakraborty]
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6 1.2. Filters

Example 1.2.2. Let X be a set and S ⊆ X. Then F := {A ⊆ X|S ⊆ A} is a
filter. Note that this is a fixed filter.

Example 1.2.3. Let X be an infinite set and F := {A ⊆ X|Ac is finite } is a
filter called the cofinite filter on X. This is a free filter.

Example 1.2.4 (Neighbourhood filter). Let X be a topological space and
x ∈ X. Then

Nx := {N|N is a neighbourhood of x}

is a filter called the neighbourhood filter at x.

Definition 1.2.5. A filter G is a subfilter of another filter F if F ⊆ G. Care-
fully note the nature of the inclusion for the term subfilter. In this case we
say G is finer than F. A filter U is called an ultrafilter if it has no proper
subfilter.

Our next result requires a set theoretic technology. We won’t spend
much time on this though.

Definition 1.2.6. A binary relation ⪯ on a setΛ is said to be antisymmetric
if λ1 ⪯ λ2 and λ2 ⪯ λ1 for some λ1, λ2 ∈ Λ implies λ1 = λ2. A reflexive,
antisymmetric, transitive binary relation is called a partial order. A par-
tially ordered set (Λ,⪯) is a pair consisting of a set Λ along with a partial
order ⪯ on Λ. A subset Λ′ ⊆ Λ of a partially ordered set (Λ,⪯) is said
to be linearly ordered if given any λ, λ′ ∈ Λ′ we have either λ ⪯ λ′ or
λ′ ⪯ λ. In other words any two elements of Λ′ can be compared. An ele-
ment λ′ is an upper bound for a subset Λ′ of a partially ordered set (Λ,⪯)

if λ ⪯ λ′, ∀λ ∈ Λ′.

Theorem 1.2.7. [Zorn’s lemma] Let (Λ,⪯) be a partially ordered set in which
every linearly ordered subset has an upper bound. Then there is a λ ∈ Λ which is
maximal. This means that there is no λ′ ∈ Λ with λ ⪯ λ′. Note that the theorem
does not assert existence of an upper bound for Λ.

Remark 1.2.8. Zorn’s lemma is equivalent to the axiom of choice. In that
sense it is an axiom of ZFC an axiomatic formulation of set theory.

Theorem 1.2.9. Every filter is included in at least one ultrafilter. Consequently
every infinite set has a free ultrafilter.

[Lecture Notes of P.S.Chakraborty]
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1.2. Filters 7

Proof. Let F be a filter on X and let P be the partially ordered set of all
subfilters of F. P is partially ordered by inclusion. In this partially ordered
set every linearly ordered subset P′ has the obvious upper bound ∪F∈P′F.
So Zorn’s lemma applies and produces an ultrafilter as a maximal element
of P. For the last statement note that an ultrafilter containing the cofinite
filter is free.

Lemma 1.2.10. Every fixed ultrafilter on a set X is of the form Ux = {A ⊆ X|x ∈
A}.

Proof. Let U be a fixed ultrafilter and let x ∈ ∩A∈UA. Then Ux is an ultrafil-
ter containing U. Therefore U = Ux.

Exercise 1.2.11. Let X be a set. Show that a collection F of nonempty sub-
sets of X closed under finite intersections is an ultrafilter iff for all subsets
A of X, one of A,X \A belongs to F.

Definition 1.2.12. A nonempty collection B of subsets of a set X is a filter
base if

1. ∅ /∈ B.

2. If A,B ∈ B then ∃C ∈ B with C ⊆ A ∩ B.

Every filter is a filter base. On the other hand, if B is a filter base, then the
collection of sets

FB := {A ⊆ X|B ⊆ A, for some B ∈ B}

is a filter, called the filter generated by B. For instance the open neighbour-
hoods of a point x of a topological space X forms a filter base B generating
Nx.

Lemma 1.2.13. An ultrafilter U on a set X satisfies the following.

1. If A1 ∪ · · · ∪An ∈ U then Ai ∈ U for some i.

2. If A ∩ B ̸= ∅,∀B ∈ U then A ∈ U.

Proof. (1)Let U be an ultrafilter on X and A ∪ B ∈ U. If A /∈ U then F :=

{C|A ∪ C ∈ U} is a filter satisfying B ∈ F and U ⊆ F. Hence U = F.
(2) Assume A∩B ̸= ∅,∀B ∈ U. If we set B := {A∩B|B ∈ U}, then B is a

filter base and U ⊆ FB. So FB = U. Since A ∈ FB we get A ∈ U.

[Lecture Notes of P.S.Chakraborty]
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Lemma 1.2.14. If U is a free ultrafilter on a set X, then U contains no finite
subsets of X. In particular only infinite sets admit free ultrafilters.

Proof. A free ultrafilter contains no singletons because if {x} ∈ U, then for
any A ∈ U,A ∩ {x} ∈ U. Since ∅ /∈ U, we must have {x} ⊆ A. Thus
x ∈ ∩A∈UA! Now for an ultrafilter if the finite set {x1, . . . , xn} = ∪i{xi} ∈ U,
then by the previous lemma we must have {xi} ∈ U for some i.

Definition 1.2.15 (Filter Convergence). A filter F on a topological X con-
verges to a point x ∈ X, written F → x is F includes the neighbourhood
filter Nx at x i.e., Nx ⊆ F. Similarly a filter base B converges to a point x,
denoted B → x if FB → x. Clearly Nx → x.

Definition 1.2.16. An element x in a topological space X is a limit point of
a filter F if x ∈ A, ∀A ∈ F. The set of all limit points is denoted by LimF.
Clearly LimF = ∩A∈FA.

Proposition 1.2.17. In a topological space X a point x is a limit point of a
filter iff there exists a subfilter converging to x.

Proof. Let x ∈ LimF = ∩A∈FA. Then B = {V ∩A|V ∈ Nx,A ∈ F}. is a filter
base. clearly ∀A ∈ F,∀V ∈ Nx,V ∩ A ⊆ A, therefore F ⊆ FB. Similarlr
Nx ⊆ FB. That is FB is a subfilter converging to x.

For the converse, suppose F ⊆ G is a subfilter with G → x, i.e., Nx ⊆ G.
Then for each A ∈ F and V ∈ Nx both belong to G and consequently
V ∩A ̸= ∅.

Exercise 1.2.18. In a topological space a filter converges to a point x iff
every subfilter converges to x.

1.3 Relations between nets and filters

Let {xλ}λ∈Λ be a net in a topological space X. For each λ ∈ Λ, let Fλ := {xλ′ :

λ′ ⪰ λ} and B := {Fλ : λ ∈ Λ}. Then B is a filter base and FB, the filter
generated by B is called the section filter of {xλ} or the filter generated by
the net {xλ}.

Proposition 1.3.1. Let {xλ}λ∈Λ be a net in a topological space X. Then
Lim{xλ} = LimF where F is the section filter of {xλ}.

[Lecture Notes of P.S.Chakraborty]
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Proof. If x ∈ Lim{xλ} then yα → x for some subnet {yα}. The filter gener-
ated by {yα} is a subfilter of F converging to x. Conversely if x ∈ LimF.
Then consider the directed set

B = {(λ,V)|λ ∈ Λ,V ∈ Nx, xλ ∈ V}.

In other words B is a subset of the Cartesian product of Λ and Nx with the
product direction. Define ϕ : B → Λ by ϕ((λ,V)) = λ, and y(λ,V) = xλ.
Then {y(λ,V)} is a subnet of {xλ} converging to x. Therefore x ∈ Lim{xλ}.

Consider an arbitrary filter F in a topological space X. Define Λ :=

{(λ,A)|A ∈ F, λ ∈ A}. Then Λ has a natural direction given by (λ,A) ⪰
(λ′,B) is A ⊆ B. We have a net {x(λ,A) := λ} with index set Λ. This net is
called the net generated by the filter F. Observe that F(λ,A) = A. So, the
filter generated by {x(λ,A)} is F. In particular we have Lim{x(λ,A)} = LimF.
We have proved the following theorem.

Theorem 1.3.2. In a topological space X, a net and the filter it generates have the
same limit points. Similarly a filter and the net it generates have the same limit
points.

1.4 Applications of nets and filters

Now we prove theorems reminiscent of results we had for metric spaces
involving sequences.

Theorem 1.4.1. For a function f : X→ Y between topological spaces and points
x ∈ X the following are equivalent.

1. The function f is continuous at x.

2. If a net xλ → x then f(xλ) → f(x).

3. If a filter F → x then f(F) → f(x). Note that f(F) is a filter base.

Proof. (1) implies (3): Let F → x, i.e., Nx ⊆ F. Continuity of f implies
f−1(V) ∈ Nx for each V ∈ Nf(x). From f(f−1(V)) ⊆ V , we conclude that
Nf(x) is included in the filter generated by f(F). Thus the filter base f(F)
converges to f(x).

[Lecture Notes of P.S.Chakraborty]
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10 1.4. Applications of nets and filters

(3) implies (2): Let {xα}α∈A be a net converging to x. Let F be the filter
generated by the net {xα}. Then LimF = Lim{xα} = {x}. In other words
the filter F converges to x. Therefore f(F) converges to f(x). So Nf(x) is
contained in the filter generated by f(F). Therefore if V ∈ Nf(x) there
exists α0 such that f({xβ|β ⪰ α0}) ⊆ V . Hence {f(xα)} converges to f(x).

(2) implies (1): Suppose f is not continuous at x. Then there is a neigh-
bourhood V of f(x) such that x is not in the interior of f−1(V). Then
x ∈ f−1(V)c. There exists a net {xα} ⊆ f−1(V)c = f−1(Vc) converging to
x. Since {f(xα)} ⊆ Vc and Vc is closed, f(x) ∈ Vc, a contradiction!

Proposition 1.4.2. Let X be a compact topological space and {xα} be a net
in X. Then {xα} has a convergent subnet. Equivalently we can show that
every filter in X has a convergent subfilter. The converse is also true. That
means if X is a topological space with the property that every filter on X
has a convergent subfilter then Xmust be compact.

Proof. Let F be a filter. Then G := {A|A ∈ F} has finite intersection property.
So, LimF = ∩A∈FA ̸= ∅. In other words F has a convergent subfilter.

For the converse, let G be a family of closed sets with the finite inter-
section property. Then finite intersections of elements of G is a filter base.
By hypothesis F, the filter generated by this filter base has a limit point.
Therefore ∩G∈GG = ∩A∈FA = LimF ̸= ∅.

[Lecture Notes of P.S.Chakraborty]
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1.5. Assignment-I 11

1.5 Assignment-I, Due on 17/01/25

1. Let U be an ultrafilter on X. Define µU : 2X → R, with 2 = {0, 1} by

µU(A) =

{
1 if A ∈ U

0 if X \A ∈ U.

Then µU is a finitely additive measure. Conversely if µ : 2X → {0, 1} ⊆
R is a {0, 1} valued finitely additive measure with µ(X) = 1, then
Uµ = {A ⊆ X|µ(A) = 1} is an ultrafilter.

Definition 1.5.1. Let Λ be an index set and U be an ultrafilter on
Λ. Suppose we have a function f : Λ → Y, where Y is a topo-
logical space. We say f has U-limit y for some y in Y if for all V ∈
Ny, f−1(V) ∈ U. This is denoted by U- lim f = y.

2. Show that if Y is a compact Hausdorff space and U is an ultrafilter on
Λ then each f : Λ→ Y has a U-limit. Determine U-limit for a principal
ultra filter.

3. (Continued) This allows us to do funny things. For example if U is
an ultrafilter and {xn} is a bounded sequence in R then show that we
can define U- lim x. Or if we have a sequence {sn} ⊆ Z2 where Z2 is
the group with two elements with discrete topology. Then show that
applying the previous exercise can define U- lim s. Also show if x ∈
Z2, then the sequence {s′n := x+ sn}n satisfies U- lim s′ = x+U- lim s.

4. In a jail the jailer played the following game with the prisoners. All
the prisoners were given T-shirts with a tick or a cross in the back-
side of the T-shirt and were arranged in a queue so that any pris-
oner could see the backsides of all the prisoners standing in front of
him/her. Based on that he/she has to guess the mark on the T-shirt
he/she is wearing. Let us assume prisoners are standing in positions
1,2, etc. so that the prisoner standing on position i can see the back-
sides of prisoners i+ 1, i+ 2, . . . etc. After the first prisoner declares
his mark the second prisoner has to declare and so on. If everybody
except the first prisoner can answer correctly then they will be re-
leased. Device a winning strategy.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N
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5. Let (Xα,Tα)α∈A be a family of topological spaces. Let X =
∏

α∈A Xα

be the product space with the product topology. Then a net {xλ =

(xλ,α)α∈A}λ∈Λ in X converges to x = (xα)α∈A iff xλ,α → xα,∀α ∈ A.

6. (Stone-Cech Compactification) Let X be a discrete set. Then a filter
is a subset of P(X) = 2X or an element of 22X . Therefore βX, the set
of ultrafilters on X is a subset of 22X . By Tychonoff’s theorem 22X is
compact. Show that βX is closed and therefore compact.

7. (Continued) Consider the map U : X ∋ x 7→ Ux ∈ βX, where Ux is the
principal ultrafilter determined by x. Since U is one to one we can
and we will identify X as a subset of βX. Show that U(X) is dense in
βX.

8. (Continued) Finally, given any compact Hausdorff space Y and a
map f : X → Y define f̃ : βX → Y by f̃(U) = U- lim f. Show that f̃
is continuous.

[Lecture Notes of P.S.Chakraborty]
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Solutions

(1.1.24) Let {xλ}λ∈Λ} ⊆ X be a net in a topological space X such that every
subnet has a further subnet converging to x ∈ X. Now suppose xλ ↛
x. Consider the index set B := {(λ,V)|λ ∈ Λ,V ∈ Nx, xλ /∈ V} with the
binary relation (λ,V) ⪯ (λ′,V ′) iff λ ⪯ λ′,V ⊆ V ′. Equipped with this
relation B is a directed set. Consider the net {y(λ,V)}(λ,V)∈B given by
y(λ,V) = xλ. Since xλ ↛ x,

∃V0 ∈ Nx,∀λ ∈ Λ,∃ϕλ ⪰ λ, xϕλ
/∈ V0.

So, (ϕλ,V0) ∈ B and if we define ϕ : B ∋ (λ,V) → λ ∈ Λ, then ϕ is
monotone and ϕ((ϕλ,V0)) = ϕλ ⪰ λ,∀λ ∈ Λ. In other words ϕ(B)
is cofinal. Therefore {y(λ,V)} is a subnet of {xλ}. Now we will show
that the net {y(λ,V)}(λ,V)∈B can’t have a subnet converging to x. Or
equivalently we will show that x /∈ Lim{y(λ,V)}(λ,V)∈B. That means
we have to show that

∃V ′ ∈ Nx, ∃(̃λ, Ṽ) ∈ B, ∀(λ,V) ⪰ (̃λ, Ṽ),y(λ,V) /∈ V ′.

We will take V ′ = V0 = Ṽ and λ̃ such that (̃λ, Ṽ) ∈ B. We have
already seen that there exists such λ̃. Then for any B ∋ (λ,V) ⪰ (̃λ, Ṽ)
we have y(λ,V) = xλ /∈ V ⊇ Ṽ = V ′. Thus x is not a limit point of
{y(λ,V)}(λ,V)∈B. But this contradicts the hypothesis that every subnet
has a subnet converging to x.

(2) Let us assume on the contrary that f has no ultra limit. Then ∀y ∈
Y,∃Vy ∈ Ny with f−1(Vy) /∈ U. Since U is an ultrafilter given any set
it must contain that set or it’s complement. Therefore we conclude
that Λ \ f−1(Vy) ∈ U. Appealing to the compactness of Y we obtain
y1, . . . ,yn so that Y = ∪n

i=1Vyi
. Then Λ = ∪n

i=1f
−1(Vyi

). Therefore
∅ = ∩n

i=1(Λ \ f−1(Vyi
) ∈ U, a contradiction!

(4) Let us define xn = 1 if the i-th prisoner gets a T-shirt marked with
a tick, else xn = 0. The variables xn takes values in the group Z2.
Fix a free ultrafilter U on N. For each k ∈ N consider the sequence
sk whose n-th term is sk,n :=

∑k+n
j=k+1 xj ⊆ Z2. If we denote by yk

the response of the k-th prisoner. Let us consider the strategy where

[Lecture Notes of P.S.Chakraborty]
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14 Solutions

the first player announces U- lim s1 and for k > 1,yk =
∑k−1

j=1 yj +

U- lim sk.

(6) Let {Uλ} be a net inβX converging to U. We have to show that U ∈ βX.
We first show that U is a filter. Note that µUλ

(B) → µU(B),∀B ⊆ X.
Therefore empty set belongs to U because µU(∅) = limλ µUλ

(∅) = 0.
Similarly we can verify other filter properties. Finally to show that it
is an ultrafilter let A ⊆ X. We have to show that µU(A) + µU(A

c) = 1.
That follows from µU(A) + µU(A

c) = limλ(µUλ
(A) + µUλ

(Ac)) = 1.

(7) Let U be an ultrfilter. We will exhibit a net from X ⊆ βX converging
to U. Let Λ := {(a,A)|A ∈ U,a ∈ A}. Consider the direction on
Λ defined by (a,A) ⪰ (b,B) if A ⊆ B. Consider the net {U(a,A)∈Λ

given by U(a,A) = Ua, the principal ultrfilter. Now we will show that
U(a,A) → U or equivalently µU(a,A)

(B) → µU(B),∀B ⊆ X.

Let us fix B ⊆ X. Suppose B ∈ U. Take λ0 = (b,B) ∈ Λ. Then for
(b′,B′) ⪰ (b,B) we have B′ ⊆ B. Therefore b′ ∈ B′ ⊆ B. Conse-
quently B ∈ Ub′ = U(b′,B′). Therefore µU(b′ ,B′)

= 1. If B /∈ U we use
Bc ∈ U.

(8) Let {Uλ} be a net in βX converging to U. If we denote Uλ- lim f by yλ
and U- lim f by y, then we have to show that limλ yλ = y. Suppose
that the net {yλ} does not converge to y. That means there is a neigh-
bourhood V of y and a subnet of {yλ} that lies outside V (why?).
If necessary by passing to the subnet we can assume that the net
{yλ} lies outside V . If necessary by passing to a further subnet we
can assume yλ → y′. Get an open neighbourhood V ′ of y′ disjoint
from V . Since U- lim f = y we have f−1(V) ∈ U. Therefore from
1 = µU(f

−1(V)) = limλ µUλ
(f−1(V)) we conclude that there exists λ0

such that ∀λ ⪰ λ0,µUλ
(f−1(V)) = 1 or f−1(V) ∈ Uλ. On the other

hand since yλ ∈ V ′ for a cofinal set of indices we conclude that even-
tually f−1(V ′) ∈ Uλ. Therefore ∅ = f−1(V ′)∩ f−1(V) ∈ Uλ for a cofinal
set of λ’s. This contradiction establishes that the assertion {yλ} does
not converge to ymust be wrong.

[Lecture Notes of P.S.Chakraborty]
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Chapter 2

A very general setup

We introduce the most general framework for doing functional analysis.
These are vector spaces endowed with topologies that makes addition and
scalar multiplication continuous. We extract properties of such topologies.
This in turn allows us to characterize such topologies. Then we see char-
acterization of finite dimensional vector spaces. See some more examples
and learn about limitations of making things too general.

2.1 Topological Vector Spaces

In this course we will use K to mean a statement which holds for K =

R or C.

Definition 2.1.1 (Linear Topology/ Vector Space Topology). Let E be a vec-
tor space over K. A topology T on E is called a linear topology or vector
space topology if

1. the operation of addition + : E× E ∋ (a,b) 7→ (a+ b) ∈ E and

2. the operation of scalar multiplication . : K× E ∋ (α, x) 7→ α.x ∈ E

are continuous. Here we endow E× E and K× Ewith the product topolo-
gies.

Definition 2.1.2 (Topological Vector Space). A vector space equipped with
a linear topology is called a topological vector space, TVS in short.
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16 2.1. Topological Vector Spaces

Exercise 2.1.3. Show that (E,T) is a TVS iff

(i) for every pair of convergent nets {xλ}, {yλ} ⊆ E with xλ → x,yλ → y

we have xλ + yλ → (x+ y);

(ii) for every pair of convergent nets {aλ} ⊆ K, {xλ} ⊆ E with aλ →
a, xλ → xwe have aλ.xλ → a.x.

Remark 2.1.4. Let E be a TVS

(i) for all y ∈ E, the translation Ty : E ∋ x 7→ (x+ y) ∈ E;

(ii) for all α ∈ K \ {0}, the dilations Dα : E ∋ x 7→ α.x ∈ E

are homeomorphisms.

We wish to understand vector space topologies or which topologies on
a K-vector space will turn that into a TVS. For that purpose we begin by
exploring some of the necessary conditions of the neighbourhood base at
origin.

Proposition 2.1.5. Let E be a TVS.

1. for any neighbourhood V of 0 ∈ E, there exists a neighbourhood W
of 0 ∈ E such that {x+ y : x,y ∈W} =:W +W ⊆ V ;

2. for any neighbourhood V of 0 ∈ E and any compact set C ⊆ K there
exists a neighbourhood W of 0 ∈ E such that {α.x|α ∈ C, x ∈ W} =:

C.W ⊆ V .

Proof. (i) Since addition is continuous and 0+ 0 is 0, there existsW1,W2 ∈
N0 such that {x+y|x ∈W1,y ∈W2} =:W1+W2 ⊆ V . TakeW1∩W2 asW.

(ii) Similarly using the continuity of scalar multiplication we get a neigh-
bourhood W1 of origin in K and a neighbourhood W2 of origin in E such
that W1.W2 ⊆ V . The result now follows from locally compactness of K
and the fact that dilations are homeomorphisms.

Definition 2.1.6. A subset A ⊆ E is said to be absorbing if ∀x ∈ E,∃λ > 0
such that λ.x ∈ A.

A subset A ⊆ E is said to be balanced if x ∈ A,α ∈ K with |α| ⩽ 1

implies α.x ∈ A. Balanced hull of a subset A is the smallest balanced set
containing A. This is given by ∪α:|α|⩽1α.A and is denoted by Bal A.

[Lecture Notes of P.S.Chakraborty]
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2.1. Topological Vector Spaces 17

Remark 2.1.7. Any neighbourhood of origin in a TVS E is absorbing be-
cause given any x ∈ E, { x

n
}n is converging to 0.

The next proposition gives a reasonable list of necessary conditions for
a linear topology.

Proposition 2.1.8. Let E be a TVS.

(i) If B is a basic system of neighbourhoods at 0, then

(a) for all V ∈ B, there existsW ∈ B such thatW +W ⊆ V ;

(b) for all V ∈ B, for all compact C ⊆ K, there exists W ∈ B such
that C.W ⊆ V .

(c) for all x ∈ E, Bx := {x+ V |V ∈ B} is a local base at x.

(d) The topology of E is Hausdorff iff ∩V∈BV = {0}.

(ii) There exists a basic system of neighbourhoods of 0 consisting of open
balanced sets.

Proof. (i) We have already seen proofs of (a), (b). Proof of (c) follows from
the fact that translations are homeomorphisms. Let us prove (d). Let W =

∩V∈BV . Then 0 ∈W. Assume that the topology is Hausdorff. Then for all
x ∈ E \ {0}, the set E \ {x} is an open neighbourhood of origin. So, there
exists Vx ∈ B such that Vx ⊆ E \ {x}. Then

W ⊆ ∩x ̸=0Vx ⊆ ∩x ̸=0(E \ {x}) = {0}.

Conversely suppose W = {0}. Let x ̸= y be two elements of E. without
loss of generality we can assume y = 0. Since x is nonzero, x /∈ ∩V∈BV .
Therefore there exists V ∈ B such that x /∈ V . By (a) there exists W ∈ B

such thatW+W ⊆ V . So, x /∈W+W. This implies (x+(−1).W)∩W = ∅.
(ii) Let B be the collection of all balanced sets containing 0. We know that
for any neighbourhood V of 0 there exists an open W such that γ.W ⊆ V

for all γwith |γ| ⩽ 1. Then BalW is an open, balanced subset of V .

Definition 2.1.9. Let E be a TVS. A subset B ⊆ E is said to be bounded if
for all neighbourhood V of 0 ∈ E, there exists ρ > 0 such that B ⊆ ρV .

Proposition 2.1.10. Let E be a TVS. If the net {aλ}λ∈Λ ⊆ K converges to
0 ∈ K and the net {xλ}λ∈Λ ⊆ E is bounded, then {aλxλ} converges to 0 ∈ E.

[Lecture Notes of P.S.Chakraborty]
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18 2.1. Topological Vector Spaces

Proof. Let V be a neighbourhood of origin in E. Without loss of generality
we can assume V is balanced. Using the boundedness condition we get
xλ ∈ ρV ,∀λ ∈ Λ. Since {aλ} is converging to zero we get |aλ| <

1
ρ

,∀λ ⪰ λ0.
Since V is balanced aλxλ ∈ V , ∀λ ⪰ λ0.

Exercise 2.1.11. Show that the last proposition holds if we assume {xλ} is
eventually bounded, i.e., there exists λ0 so that {xλ|λ ⪰ λ0} is bounded.

Theorem 2.1.12. Suppose E is a K-vector space and B is a filter base on E with
the following properties:

(i) 0 ∈ V ,∀V ∈ B;

(ii) every V ∈ B is absorbing;

(iii) for every V ∈ B, ∃W ∈ B satisfyingW +W ⊆ V ;

(iv) for every V ∈ B, ∃W ∈ B, r > 0 so that ρ.W ⊆ V ,∀ρ ∈ K with |ρ| ⩽ r.

Then there exists a unique linear topology on E so that FB is the neighbourhood
filter at origin of E. Moreover the topology is Hausdorff iff {0} = ∩V∈BV .

Proof. Declare a set A ⊆ E to be open if

∀a ∈ A,∃V ∈ B,V + a ⊆ A.

Let T be the collection of all open sets. We will begin by showing that
T is a topology. The collection T contains ∅ vacuously and E ∈ T. Also it
is obvious that T is closed under arbitrary unions. Let us check that T is
closed under finite intersections. Let A,B ∈ T and a ∈ A ∩ B. There exists
V1,V2 ∈ B such that a+V1 ⊆ A,a+V2 ⊆ B. Since B is a filter base we can
get V ⊆ V1∩V2,V ∈ B. Then a+V ⊆ a+V1 ⊆ A and a+V ⊆ a+V2 ⊆ B.
Therefore a + V ⊆ A ∩ B. This shows A ∩ B ∈ T. This completes proof of
the fact that T is a topology.

Next we will show that the filter FB generated by the filter base B is
the neighbourhood filter at origin of the topology T. This is done in the
following steps.

• Given any B ∈ B, define A = {x ∈ E|∃V ∈ B,V + x ⊆ B}.

[Lecture Notes of P.S.Chakraborty]
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2.1. Topological Vector Spaces 19

• Since 0 ∈ B, we can take V = B to conclude that 0 + V ⊆ B. Thus
0 ∈ A.

• To see that A is open, given a ∈ Awe need to exhibit V ′′ ∈ B so that
a + V ′′ ⊆ B. Since a ∈ A, there exists V ′ ∈ B so that a + V ′ ⊆ B.
On the other hand by (iii) there exists V ′′ ∈ B,V ′′ + V ′′ ⊆ V ′. Then
a+ V ′′ + V ′′ ⊆ B. In particular a+ V ′′ ⊆ A.

• The A constructed above is contained in B. To see this note that if
we take a from A then a ∈ B because every element of B contains
origin.

• So we have proved B ⊇ A andA is an open set containing origin. So,
B is a neighbourhood of origin. Thus B is a subset of the neighbour-
hood filter at origin. Therefore FB ⊆ N0.

• The other inclusion N0 ⊆ FB is immediate because if B is a neigh-
bourhood of origin then there exists an open set A containing origin
and A ⊆ B. Since A is open and 0 ∈ A there exists V ∈ B with
V ⊆ A. Being a superset of an element of B, we have B ∈ FB.

Now we will show continuity of addition. Suppose we have nets {xλ}Λ, {yλ}Λ
converging to x,y respectively. We have to show given any open neigh-
bourhood A′ of (x+ y) there exists λ0 so that xλ + yλ ∈ A′,∀λ ⪰ λ0.

• Clearly for every u ∈ E, a subset A ⊆ E is open iff A + u is open.
Therefore A′, an open neighbourhoods of x + y is of the form A +

(x + y) for some open neighbourhood A of origin. So, we have to
show that given any open neighbourhood of originA, there exists λ0
such that xλ + yλ ∈ A+ (x+ y),∀λ ⪰ λ0.

• Since open neighbourhoods of origin are supersets of elements of
B, it suffices to show ∀V ∈ B, there exists λ0 with xλ + yλ ∈ V +

(x + y), ∀λ ⪰ λ0. By property (iii) of our hypothesis there exists
W ∈ B satisfying W +W ⊆ V . Obtain λ0 such that λ ⪰ λ0 implies
xλ ∈ W + x,yλ ∈ W + y. Then for λ ⪰ λ0 we have xλ + yλ ∈
W +W + (x + y) ⊆ V + (x + y). This completes proof of continuity
of addition.

[Lecture Notes of P.S.Chakraborty]
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To show that T is a vector space topology only thing remains to be
shown is the continuity of scalar multiplication. Let {xλ} ⊆ E, {αλ} ⊆ K
be nets with xλ → x,αλ → α. We have to show that αλ.xλ → α.x. Using
continuity of addition it is enough to show that

(a) αλ(xλ − x) → 0;

(b) (αλ − α).x→ 0.

Let V ∈ B. Fix r > 0,W ∈ B be as in (iv) of our hypothesis involving B.

Proof of (a). Since αλ → α, there exists λ0 so that M := supλ⪰λ0
|αλ| < ∞.

Let n ∈ N be such that nr > M. Let Z ∈ B be such that n.Z ⊆ Z+ · · ·+Z ⊆
W. For all λ ⪰ λ0, we have |αλ/n| ⩽ r. Therefore

αλ.Z =
αλ

n
.nZ ⊆ αλ

n
.W ⊆ V ,∀λ ⪰ λ0.

Since xλ → x, there exists λ1 such that xλ − x ∈ Z,∀λ ⪰ λ1. If we take
λV ⪰ λ1, λ0, then for all λ ⪰ λV we have αλ(xλ − x) ∈ V .

Proof of (b). Since every V ∈ B is absorbing we can choose t > 0 so that
t.x ∈ W. We choose νV so that |αλ − α| ⩽ rt,∀λ ⪰ νV . Equivalently
|t−1(αλ − α)| ⩽ r,∀λ ⪰ νV . So, by condition (iv), t−1(αλ − α).W ⊆ V , ∀λ ⪰
νV . Since t.x ∈W, (αλ − α).x = t−1(αλ − α).tx ∈ V , ∀λ ⪰ νV .

Uniqueness is obvious and we have seen the characterization of the
Hausdorff property before.

Corollary 2.1.13. Suppose E is a K-vector space and B is a filter base on E
with the following properties:

(i) 0 ∈ V ,∀V ∈ B;

(ii) every V ∈ B is absorbing;

(iii) for every V ∈ B, ∃W ∈ B satisfyingW +W ⊆ V ;

(iv) every V ∈ B is balanced.

Then there exists a unique linear topology on E so that FB is the neigh-
bourhood filter at origin of E. Moreover the topology is Hausdorff iff
{0} = ∩V∈BV .

Proof. The theorem applies because condition (iv) of the theorem holds
with r = 1 andW = V .
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Practice Problems

Let E be a topological vector space.

1. Prove that if A ⊆ E is open then so is A+ B for any subset B.

2. Prove that if V is a neighbourhood of origin then for any subset A
we have A ⊆ A+ V .

3. Show that given any neighbourhood V of origin there exists a bal-
anced, closed neighbourhoodW of origin, such thatW ⊆ V .

4. Let F = {0} be the closure of the set {0}. Prove that

(i) F equals the intersection of all open neighbourhoods of origin.

(ii) F is a closed linear subspace.

(iii) F is compact.

5. Show that if A ⊆ E is closed and C ⊆ E is compact, then A + C is
closed. Is this result true if we take C to be closed?

6. Prove that if A,C ⊆ E are compact then so is ∪γ∈Cγ.A.

7. Show that if A ⊆ E is closed and C ⊆ K \ {0} is compact, then C.A :=

{γ.a|γ ∈ C,a ∈ A} is closed. Give a counter example to show that the
condition 0 /∈ C is essential.

8. Show that if A,B ⊆ E are compact then so is A+ B.

9. Let F be a TVS and T : E → F is linear. Prove that the following are
equivalent.

(a) T is continuous.

(b) T is continuous at 0.
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22 2.2. Finite dimensional TVS

2.2 Finite dimensional topological vector spaces

We have introduced a concept but so far haven’t discussed any examples.
Of course finite dimensional vector spaces with their usual topologies are
topological vector spaces and Tychonoff showed the converse.

Theorem 2.2.1 (Tychonoff). Every finite dimensional Hausdorff topological vec-
tor space has the usual topology.

Proof. Let E be a finite dimensional Hausdorff TVS with the topology T.
Let v1, . . . , vn be a basis of E. Let T : Rn → E be the map T(x1, . . . , xn) =∑
xivi. This is a bijection and using this we can identify E with Rn. This

means we consider the topology T−1(T) on Rn. So we have two topologies
on Rn, the usual one and another vector space topology, to be denoted T,
not T−1(T). We will use T : (Rn, product topology) → (Rn,T) to denote
the identity map, considered as a map with the indicated topologies. Since
T is a linear topology, the operations of scalar multiplication and addition
are continuous. Therefore so is T because T(x) =

∑
xiei where ei’s are

the canonical basis elements. This shows any open set in T is open in
the usual product topology. As T is continuous any compact set in the
usual topology is compact in T. In particular Sn−1 = {x ∈ Rn|∥x∥2 = 1}

is compact in T. Since T is Hausdorff and 0 /∈ Sn−1, we can find an open
set U in T containing origin and disjoint from Sn−1. We wish to show U

is inside the unit ball. Or it will be enough to exhibit an open set in T

containing the origin and inside a ball. That is achieved as follows. Using
the continuity of the scalar multiplication map we can find another open
U′ ∈ T containing origin and an ϵ > 0 such that (−ϵ, ϵ)U′ ⊆ U. Since U is
disjoint from Sn−1, we have for all t ∈ (−ϵ, ϵ) and for all x ∈ U′, ∥t.x∥2 ̸=
1. In other words ∀x ∈ U′, ∥x∥2 /∈ { 1

|t|
|0 < |t| < ϵ}. Therefore for all

x ∈ U′, ∥x∥2 ⩽ 1
ϵ
< 2

ϵ
. So, T contains a neighbourhood U′ contained in the

open ball of radius 2
ϵ

. This shows T−1 is continuous at origin. Since linear
topologies are translation invariant and T is linear we conclude that T is
continuous at any other point.

Corollary 2.2.2. In a Hausdorff TVS E every finite dimensional subspace F
is closed.

Proof. Let {xλ} be a net in F converging to x. Let us consider the span of F
and x. This is finite dimensional and therefore has the usual topology. But
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2.3. Examples of TVS 23

a subspace of a finite dimensional space is closed. Therefore x must be in
F.

This shows if we are looking for more examples we must consider in-
finite dimensional spaces. This course is primarily about them Before we
venture into that world we ask ourselves is there a topological characteri-
zation of finite dimensionality. This is addressed in the following theorem

Theorem 2.2.3 (André Weil). Every locally compact, Hausdorff TVS is finite
dimensional.

Proof. Let E be a locally compact, Hausdorff TVS. Thus there exists a com-
pact neighbourhood C of origin. Then the dilate 1

2
C is also a compact

neighbourhood of origin. Using compactness ofCwe conclude that finitely
many translates of 1

2
C covers C. Thus there exists a finite set S so that

C ⊆ S + 1
2
C. Let F be the linear span of S. We have just proved that being

finite dimensional F is closed. It suffices to show that C is a subset of F.
That will follow once we show that given any open neighbourhood of ori-
gin V ,C ⊆ F+ V . Note that C ⊆ F+ 1

2
C. Iterating this we get C ⊆ F+ 1

2nC

for all n ∈ N. Using continuity of scalar multiplication we conclude that
for all x ∈ E, there exists ϵx > 0 and Vx an open neighbourhood of x
satisfying t.Vx ⊆ V for all t with |t| < ϵx. There exists x1, . . . , xn so that
C ⊆ ∪n

i=1Vxi
. Choose N large enough with 2−N < ϵxi

, ∀i. Let x ∈ C be
arbitrary. Then x ∈ Vxi

for some i. We have 2−Nx ∈ V . Thus 2−NC ⊆ V .
Therefore C ⊆ F + V . Since V is an arbitrary neighbourhood we conclude
that C ⊆ F. But F being finite dimensional is closed.

2.3 Examples of TVS

It is customary that any definition is accompanied by a preferably long list
of examples. We will also do so, but little later. We won’t spend much
time in this generality, instead soon we will concentrate on a convenient
subclass of topological vector spaces called locally convex spaces. To mo-
tivate introduction of such a subclass we begin with examples some of
which aren’t particularly nice.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIS

TRIB
UTIO

N

24 2.4. Dual of a TVS

Example 2.3.1. Fix p ∈ (0,∞). Define

ℓpK = {x = (xn)n∈N :
∑

|xn|
p <∞}

The inequality (a + b)p ⩽ 2p(ap + bp), ∀a,b ⩾ 0 implies ℓpK is a K vector
space. For all r > 0 define Vr := {x|

∑
|xn|

p < r}. The collection B =

{Vr|r > 0} is a filter base on ℓpK each of whose elements contain origin,
absorbing and balanced. Let us verify condition (iii) of the hypothesis of
corollary 2.1.13. Let (xn), (yn) ∈ Vr/2p+1 . Then∑

|xn + yn|
p⩽

∑
(|xn|+ |yn|)

p

⩽2p
∑

(|xn|
p + |yn|

p)

<2p+1 r

2p+1
= r.

Therefore Vr/2p+1 + Vr/2p+1 ⊆ Vr. So by corollary 2.1.13 B generates a
unique vector space topology on ℓpK.

Example 2.3.2. Let (Ω,S,µ) be a measure space. Let 0 < p. Define

Lp(Ω,S,µ) := {f : Ω→ K|f is measurable and
∫
|f|pdµ <∞}.

For all r > 0 define Vr := {f ∈ Lp(Ω,S,µ)|
∫
|f|pdµ < r}. The collection

B = {Vr|r > 0} is a filter base on Lp(Ω,S,µ). As in the last example
replacing sum by integrals we conclude that B generates a vector space
topology.

Answering what is bad about these examples takes us to the important
concept of the dual of a TVS.

2.4 Dual of a TVS

Recall that in point set topology first nontrivial result one learns is the
Urysohn lemma guaranteeing the existence of nontrivial continuous func-
tions. We are also after something similar. Let us begin with a closer look
at continuous linear maps.
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2.5. Generality could be dull 25

Theorem 2.4.1. Let E be a TVS over K and ϕ : E→ K be a nonzero linear map.
Then the following are equivalent.

(i) ϕ is continuous;

(ii) ker(ϕ) is closed;

(iii) ker(ϕ) is not dense in E;

(iv) there exists a neighbourhood V of 0 ∈ E such that ϕ(V) is bounded or
equivalently ϕ is bounded on V ;

(v) there exists an open neighbourhood V of 0 ∈ E so that ϕ(V) ̸= K.

(vi) If K = C then these are equivalent to ℜϕ is continuous.

Proof. (i) =⇒ (ii), (iv) =⇒ (v) are trivial.
(ii) =⇒ (iii): If E = ker(ϕ) = ker(ϕ) , the last equality holds because

ker(ϕ) is closed. Then ϕ ≡ 0. This contradicts that ϕ is nonzero.
(iii) =⇒ (iv) : Choose x ∈ E and a balanced neighbourhood U of 0

such that (x + U) ∩ ker(ϕ) = ∅. Therefore ϕ(x) /∈ −ϕ(U). But ϕ(U) is
balanced as U is balanced and hence ϕ(U) is bounded because a proper
balanced subset of K is bounded.

(v) =⇒ (i): Assume that V is a balanced neighbourhood of origin and
ϕ(V) ̸= K. Since ϕ(V) is also balanced it must be bounded. So, there exists
M > 0 so that ϕ(V) ⊆ BK(0,M), where BK(0,M) = {α ∈ K||α| < M}. Then
for any ϵ > 0,ϕ( ϵ

M
V) ⊆ BK(0, ϵ) establishing continuity of ϕ at origin.

Since ϕ is linear, this shows ϕ is continuous.
(vi) ⇐⇒ (i): This follows from the simple fact that if (ℜϕ)(x), (ℑϕ)(x) ∈

R are defined byϕ(x) = (ℜϕ)(x)+
√
−1(ℑϕ)(x) then (ℑϕ)(x) = −

√
−1(ℜϕ)(

√
−1x).

That is ϕ(x) = (ℜϕ)(x) −
√
−1(ℑϕ)(

√
−1x),∀x ∈ E. Therefore ϕ is contin-

uous iff ℜϕ is continuous.

Definition 2.4.2 (Dual of a TVS). Given a TVS E, the collection of continu-
ous linear functionals on E is denoted by E∗ and is called the dual of E.

2.5 Generality could be dull

Now we will show what is wrong with some of the examples.
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Proposition 2.5.1. Consider the probability space ([0, 1],B[0,1], λ) be the
Lebesgue measure space on the unit interval. Then for 0 < p < 1, (Lp([0, 1]))∗ =

{0}. In other words these spaces do not admit any continuous linear func-
tionals.

Proof. Suppose there exists a nonzero continuous linear functionalϕ. Since
image of ϕ is a linear subspace it must be K. So, there is some f so that
|ϕ(f)| ⩾ 1. Consider the continuous map

g : [0, 1] ∋ s 7→ ∫s

0

|f(t)|pdt.

By the intermediate value theorem there exists s such that g(s) = 1
2

∫1

0
|f(t)|pdt >

0. Let g1 = f.χ[0,s],g2 = f.χ(s,1]. We have f = g1 + g2, |f|p = |g1|
p + |g2|

p.
Therefore, ∫1

0

|g1(t)|
pdt =

1

2

∫1

0

|f(t)|pdt =

∫1

0

|g2(t)|
pdt.

Since |ϕ(g1) + ϕ(g2)| = |ϕ(f)| ⩾ 1, there exists i with |ϕ(gi)| ⩾ 1
2

. Let
f1 = 2gi, so that |ϕ(f1)| ⩾ 1 and∫1

0

|f1(t)|
pdt = 2p

∫1

0

|gi(t)|
pdt = 2p−1

∫1

0

|f(t)|pdt.

By iteration we get a sequence fn such that

|ϕ(fn)| ⩾ 1,
∫1

0

|fn(t)|
pdt = 2(p−1)n

∫1

0

|f(t)|pdt.

Note that 2p−1 < 1, therefore {fn} is converging to zero. Then {ϕ(fn)} must
converge to 0 but this contradicts |ϕ(fn)| ⩾ 1.

Now we must ask why is this happening? The following proposition
gives a hint.

Proposition 2.5.2. Let E be a TVS and ϕ be a nonzero continuous linear
functional on E, then there exists a proper convex neighbourhood of origin
in E.

Proof. Let V = {x||ϕ(x)| < 1}. It is a proper convex neighbourhood of
origin
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2.6. The Minkowski functional 27

To understand the implications of this simple looking observation we
need to explore convex neighbourhoods of origin further.

Theorem 2.5.3. Let V be a convex neighbourhood of origin in a TVS E. Then
there is an open, convex, balanced subset of V containing origin.

Proof. Let V be a convex neighbourhood of origin. Then there exists a
balanced open neighbourhood of origin U ⊆ V . Let W be the convex hull
of U. Please recall it is defined as follows

W =

{
n∑

i=1

λixi|n ∈ N, λ1, . . . , λn ∈ [0, 1],
∑
i

λi = 1, xi ∈ U,∀i

}
.

Since V is convex and U ⊆ V , we have W ⊆ V . Also U ⊆ W̊, the interior
ofW

The interior ofW is convex. Let x,y ∈ W̊. For any λ ∈ [0, 1] we have to
show that z = λx + (1 − λ)y ∈ W̊, or equivalently there exists an open
neighbourhood of origin V ′ satisfying z + V ′ ⊆ W. That follows once
we observe that there is an open neighbourhood of origin V ′ satisfying
x+ V ′,y+ V ′ ⊆W. For example we could take V ′ = V1 ∩ V2 where V1,V2

are open neighbourhoods of origin with x+ V1,y+ V2 ⊆W.

.

W̊ is balanced. The setW is balanced because the convex hull of a balanced
set is balanced. Now let x ∈ W̊. Then 0.x = 0 ∈ U ⊆ W̊. Let 0 ̸= z ∈ K
with |z| ⩽ 1. Get a balanced neighbourhood of originW′ with x+W′ ⊆W.
Then z.x+ z.W′ ⊆W becauseW is balanced. Therefore z.x ∈ W̊.

So given any neighbourhood of origin V we have exhibited an open,
convex, balanced neighbourhood of origin W̊ ⊆ V .

2.6 The Minkowski functional

Here is an an alternative way of describing absorbing balanced convex sets
which turns out to be quite useful.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIS

TRIB
UTIO

N

28 2.6. The Minkowski functional

Definition 2.6.1. The Minkowski functional of an absobing setA is defined
by

pA = inf{t > 0 : t−1x ∈ A}.

Theorem 2.6.2. Let A be a convex absorbing subset of a vector space E and pA
its Minkowski functional. Then

1. pA is subadditive, i.e., pA(x+ y) ⩽ pA(x) + pA(y),∀x,y ∈ E.

2. pA is positively homogeneous, i.e., p(λx) = λp(x),∀λ ∈ R>0, x ∈ E.

3. Moreover if A is balanced then pA also satisfies pA(λx) = |λ|pA(x), ∀λ ∈
K, x ∈ E.

4. If E is a topological vector space and A is open then A = {x ∈ E : pA(x) <

1}.

Proof. (1)For all ϵ > 0 we have λ,µ such that pA(x) ⩽ λ < pA(x) +

ϵ,pA(y) ⩽ µ < pA(y) + ϵ and x
λ

, y
µ
∈ A. The convexity of A implies

x+ y

λ+ µ
=

λ

λ+ µ

x

λ
+

µ

λ+ µ

y

µ
∈ A.

Therefore pA(x + y) ⩽ λ + µ < pAx) + pA(y) + 2ϵ. Since ϵ is arbitrarily
small, we obtain subadditivity.

(2), (3) Easily follows from the definition.
(4) Let x ∈ A. There exists an open neighborhood V of origin such that

x + V ⊆ A. Since scalar multiplication is continuous there exists ϵ > 0

such that ϵ.x ∈ V . Then (1 + ϵ)x ∈ A. Therefore pA(x) ⩽ (1+ ϵ)−1
< 1.

Conversely suppose that x ∈ E satisfies pA(x) < 1. Then there exists ϵ ⩾ 0
such that x

pA(x)+ϵ
∈ A and pA(x) + ϵ < 1. Exploiting the convexity of A

we get x = (pA(x) + ϵ)
x

pA(x)+ϵ
+ (1− pA(x) − ϵ).0 ∈ A.

Definition 2.6.3. A real valued sub-additive function p defined on a vector
space E is called a seminorm if p(α · x) = |α|p(x),∀α ∈ K, x ∈ E.

In this terminology theorem 2.6.2 can be restated as follows.

Theorem 2.6.4. Let A be a convex absorbing balanced subset of a vector space E
and pA be its Minkowski functional. Then pA is a seminorm. Moreover if E is a
TVS and A is open then A = {x ∈ E : pA(x) < 1}.
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The converse is also true. Before that we state a simple lemma.

Lemma 2.6.5. Let p be a seminorm on a vector space E, then (a) p(0) = 0; (b)
|p(x) − p(y)| ⩽ p(x− y),∀x,y ∈ E; (c) p(x) ⩾ 0.

Proof. (a) This follows from, p(0) = p(0 · x) = |0| · p(x) = 0.
(b) Note that

p(x) − p(y) = p(x− y+ y) − p(y) ⩽ p(x− y) + p(y) − p(y) = p(x− y).

Interchanging x and ywe obtain the other inequality p(y)−p(x) ⩽ p(x−y)
needed to complete the proof.
(c) We have p(x) = p(x− 0) ⩾ |p(x) − p(0)| = |p(x)| ⩾ 0.

Theorem 2.6.6. Let p be a seminorm on a vector space E. Then A = {x : p(x) <

1} is a convex, balanced, absorbing set and p = pA.

Proof. Only thing we need to verify is p = pA. If x ∈ E and s > p(x) then
s−1x ∈ A. Therefore pA(x) ⩽ p(x). On the other hand if 0 < t ⩽ p(x), then
t−1x /∈ A. Hence p(x) ⩽ pA(x).

Definition 2.6.7. Let p be a seminorm on a vector space E. Then Bp = {x ∈
E : ρ(x) < 1} is called the unit open semiball or just semiball associated
with the seminorm p.

In view of these results we will explore implications of the existence of
a continuous linear functional.

Theorem 2.6.8. Let E be a TVS andϕ be a nonzero continuous linear functional.
Then there exists a seminorm p such that there is a constant C > 0 with |ϕ(x)| ⩽
Cp(x),∀x ∈ E.

Proof. We know that V := {x||ϕ(x)| < 1} is a proper convex subset of E con-
taining origin. By theorem 2.5.3 we get a convex, balanced, open neigh-
bourhood of origin U contained in V . Let p be the Minkowski functional
of U. Then U = {x|p(x) < 1} and |ϕ(x)| < 1,∀x ∈ U.

Claim: If p(x) = 0 for some x ∈ E, then ϕ(x) = 0.

Proof of claim. Since p(x) = 0, x
ϵ

∈ U,∀ϵ > 0. Therefore |ϕ(x
ϵ
)| < 1 or

|ϕ(x)| < ϵ,∀ϵ > 0.
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30 2.6. The Minkowski functional

Let x be arbitrary. Then we have two possibilities. If p(x) > 0, then
x

2p(x)
∈ U. Therefore |ϕ( x

2p(x)
)| < 1 or equivalently |ϕ(x)| < 2p(x). If

p(x) = 0, then ϕ(x) = 0 as well, therefore we also have |ϕ(x)| ⩽ 2p(x). So,
in either case we have |ϕ(x)| ⩽ 2p(x).
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Chapter 3

Hahn-Banach theorems

Hahn-Banach theorems are of two kinds. We have Hahn-Banach exten-
sion theorems and Hahn-Banach separation theorems. These theorems are
equivalent in the sense that one could have first proved separation theo-
rems and then use them to deduce the extension theorems or one could do
the other way. Separation theorems have geometric interpretations while
extension theorems are analytic in nature.

3.1 Hahn-Banach extension theorems

Theorem 3.1.1 (Hahn Banach extension theorem first version). Let E be a
real vector space and p : E → R a positively homogeneous subadditive func-
tion. Let F ⊆ E be a subspace and ϕ : F → R a linear map satisfying ϕ(x) ⩽
p(x),∀x ∈ F. Then ϕ admits an extension ϕ̃ to E satisfying ϕ̃(x) ⩽ p(x),∀x ∈
E.

Proof. Step 1: Let F1 = F+Rx0, where x0 ∈ E\F. Let us denote a prospective
candidate for ϕ̃(x0) by ϕ0. Then we must have

ϕ(x) + λϕ0 ⩽ p(x+ λx0),∀x ∈ F, λ ∈ R. (3.1)

Considering the cases λ ≶ 0 in (3.1) we get

ϕ(y) − p(y− x0) ⩽ ϕ0 ⩽ p(x+ x0) − ϕ(x), ∀x,y ∈ F (3.2)
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To show 3.2 we must show that supy∈F(ϕ(y) − p(y − x0)) ⩽ infx∈F(p(x +

x0) − ϕ(x)) or equivalently

ϕ(y) − p(y− x0) ⩽ p(x+ x0) − ϕ(x),∀x,y ∈ F. (3.3)

But this follows fromϕ(x)+ϕ(y) = ϕ(x+y) ⩽ p(x+y) ⩽ p(x+x0)+p(y−
x0) because p satisfies triangle inequality and we can take any element
from the interval [supy∈F(ϕ(y) − p(y − x0)), infx∈F(p(x + x0) − ϕ(x))] as
ϕ0. Thus we have established the existence of an extension ϕ1 of ϕ to F1.
Also from (3.1) we conclude that ϕ1(x) ⩽ p(x),∀x ∈ F1.

Step 2: Let P = {(F1,ϕ1) : F ⊆ F1,ϕ1 ∈ F∗1,ϕ1|F = ϕ,ϕ1(x) ⩽ p(x), ∀x ∈
F1}. This is a POset with partial order given by (F′1,ϕ′

1) ⪰ (F1,ϕ1). Every
chain in P has an upper bound and therefore by Zorn’s lemma P has a
maximal element, say (F̃, ϕ̃). We claim that F̃ must be E else by applying
step 1 to F̃we can obtain a further extension contradicting the maximality.

Theorem 3.1.2 (Hahn Banach extension theorem second version). Suppose
F is a subspace of a vector space E, p is a seminorm on E and ϕ : F → K a linear
map such that |ϕ(x)| ⩽ p(x),∀x ∈ F. Then there is a linear functional ϕ̃ defined
on E such that ϕ̃|F = ϕ and |ϕ̃(x)| ⩽ p(x).

Proof. Case 1 (K = R): We have p(−x) = p(x) and we are done by theo-
rem (3.1.1).

Case 2 (K = C): Let ϕ1 = ℜϕ, then there exists real linear ϕ̃1 on F such
that ϕ̃1|E = ϕ1 Let ϕ̃(x) = ϕ̃1(x) − iϕ̃1(ix), then ϕ̃|E = ϕ. Finally given
any x ∈ F,∃λ ∈ C such that |λ| = 1, λϕ̃(x) = |ϕ̃(x)|. We have,

|ϕ̃(x)| = ϕ̃(λx) = ϕ̃1(λx) ⩽ p(λx) = p(x).

Now we can show that the converse of proposition 2.5.2 holds.

Proposition 3.1.3. Let E be a TVS admitting a convex neighbourhood of
origin other than the whole space. Then there is a nonzero continuous
linear functional.

Proof. Let V be a convex neighbourhood of origin other than the whole
space. Then by theorem 2.5.3 we get a convex balanced open neighbour-
hood of origin A contained in V . Let p be the Minkowski functional of
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3.2. Hahn-Banach separation theorems 33

A. Since A = {x|p(x) < 1} and A is a proper subset there is x0 so that
p(x0) ⩾ 1. Define a linear functional ϕ on F = Kx0 by ϕ(x0) = p(x0). Then
|ϕ(x)| ⩽ p(x),∀x ∈ F. By theorem 3.1.2 we get a linear functional ϕ̃ such
that |ϕ̃(x)| ⩽ p(x), ∀x ∈ E and ϕ̃(x0) = ϕ(x0) ̸= 0. Also note that for all
x ∈ A, |ϕ̃(x)| ⩽ p(x) < 1. Therefore ϕ̃(A) is bounded and consequently by
theorem 2.4.1 ϕ̃ is continuous.

3.2 Hahn-Banach separation theorems

Now we will discuss Hahn-Banach separation theorems. Because of their
geometric interpretations these theorems are also called geometric forms
of hahn-Banach theorems.

Theorem 3.2.1. Let E be a topological vector space over R andA be a convex open
neighborhood of the origin. Let x0 /∈ A, then there is a hyperplane separating x0
from A, in other words there is a continuous linear functional ℓ ∈ E∗ such that

ℓ(x0) = 1 and ℓ(x) < 1, ∀x ∈ A.

Proof. In a TVS scalar multiplication is continuous and A contains the
origin. Therefore given any x ∈ E, the sequence x/n converges to 0,
hence eventually enters the open neighborhood A. This shows that A
is absorbing. Let pA be the Minkowski functional of A. Then by theo-
rem (??) we know that pA is subadditive, positively homogeneous and
A = {x ∈ E : pA(x) < 1}. Since x0 /∈ A, we have pA(x0) ⩾ 1. On the
one dimensional space spanned by x0 define ℓ(λx0) = λ. Then for λ > 0,
ℓ(λx) = λ ⩽ pA(λx0). If λ ⩽ 0, then ℓ(λx0) = λ ⩽ 0 ⩽ pA(λx0). In any
case for any x from the subspace spanned by x0 we have ℓ(x) ⩽ pA(x). By
theorem (3.1.1) we can extend ℓ to a linear map denoted by the same sym-
bol ℓ on E such that ℓ(x) ⩽ pA(x),∀x ∈ E. Then ℓ is continuous because if
x ∈ (−A) ∩A, then −1 < ℓ(x) < 1.

Theorem 3.2.2. Suppose A and B are disjoint nonempty convex sets in a topo-
logical vector space E. If A is open there exists ϕ ∈ E∗ and γ ∈ R such that

ℜϕ(x) < γ ⩽ ℜϕ(y), ∀x ∈ A, ∀y ∈ B.

If the scalar field is R then ℜϕ := ϕ.
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34 3.2. Hahn-Banach separation theorems

Proof. We will first do the case where the scalar field is R. Fix a0 ∈ A and
b0 ∈ B. Put x0 = b0−a0 and C = A−B+x0. Then C is open because it is a
union of open sets A− b+ x0,b ∈ B. Clearly C is convex and contains the
origin. Also x0 ∈ C, because A and B are disjoint. Using theorem (3.2.1)
obtain a continuous linear functional ϕ such that ϕ(x0) = 1 and ϕ(x) <
1,∀x ∈ C. If a ∈ A,b ∈ B, then ϕ(a − b + x0) = ϕ(a) − ϕ(b) + 1 < 1.
Therefore, ϕ(a) < ϕ(b). Let γ = inf{ϕ(b) : b ∈ B}. Then ϕ(a) ⩽ γ,∀a ∈ A.
Since A is open we must have ϕ(a) < γ,∀a ∈ A.

If the scalar field is C, there is a continuous real linear map ϕ1 satisfies
the assertion. If ϕ is the associated complex linear map whose real part is
ϕ1, then ϕ ∈ E∗ and does the job.

Corollary 3.2.3. Let B be a closed and convex subset of a locally convex
space E and x0 /∈ B then there existsϕ ∈ E∗ such that ℜϕ(x0) < inf{ℜϕ(x) :
x ∈ B}.

Proof. Let A be a convex neighborhood of x0 disjoint from B. Now apply
theorem (3.2.2)

Lemma 3.2.4 (Topological lemma). Let E be a topological vector space, C ⊆ E
be a compact set and D ⊆ E be a closed set. Then C+D is closed.

Proof. Since you are familiar with nets we will prove this using nets. Let
{xα + yα}α∈A ⊆ C +D be a convergent net with limα(xα + yα) = z. Since
C is compact there exists a subnet {xβ} converging to some x ∈ C. Then
limβ yβ = limβ(xβ + yβ − xβ) = z − x ∈ D. So, we have z = x + y ∈
C+D.

Theorem 3.2.5. Let E be a locally convex space. Suppose A,B ⊆ E are con-
vex sets with A compact and B closed, A ∩ B = ∅. Then there exists a linear
continuous map ϕ : E→ K and α,β ∈ R such that

ℜϕ(x) ⩽ α < β ⩽ ℜϕ(y),∀x ∈ A,∀y ∈ B.

Proof. Consider the convex set C = B − A. By the topological lemma C is
closed and 0 /∈ C, because A ∩ B = ∅. Since E is locally convex there exists
a convex open D ⊆ E \ C containing the origin. In particular C ∩ D = ∅.
By theorem (3.2.2) we get a continuous linear map ϕ ∈ E∗ and γ ∈ R such
that

ℜϕ(d) < γ ⩽ ℜϕ(c),∀d ∈ D,∀c ∈ C.
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3.3. Locally convex spaces 35

Since 0 ∈ D,γ > 0. The inequality ℜϕ(c) ⩾ γ,∀c ∈ C gives ℜϕ(b) −

ℜϕ(a) ⩾ γ > 0, ∀b ∈ B,∀a ∈ A. Letβ = infb∈B ℜϕ(b),α = supa∈A ℜϕ(a).
Then β ⩾ α+ γ and we are done.

3.3 Locally convex spaces, a convenient class of
topological vector spaces

Since existence of proper convex neighbourhoods tantamount to existence
of continuous linear functionals the next definition looks natural.

Definition 3.3.1. A topological vector space is said to be locally convex if
there is a neighbourhood base at origin consisting of convex sets. A locally
convex topological vector space will be referred as LCS or LCTVS.

Theorem 3.3.2. An LCS has a basis of neighbourhoods of origin consisting of
open, convex, balanced subsets.

Proof. Follows from theorem 2.5.3.

Given the correspondence between convex, absorbing, balanced sets
and semiballs the following result is obvious.

Theorem 3.3.3. Let E be a locally convex space. Then there exists a collection of
seminorms {pα : α ∈ A} such that the associated semiballs give a fundamental
system of neighbourhoods of origin. Conversely given a collection of seminorms
{pα|α ∈ A} there exists a unique locally convex topology such that the associated
semiballs generate a fundamental system of neighbourhoods of origin.

Proof. We only need to argue the converse direction and that follows from
the following theorem.

Theorem 3.3.4. Let E be a vector space over K and C be a collection of absorbing,
convex, balanced subsets of E. Then there exists a unique vector space topology on
E turning it into a locally convex space so that the collection B consisting of finite
intersections of elements of U := {r.C|r > 0,C ∈ C} forms a filter base generating
the filter of neighbourhoods of origin.

Proof. We have to employ corollary 2.1.13.
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36 3.4. Examples of LCS

(i) Since elements of C are balanced they contain origin. Therefore so
does elements of B.

(ii) Intersections of balanced and absorbing sets are balanced and ab-
sorbing.

(iii) Only thing we need to is that given any V ∈ B there exists W ∈ B

such thatW+W ⊆ V . Note that V is convex because intersections of
convex sets are convex. Also 1

2
V ∈ B. So we can takeW = 1

2
V .

3.4 Examples of locally convex spaces

So far our discussion is quite abstract in the sense that we haven’t dis-
cussed much of examples. Only example we have talked about is that of
Lp spaces and that was used to illustrate a pathological property of lack
of continuous linear functionals. Now we will address that. We will be-
gin with examples of locally convex spaces. We have already seen that
locally convex topologies on K-vector spaces can be specified in terms of
semi norms. So, it is enoiugh to produce seminorms. This does not look
difficult.

Example 3.4.1. Let E be a vector space and ϕ : E → K be a linear func-
tional. Then pϕ : E ∋ x 7→ |ϕ(x)| ∈ R is a seminorm.

Definition 3.4.2. Let E be a K-vector space and it’s algebraic dual be E′ :=
{ϕ : E → K|ϕ is a linear functional}. Given any subspace A ⊆ E′, we use
σ(E,A) to denote the locally convex topology on the vector space E pre-
scribed by the collection of seminorms {pϕ : ϕ ∈ A}.

Two instances of this is most useful.

Definition 3.4.3 (Weak* topology). If E is a locally convex space then using
the canonical embedding of E inside E∗∗ we can consider E as a subspace
of E∗∗ and the topology σ(E∗;E) is called the weak-* topology on E∗. A net
{ϕλ} ⊆ E∗ converges in the weak* topology toϕ iff limλϕλ(x) = ϕ(x),∀x ∈
E.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

3.4. Examples of LCS 37

Definition 3.4.4 (Weak topology). Let E be a locally convex space. Then
σ(E;E∗) is called the weak topology on E. A net {xλ} ⊆ E converges to x if
limλϕ(xλ) = ϕ(x),∀ϕ ∈ E∗.

Definition 3.4.5. Let E be an LCS. For any set A ⊆ E, it’s (right) polar A◦

is defined by
A◦ := {ϕ ∈ E∗| sup

x∈A

|ϕ(x)| ⩽ 1}.

Similarly, for any set A ⊆ E∗ we define it’s (left/pre) polar
◦
A by

◦
A := {x ∈ E : sup

ϕ∈A

|ϕ(x)| ⩽ 1}.

Theorem 3.4.6 (Banach-Alaoglu-Bourbaki). Let E be an LCTVS and A be a
convex, balanced, neighbourhood of origin of E. ThenA◦ is compact in the weak*-
topology.

Proof. For x ∈ E, let Sx := {z ∈ K||z| ⩽ p(x)} where p is the Minkowski
functional associated with A. Consider S :=

∏
x∈E Sx with the product

topology. Let x ∈ E and ϕ ∈ A◦. Then for ϵ > 0, x ∈ (p(x) + ϵ).A. There-
fore |ϕ(x)| ⩽ p(x) + ϵ. Since ϵ is arbitrary, |ϕ(x)| ⩽ p(x) or equivalently
ϕ(x) ∈ Sx. Therefore we can define Φ : A◦ → S by Φ(ϕ)x = ϕ(x). Obvi-
ously Φ is one to one and allows us to identify A◦ as a subset of S. This
identification respects topology. This means Φ : (A◦,weak∗) → Φ(A◦)

is a homeomorphism. To see this observe that if {ϕλ} is a net in A◦, then
ϕλ → ϕ ∈ A◦ in weak*-topology iff Φ(ϕλ) → Φ(ϕ) in S. By Tychonov’s
theorem S is compact and it is clearly Hausdorff. Therefore to show A◦ is
compact it suffices to show that Φ(A◦) is compact. Which in turn follows
once we show that it is closed. Let {ϕλ} ⊆ A◦ be a net andΦ(ϕλ) = ψλ ∈ S.
Suppose ψλ → ψ ∈ S. In other words limψλx = ψx,∀x ∈ E. We have
to show that there exists ϕ ∈ A◦ such that Φ(ϕ) = ψ. That will fol-
low once we show that the association ϕ : E ∋ x 7→ ψx is linear and
supx∈A |ϕ(x)| ⩽ 1. Let us show them one by one begining with linearity.
Let a,b ∈ K, x,y ∈ E,

ψ(ax+by) = limψλ(ax+by) = limϕλ(ax+ by) = limaϕλ(x) + limbϕλ(y)

= limaψλx + limbψλy = aψx + bψy.

To see ϕ ∈ A◦ observe that for all x ∈ A, |ϕ(x)| = lim |ϕλ(x)| ⩽ 1. So, ψ =

Φ(ϕ). This establishesΦ(A◦) is closed and consequently it is compact.
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38 3.4. Examples of LCS

Example 3.4.7 (Smooth functions). Let Ω ⊆ Rd be an open subset. Con-
sider the vector space Ck(Ω) of k-times continuously differentiable func-
tions on Ω. For each compact subset K ⊆ Ω and m ∈ N0 (recall we use N0

to denote {0} ∪ N) consider the seminorm

pK,m(f) =
∑

|α|⩽m

sup
x∈K

|
∂α1+···+αd

∂xα1

1 ∂x
α2

2 . . .∂xαd

d

f(x)|.

Then the locally convex space given by Ck(Ω) along with the family of
seminorms {pK,k|K ⊆ Ω is compact } is denoted by Ck(Ω). Convergence
in Ck(Ω) means uniform convergence on compact subsets for all deriva-
tives upto order k. We use C(Ω) to denote the locally convex space ob-
tained by considering C∞(Ω) along with the family {pK,m : m ∈ N,K ⊆
Ω is compact }.

Example 3.4.8 (Schwartz space). Let S(R) be the space of smooth functions
on Rd with rapidly decaying derivatives. In other words

S(R) = {f : Rd → K : ∀k,m ∈ N0, sup
x∈Rd,|α|⩽m

(1+ ∥x∥2)k|Dαf(x)| <∞},

where ∥x∥2 :=
√∑d

j=1 x
2
j . This is called the Schwartz space. Equipped

with the family of seminorms

pk,m(f) := sup
x∈Rd,|α|⩽m

(1+ ∥x∥2)k|Dαf(x)|,k,m ∈ N0,

Schwartz space is a locally convex space. It’s dual is the space of tempered
distributions. Obviously we could have defined Schwartz space S(V) for
any finite dimensional real vector space V . Fourier transform is a continu-
ous isomorphism from S(V) to S(V∗).

Definition 3.4.9 (Strict inductive limit). Let E be a vector space and {Eα|α ∈
A} be a collection of subspaces with E = ∪Eα. Suppose each (Eα,Tα) is a
locally convex topological vector space. They are compatible in the sense
that if Eα1

⊆ Eα2
then the topology of Eα1

coincides with the relative topol-
ogy inherited from Eα2

. Let

C := {U ⊆ E|U is convex, balanced, absorbing ,U ∩ Eα ∈ Nα},
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3.4. Examples of LCS 39

where Nα is the neighbourhood filter at origin of Eα. To see that this is a
rich collection for each α take a convex, balanced neighbourhood of origin
Uα. Let U be the convex hull of ∪αUα. Then U is a convex, balanced and
absorbing subset so that for each α,U∩Eα is a convex balanced neighbour-
hood of origin in Eα. By theorem 3.3.4 we get a locally convex vector space
topology T on E called the strict inductive limit topology of Eα’s. We use
the notation (E,T) = s- lim(Eα,Tα) to denote (E,T) is the strict inductive
limit of (Eα,Tα)’s.

Proposition 3.4.10. Let (E,T) = s- lim(Eα,Tα). Then Tα contains the rela-
tive topology of Eα inherited as a subspace of the topological space E.

Proof. Let Vα be a neighbourhood of origin in the relative topology of Eα.
Then Vα = V ∩ Eα where V is a neighbourhood of origin in E. We know
that

V ⊇ ∩k
j=1ϵjUj for some Uj ∈ C; ϵj > 0, j = 1, . . . ,k.

Therefore Vα ⊇ ∩k
j=1ϵj(Uj ∩ Eα). This shows that Vα is a neighbourhood

in the topology of Eα.

Theorem 3.4.11. Let {En}n∈N be a sequence of locally convex spaces with En ⊆
En+1, ∀n and the topology of En is the relative topology inherited from En+1 for
all n. Suppose E = ∪En and E = s- limEn. Then the relative topology of En as a
subspace of E coincides with the original topology. It is for this reason we use the
adjective strict.

Lemma 3.4.12. Let X be a locally convex TVS, X0 a linear subspace equipped
with the subspace topology, and U a convex (balanced) neighbourhood of the ori-
gin in X0. Then there exists a convex (balanced) neighbourhood V of the origin in
X such that V ∩ X0 = U.

Proof. There exists a neighbourhoodW of origin inX such thatU =W∩X0.
Since X is locally convex there is a convex(balanced) neighbourhood W0

of origin in X such thatW0 ⊆W. Let V be the convex hull ofU∪W0. Then
by construction V is a convex neighbourhood of origin in X and U ⊆ V .
Therefore U = U ∩ X0 ⊆ V ∩ X0. Let x ∈ V ∩ X0. As U and W0 are convex
we may write x = λy + (1 − λ)z with y ∈ U, z ∈ W0 and λ ∈ [0, 1]. If
λ = 1, then x = y ∈ U. If 0 ⩽ λ < 1 then z = (1 − λ)−1(x − λy) ∈ X0. So,
z ∈W0 ∩ X0 ⊆W ∩ X0 = U. This implies by convexity of U, x ∈ U. Hence
V ∩ X0 = U.
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40 3.4. Examples of LCS

Proof of theorem. Let n ∈ N. Only thing we need to show is that the topol-
ogy of En is coarser than the relative topology. Let Un be a convex bal-
anced neighbourhood of origin in the topology of En. By the lemma we
obtain Un+1, a convex balanced neighbourhood of origin in En+1 so that
Un+1∩En = Un. By induction get a convex balanced neighbourhoodUn+k

of the origin in En+k such that Un+k ∩ En+k−1 = Un+k−1. Hence for any k
we get Un+k ∩ En = Un. Let U = ∪kUn+k. Then U is a convex, balanced
neighbourhood of origin in E with U ∩ En = Un. Thus Un is open in the
relative topology.

Example 3.4.13 (Test functions D(Ω)). Let Ω ⊆ Rd be open and C∞
c (Ω)

be the collection of compactly supported smooth functions with support
contained in Ω. For each compact K ⊆ Ω, let C∞(K) be the collection
of smooth functions with support contained in K. Let us fix a collection
of compact sets {Kn}n∈N so that K̊n ⊇ Kn−1,K0 = ∅, ∀n and Ω = ∪Kn.
Equipped with the seminorms {pK,m|m ∈ N ∪ {0}}, C∞(K) becomes a lo-
cally convex topological vector space. Note that C∞(Kn) ⊆ C∞(Kn+1),∀n
and the topology of C∞(Kn) coincides with the subspace topology. We
also have C∞

c (Ω) = ∪C∞(Kn) and C∞
c (Ω) with the strict inductive limit

topology of {C∞(Kn)} is denoted by D(Ω). This topology is also referred
as LF topology meaning limits of Frechet spaces.

Proposition 3.4.14. A sequence {fk}k converges to 0 in D(Ω)only if (i) there
exists a compact set K ⊆ Ω so that supp(fk) ⊆ K,∀k and (ii) for each
multiindex α, {Dαfk} converges to 0 uniformly on K.

Proof. Only thing we need to show is (i). Suppose (i) does not hold. Then
there exists a sequence {xk} without a convergent subsequence and a sub-
sequence {fkn

} with fkn
(xn) ̸= 0. Then the seminorm

p(f) =

∞∑
n=1

2 sup
x∈(Kn\Kn−1)

|f(x)|/|fkn
(xn)|

where the sequence of compact sets {Kn} satisfies K̊n ⊇ Kn−1,K0 = ∅, ∀n,Ω =

∪Kn, and xn ∈ Kn \ Kn−1 defines a neighbourhood of origin U = {f|p(f) <

1}. None of the fkn
’s belong to U. This contradicts lim fk = 0.

Remark 3.4.15. From the inclusion C∞
c (Ω) ⊆ C∞(Ω), C∞

c (Ω) gets a sub-
space topology. But D(Ω) is a strictly finer topology. To show this we
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need to exhibit a sequence {fn} converging to zero in the relative topology
but not the LF topology. Choose f ∈ D(R) with support [−1, 1] and let
fn(x) = f(x)/n. Then fn ∈ D(R). and

∥fn∥∞ := sup
x∈R

|fn(x)| =
1

n
∥f∥∞ → 0.

Also,

∥f(k)n }∞ := sup
x∈R

1

nk+1
|f(k)(x/n)| =

1

nk+1
∥f(k)∥∞ → 0.

Therefore fn → 0, in the topology of C∞(R) but {fn} does not converge in
D(Ω) because supp(fn) = [−n,n] is growing arbitrarily large.

Definition 3.4.16. A seminorm p on a vector space E is called a norm if
p(x) = 0 implies x = 0. Norms are often denoted by ∥ · ∥. A normed linear
space (E, ∥ · ∥) is a vector space E equipped with a norm ∥ · ∥.
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Practice problems

1. (On compactly supported smooth functions) Purpose of this exercise
is to give you some idea about compactly supported smooth func-
tions. Let f : R → R be a smooth function such that

f(t)

{
= 0, for t ⩽ 0;
> 0 for t > 0.

For example we could take f(t) = e−1/t for t > 0 and f(t) = 0 for
t ⩽ 0. Define

f0 : Rd ∋ x 7→ f(1− ∥x∥22) ∈ R.

(i) Show that f0 is compactly supported and infinitely differen-
tiable.

(ii) Show that if f ∈ C∞
c (Rd) and g ∈ L1(Rd) are compactly sup-

ported, then

(f ⋆ g)(x) :=

∫
Rd

f(x− y)g(y)dy,

is also in C∞
c (Rd). (Hint: Show that ∂(f⋆g)

∂xi
(x) = ( ∂f

∂xi
⋆ g)(x).

(iii) For ϵ > 0, let fϵ(x) = C(ϵ)f0(
x
ϵ
) where C(ϵ) =

(∫
f0(

x
ϵ
)dx

)−1.
Let h ∈ Ck

c(Rd), 0 ⩽ k <∞. Define hϵ = h ⋆ fϵ. Show that

supp(hϵ) ⊆ {x|∃y ∈ supp(h), ∥x− y∥2 ⩽ ϵ} =: Kϵ.

Also show that Dαhϵ → Dαh uniformly on Rd for all multiin-
dex αwith |α| ⩽ k.

(iv) Show that C∞
c (Rd) is dense in Lp(Rd) for 1 ⩽ p <∞.

2. Let f ∈ C∞
c (R), then show that the limit limϵ→0

(∫−x

−∞ f(t)
t
dt+

∫∞
x

f(t)
t
dt

)
exists. This limit is denoted by P.V

[
1
x

]
(f).

3. Let E be a TVS and F be a subspace. Show that with the quotient
topology E/F is a TVS and this is Hausdorff iff F is closed.
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3.5 Assignment II, due on 11/02/25

Throughout these exercisesΩ ⊆ Rd stands for an open set.

1. Let E, F be locally convex spaces with topologies prescribed by fam-
ilies of seminorms P,Q respectively. For a linear map T : E → F the
following are equivalent.

(a) T is continuous.

(b) T is continuous at zero.

(c) For all q ∈ Q there exists n ∈ N,p1, · · · ,pn ∈ P,C > 0 such that
q(T(x)) ⩽ Cmaxi pi(x).

2. Let {En} be a sequence of locally convex spaces and E be their strict
LF limit. Let F be a locally convex space. Show that a linear map
ϕ : E→ F is continuous iff ϕ|En

is continuous for all n.

3. Show that the inclusion map C∞
c (Ω) to Lp(Ω) is continuous for 0 <

p <∞.

4. Show that a linear functionalϕ : D(Ω) → K is continuous iffϕ(fj) →
0 for all sequences {fj} ⊆ D(Ω) converging to zero.

5. Let ϕ ∈ (D(Ω))′. Define (∂iϕ)(f) := ϕ(−∂if). Show that ∂iϕ is a
distribution. Also show that ∂i : D(Ω) → D(Ω) is continuous.

6. Let f ∈ L1(R). Show that D(R) ∋ g 7→ f ⋆ g ∈ D(R) is continuous.

7. Let L1Loc(Ω) be the space of locally integrable functions defined by

L1Loc(Ω) := {f : Ω→ K|f is measurable and for all compact K ⊆ Ω,∫
K

|f| <∞.}

Show that for all f ∈ L1Loc(Ω) the map D(Ω) ∋ g 7→ ∫
f(x)g(x)dx is a

distribution denoted by the same symbol.

8. Show that H : D(R) ∋ f 7→ ∫∞
0
f(x)dx is a distribution called Heavi-

side distribution.
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9. Let f ∈ C∞
c (Ω). Now we have two interpretations of the symbol

∂if. We can differentiate as a distribution and consider the resulting
distribution or we can differentiate as a function and consider the
associated distribution. Show that both these distributions are same.
This explains the negative sign in problem 5.

10. For each a ∈ Ω, show that the map δa : D(Ω) ∋ f 7→ f(a) is a
distribution called the Dirac distribution at a.

11. Show that the distributional derivative dH
dx

= δ0.

12. Show that P.V .
[
1
x

]
: D(Ω) ∋ f 7→ limx→0

(∫−x

−∞ f(t)
t
dt+

∫∞
x

f(t)
t
dt

)
is

a distribution, called the principal value of 1
x

.

13. Show that the map R ∋ x 7→ log(|x| is in L1Loc(R). Also show that
d log(|x|)

dx
= P.V .

[
1
x

]
.
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3.6 Normed spaces as examples of LCS

Here is our definition of normed linear space. Since we are discussing
locally convex spaces our definition looks a bit convoluted but we will
immediately argue that this definition is same as the usual definition.

Definition 3.6.1. A Hausdorff locally convex topological vector space with
topology specified by a single seminorm is called a normed linear space.

Proposition 3.6.2. Let p be a seminorm on a vector space E. Then the
topology generated by p is Hausdorff iff p(x) = 0 only if x = 0.

Proof. Let p(x) = 0 and x ̸= 0. Then x ∈ V , ∀V ∈ N0. But this contradicts
the Hausdorff hypothesis.

Definition 3.6.3. A seminorm p : E → R is said to be a norm if p(x) = 0

only if x = 0. Often norms are denoted by ∥ · ∥.

Therefore we can also define normed linear spaces as topological vec-
tor spaces with topology specified by a norm. We will use the notation
(E, ∥ · ∥E) to denote a normed linear space E, that comes equipped with a
norm ∥ · ∥E. If there is no scope of confusion and the subscript E in ∥ · ∥E
appears a bit notationally overwhelming we may drop it from notation.
These are metric spaces with the metric associated with the norm ∥ · ∥
given by d∥·∥(x,y) = ∥x− y∥.

Theorem 3.6.4. Let F ⊆ E be normed linear spaces and ϕ : F→ K be a continu-
ous linear functional then there exists a continuous linear functional ϕ̃ : E → K
so that ϕ̃|F = ϕ and ∥ϕ̃∥ = ∥ϕ∥. Such a ϕ̃ is called a norm preserving extension
of ϕ.

Proof. Consider the seminorm p(x) = ∥ϕ∥∥x∥. Then we have |ϕ(x)| ⩽
p(x),∀x ∈ F. By theorem 3.1.2 we obtain a linear functional ϕ̃ on E so
that ϕ̃|F = ϕ and |ϕ̃(x)| ⩽ p(x) = ∥ϕ∥∥x∥, ∀x ∈ E. Therefore ∥ϕ̃∥ ⩽
∥ϕ∥. Since ϕ̃ extends ϕ we obviously have the other inequality required
to show ∥ϕ̃∥ = ∥ϕ∥.

Corollary 3.6.5 (Corollary to Hahn-Banach Theorem). Let E be a normed
linear space and x ∈ E. Then there exists x∗ ∈ E∗ such that x∗(x) =

∥x∥, ∥x∗∥ = 1.
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Proof. Let F be the span of x and ϕ : F → K be the linear functional given
by ϕ(λx) = λ∥x∥, ∀λ ∈ K. Then ∥ϕ∥ = 1. Let x∗ be a norm preserving
extension of ϕ.

Corollary 3.6.6 (Corollary to Hahn-Banach Theorem). Let E be a normed
linear space and E∗ it’s dual. Then the norm of x ∈ E satisfies,

∥x∥ = sup{| < x∗, x > | : ∥x∗∥ ⩽ 1},

where < x∗, x > denotes x∗(x).

Proof. Let x ∈ E, then for any x∗ ∈ E∗ with ∥x∗∥ ⩽ 1, we have | < x∗, x >
| ⩽ ∥x∗∥∥x∥ ⩽ ∥x∥. This shows that

∥x∥ ⩽ sup{| < x∗, x > | : ∥x∗∥ ⩽ 1}.

For the other inequality using the Hahn Banach theorem obtain x∗ of norm
one such that x∗(x) = ∥x∥.

Now that we have shown that E∗ is a nontrivial space it makes sense to
recognise one crucial property enjoyed by duals of normed linear spaces,
namely completeness. Stefan Banach initiated systematic study of these
spaces and he called them B spaces. Frechet started calling them Banach
spaces. Let us officially record the definition.

Definition 3.6.7 (Banach Space). A complete normed linear space is called
a Banach space

Proposition 3.6.8. Let E be a normed linear space and F be a Banach space.
Then L(E, F) is a Banach space. In particular E∗ is a Banach space.

Proof. Let {Tn} be a Cauchy sequence in L(E, F). Then ∀ϵ > 0,∃N such that
∥Tn − Tm∥ < ϵ,∀n,m ⩾ N. Then for any x ∈ E,

∥Tnx− Tmx∥ < ϵ∥x∥ for n,m ⩾ N. (3.4)

Using completeness of Fwe get lim Tnx = Tx. Also

T(αx+ βy) = lim Tn(αx+ βy) = limαTn(x) + βTn(y) = αT(x) + βT(y).
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Therefore T is linear and it is bounded because

∥T(x)∥ = lim ∥Tn(x)∥ = lim ∥TN(x) + (Tn(x) − TN(x))∥ ⩽ (ϵ+ ∥TN∥)∥x∥.

Letting m tend to infinity in (3.4) we get ∥Tn − T∥ ⩽ ϵ,∀n > N. Thus
T = lim Tn ∈ L(E, F) showing completeness of L(E, F).

Proposition 3.6.9. Let E be a Banach space. A subspace F ⊆ E is complete
iff it is closed.

Proof. If part: Let {xn} ⊆ F be a Cauchy sequence. Then using com-
pleteness of E we know lim xn = x for some x ∈ E. Since F is closed
lim xn = x ∈ F. Thus F is complete.

Only if part: Let {xn} ⊆ F be converging to x. As F is complete x ∈ F.
Therefore F is closed.

Exercise 3.6.10. Show that a finite dimensional subspace of a normed lin-
ear space is always closed. Hint: Any two norms on a finite dimensional space are
equivalent.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

48 3.6. Normed spaces as examples of LCS

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N
Chapter 4

Applications of Hahn Banach
theorems

We will begin with few applications of the Hahn-Banach extension theo-
rem.

4.1 Canonical embedding into second dual

Definition 4.1.1. Let jE : E → E∗∗ be the map defined by jE(x)(x∗) =<

x∗, x >. Then
∥jE(x)∥ = sup

x∗:∥x∗∥=1

| < x∗, x > | = ∥x∥.

Therefore jE is an isometric embedding of E into E∗∗, often referred as
the canonical embedding of E into E∗∗. The norm closure of jE(E) is the
completion of E. We say E is reflexive if j is an isomorphism.

Proposition 4.1.2. Let E be a normed linear space. Then the completion of
E is a Banach space.

Proof. The norm closure of jE(E) is the completion of E. Being closure of a
subspace it is a complete normed linear space or which is same as a Banach
space.

Remark 4.1.3. Can there be a non-reflexive normed linear space E such that
there is an isometric isomorphism T ∈ L(E,E∗∗), i.e., an isomorphism T
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satisfying ∥T(x)∥ = ∥x∥,∀x ∈ E? A counter example was given by Robert
James. It is in his honour we denote the canonical embedding by j.

Definition/Proposition 4.1.4. Let E, F be Banach spaces and T ∈ L(E, F). Then
T∗ : F∗ → E∗ defined by T∗(ϕ)(x) = (ϕ ◦ T)(x) defines a bounded linear
map, called the adjoint of T with ∥T∗∥ = ∥T∥. Also I∗E = IE∗ , where IE, IE∗

be the identity mappings of E,E∗ respectively. If S ∈ L(F,G) then (S◦T)∗ =

T∗ ◦ S∗.

Proof. Let ϕ ∈ F∗ then

∥T∗(ϕ)∥ = sup{|T∗(ϕ)(x)| : x ∈ E, ∥x∥ ⩽ 1}

= sup{|ϕ(T(x))| : x ∈ E, ∥x∥ ⩽ 1}

⩽ ∥ϕ∥∥T∥.

Therefore ∥T∗∥ ⩽ ∥T∥. We give two proofs of the other inequality ∥T∥ ⩽
∥T∗∥.

First proof.

∥T∥ = sup{∥T(x)∥ : x ∈ E, ∥x∥ ⩽ 1}

= sup{|ϕ(T(x))| : x ∈ E,ϕ ∈ F∗, ∥x∥, ∥ϕ∥ ⩽ 1}

⩽ sup{∥T∗(ϕ)∥ : ϕ ∈ F∗, ∥ϕ∥ ⩽ 1}

⩽ ∥T∗∥.

Second proof. Let x ∈ E,ϕ ∈ F∗. Then we have

T∗∗(jE(x))(ϕ) = jE(x)(T
∗ϕ) = T∗(ϕ)(x) = ϕ(T(x)) = jF(T(x))(ϕ).

In other words
T∗∗ ◦ jE = jF ◦ T . (4.1)

In categorical parlance this means j is a natural transformation. (Soon we
will elaborate on this.) Therefore,

∥T∥ = sup
x∈BE

∥T(x)∥ = sup
x∈BE

∥j(T(x))∥ = sup
x∈BE

∥T∗∗(j(x))∥ ⩽ sup
x∗∗∈BE∗∗

∥T∗∗(x∗∗)∥ = ∥T∗∗∥

Using ∥T∗∥ ⩽ ∥T∥ for T∗ we get ∥T∗∗∥ ⩽ ∥T∗∥. Thus ∥T∥ ⩽ ∥T∗∥.
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Let us look back and reflect on what have we done just now. To any
normed linear space E we have associated a normed linear space, namely
E∗. Also to any T ∈ L(E, F) we have associated a T∗ ∈ L(F∗,E∗). This
association satisfies two more properties, (i) I∗E = IE∗ and (ii) S ∈ L(F,G)
then (S ◦ T)∗ = T∗ ◦ G∗. Now in mathematics whenever some structure
occurs frequently we introduce terminology so that we can talk about the
structure and investigate its properties. In this case the relevant structure
is of categories and functors.

4.2 Categories and functors

Definition 4.2.1 (Locally small category). A locally small category C con-
sists of a class Ob(C) called objects of C and given any two objects A,B ∈
Ob(C), a set MorC(A,B) called morphisms of C. When there is no scope
for confusion we will drop C from the notation MorC. If f ∈ Mor(A,B),
then we may also write f : A → B or A f→ B. We will denote Mor(A,A)
by Mor(A). Given A,B,C ∈ Ob(C), there is a map ◦ : Mor(A,B) ×
Mor(B,C) → Mor(A,C) called composition and for each A ∈ Ob(C)

a morphism IA ∈ Mor(A), called the identity morphism of A such that
∀f ∈ Mor(A,B),g ∈ Mor(B,C), ∀h ∈ Mor(C,D) we have ◦(◦(f,g),h) =

◦(f, ◦(g,h)) and ◦(IA, f) = f = ◦(f, IB). We denote ◦(f,g) by g ◦ f. In this
notation the conditions become associativity h ◦ (g ◦ f) = (h ◦ g) ◦ f and
f ◦ IA = f = IB ◦ f.

Example 4.2.2. The category Sets has sets as objects and functions as mor-
phisms.

Example 4.2.3. The category Gp has groups as objects and group homo-
morphisms as morphisms. The usual composition of functions define
composition.

Example 4.2.4. Let G be a group. Then we can define a category with only
one object ∗ and Mor(∗) = G. The identity element of G plays the role of
I∗ while the group multiplication defines the composition. This example
shows morphisms may not be functions. Also in a sense the notion of
category generalises the notion of groups.

[Lecture Notes of P.S.Chakraborty]
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Example 4.2.5. The category NlsK the category of normed linear spaces
over K has normed K vector spaces as objects and bounded linear maps
as mrphisms.

Example 4.2.6. The category Ban has Banach spaces as objects withMor(E, F) =
L(E, F).

Example 4.2.7. The category Ban1 has Banach spaces as objects withMor(E, F) =
{T ∈ L(E, F) : ∥T∥ ⩽ 1}.

Definition 4.2.8. Let C,D be categories. A covariant (contravariant) func-
tor F : C → D associates to an object A ∈ Ob(C) an object F(A) ∈ Ob(D)

and to a morphism f ∈MorC(A,B) an element F(f) ∈MorD(F(A), F(B))(F(f) ∈
MorD(F(B), F(A)) such that

1. For all f,g so that the composition g◦f is defined we have F(g)◦F(f) =
F(g ◦ f)(F(f) ◦ F(g) = F(g ◦ f)).

2. For all A ∈ Ob(C), F(IA) = IF(A).

Covariant functors are often called functors.

In this terminology we can state what we have already proved.

Example 4.2.9. The dualization functor ∗ : NlsK → NlsK is the contravari-
ant functor sending E ∈ Ob(NlsK) to E∗ and T ∈ L(E, F) to T∗. Since
dualization is contravariant applying it twice we get the covariant functor
second dual.

Definition 4.2.10. Let F,G : C → D be functors. Then a natural transfor-
mation η : F→ G associates a morphism ηA ∈MorD(F(A),G(A)) for each
objectA of C so that for each f ∈MorC(A,B) we have ηB◦F(f) = G(f)◦ηA.
This is also expressed by saying the following diagram commutes.

F(A)

F(f)

��

ηA // G(A)

G(f)

��
F(B)

ηB // G(B)

Example 4.2.11. The James map gives a natural transformation j : Id→ ∗∗.
We have verified the relevant condition in (4.1).
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4.3 Reflexive Banach spaces

Proposition 4.3.1. A closed subspace of a reflexive Banach space is reflex-
ive.

Proof. Let F ⊆ E be a closed subspace with i : F ↪→ E the inclusion map.
Let y∗∗ ∈ F∗∗. We have to exhibit y ∈ F such that jF(y) = y∗∗. Since E is
reflexive there is x ∈ E such that i∗∗(y∗∗) = jE(x). It is enough to show that
x ∈ F. In other words i(x) = x. Because then i∗∗(y∗∗) = jE(x) = jE ◦ i(x) =
i∗∗(jF(x)). If we can show i∗∗ is one to one then we will get y∗∗ = jF(x). So
we need to show two things, (i) x ∈ F and i∗∗ is one to one.

Proof of x ∈ F. Suppose x /∈ F. Then by Hahn-Banach there exists x∗ ∈ E∗
such that x∗(F) = 0 or equivalently i∗(x∗) = 0 and x∗(x) = 1. We have the
following chain of equalities

1 = ⟨x∗, x⟩ = ⟨jE(x), x∗⟩ = ⟨i∗∗(y∗∗), x∗⟩ = ⟨y∗∗, i∗(x∗)⟩ = 0!

This contradiction shows x ∈ F.

Injectivity of i∗∗.Let y∗ ∈ F∗ be arbitrary and x∗ be a norm preserving exten-
sion of y∗, in other words ⟨x∗, i(y)⟩ = ⟨y∗,y⟩,∀y ∈ F. So, ⟨i∗(x∗) − y∗,y⟩ =
⟨x∗, i(y)⟩− ⟨y∗,y⟩ = 0, ∀y ∈ F. Thus y∗ = i∗(x∗). In other words i∗ is onto.
Suppose i∗∗(z∗∗) = 0 for some z∗∗ ∈ F∗∗. Then for all x∗ ∈ E∗ we have
⟨z∗∗, i∗(x∗)⟩ = 0. Since i∗ is onto, this means z∗∗ = 0

Proposition 4.3.2. Let E be a Banach space. Then E is reflexive iff E∗ is
reflexive.

Proof. Only if part: Let E be reflexive. We have to show every x∗∗∗ ∈ E∗∗∗
is of the form jE∗(x∗). So, given x∗∗∗ define x∗ by

⟨x∗, x⟩ = ⟨x∗∗∗, jE(x)⟩, ∀x ∈ E. (4.2)

Claim: jE∗(x∗) = x∗∗∗.

Proof of claim. We have to show ⟨x∗∗∗, x∗∗⟩ = ⟨jE∗(x∗), x∗∗⟩, ∀x∗∗ ∈ E∗∗. So,
let x∗∗ ∈ E∗∗ be arbitrary. Then using reflexivity of Ewe get x∗∗ = jE(x) for
some x ∈ E. The following chain of equalities

⟨jE∗(x∗), x∗∗⟩ = ⟨x∗∗, x∗⟩ = ⟨jE(x), x∗⟩ = ⟨x∗∗∗, jE(x)⟩ = ⟨x∗∗∗, x∗∗⟩

show x∗∗∗ = jE∗(x∗).
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If part: If E∗ is reflexive then by the only if part E∗∗ is reflexive. By
proposition (4.3.1), jE(E) is reflexive. Therefore so is E.

Proposition 4.3.3. Let E, F be isomorphic Banach spaces. Then E is reflex-
ive iff F is reflexive

Proof. It is enough to show one of the implications because the other fol-
lows by symmetry. We will show the only if part. Let T : E → F be an
isomorphism. Then T∗∗ : E∗∗ → F∗∗ is an isomorphism. Since James map
is a natural transformation we have T∗∗ ◦ jE = jF ◦ T . The left hand side is
surjective because E is reflexive. Therefore the right hand side must be sur-
jective as well. Since T is an isomorphism this implies jF is surjective.

4.4 Hilbert spaces

Definition 4.4.1. A Banach space is said to be a Hilbert space if it’s norm
is associated with an inner product.

Exercise 4.4.2. Let (E, ∥ · ∥) be a Banach space. Then E is a Hilbert space iff
∥x + y∥2 + ∥x − y∥2 = 2(∥x∥2 + ∥y∥2),∀x,y ∈ E. This identity is calledthe
parallelogram identity.

Proposition 4.4.3. Let E be a finite dimensional Banach space. Then any
two norms on E are equivalent.

Corollary 4.4.4. Any finite dimensional subspace of a Banach space is
closed.

Proposition 4.4.5. Let E be a locally compact Banach space then Emust be
finite dimensional.

Exercise 4.4.6. Let H1 ⊆ H2 be finite dimensional Hilbert spaces. Show
that any linear functional on H2 admits a unique norm preserving exten-
sion to H1.
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4.5 Duals of some Banach spaces

We identify duals of some standard Banach spaces and their dual norms.
We begin with the simplest.

Proposition 4.5.1. Let ℓpn denote Kn equipped with the norm ∥x∥p = (
∑n

i=1 |xi|
p)1/p

for 1 ⩽ p < ∞ and ∥x∥p = maxi |xi| for p = ∞. Let q ∈ (1,∞] be the con-
jugate exponent of p. This means q satisfies 1

p
+ 1

q
= 1. Then the dual of

ℓpn is isometrically isomorphic with ℓqn.

Proof. DefineΦ : (Kn, ∥ · ∥q) → (Kn, ∥ · ∥p)∗ byΦ(y)(x) =
∑n

i=1 xiyi. Then
by Holder’s inequality |Φ(y)(x)| ⩽ ∥y∥q∥x∥p, ∀x,y. Therefore ∥ϕ(y)∥ ⩽
∥y∥q. To show the oppsite inequality ∥Φ(y)∥ ⩾ ∥y∥q we consider the fol-
lowing cases separately (i) 1 < p < ∞ and p = 1. For u ∈ K define
sign(u) = |u|/u if u ̸= 0 and sign(u) = 0 otherwise. If p = 1 then the con-
jugate exponent is ∞. Let i0 be such that |yi0 | = maxi |yi| = ∥y∥∞. Con-
sider the vector x ∈ Kn with xi = 0 for i ̸= i0 and xi0 = sign(yi0). Then
∥x∥1 = 1 and |Φ(y)(x)| = |yi0 | = ∥y∥∞. This shows that ∥Φ(y)∥ ⩾ ∥y∥∞. If
p > 1, then given y ∈ Kn consider the vector x with xi = sign(yi)|yi|

q−1.
Then ∥x∥p = ∥y∥q/pq and |Φ(y)(x)| = ∥y∥qq. Therefore ∥Φ(y)∥ ⩾ |Φ(y)(x)|

∥x∥p =

∥y∥q. Since ∥Φ(y)∥ = ∥y∥,∀y the map Φ is one to one. The domain and
codomain ofΦ both being n-dimensionalΦmust be onto. In other words
Φ is an isometric isomorphism.

Proposition 4.5.2. Let ℓp := {x ∈ K∞ :
∑

i |xi|
p < ∞} for 1 ⩽ p < ∞.

We have already seen that ℓp is a banach space equipped with the norm
∥x∥p = (

∑
i |xi|

p)1/p. The dual of ℓp is isometrically isomorphic with ℓq.

Proof.

Remark 4.5.3. Next proposition requires Radon-Nikodym theorem. If you
are familiar with the result for complex measures then you can consider
the case K = C. Else you have to consider the case of real scalars only.

Proposition 4.5.4. Let (Ω,A,P) be a probability space and 1 ⩽ q < ∞.
Suppose p is the conjugate exponent of q. Define Φ : Lp(Ω,A,P) →
(Lq(Ω,A,P))∗ by

Φ(f)(g) =

∫
f.gdP.

Then Φ is an isometric isomorphism for 1 < p ⩽ ∞.
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Proof. By Holder’s inequality ∥Φ(f)∥ ⩽ ∥f∥p. We will first show that Φ
is an isometry and then we will show Φ is onto. To show that Φ is an
isometry as before the argument splits into two cases.

Let p = ∞,q = 1. If ∥f∥∞ = 0, then there is nothing to show. Let
∥f∥∞ > ϵ > 0. Consider the function

gϵ(x) =
sign(f(x))χ{ω∈Ω:|f(ω)|>∥f∥∞−ϵ}(x)

P({ω ∈ Ω : |f(ω)| > ∥f∥∞ − ϵ})
.

Here for a set A ∈ A,χA denotes the indicator function of A. Then gϵ ∈ L1
and ∥gϵ∥1 = 1. Note that Φ(f)(gϵ) =

∫
fgϵ ⩾ ∥f∥∞ − ϵ. Since ϵ could be

arbitrarily small ∥Φ(f)∥ ⩾ ∥f∥∞.
If p <∞ or equivalently 1 < q, given f ∈ Lp let us take

g(x) = sign(f(x))|f(x)|p−1

Then ∥g∥qq = ∥f∥pp and Φ(f)(g) = ∥f∥pp. This shows that ∥Φ(f)∥ ⩾ ∥f∥p.
Only thing remains to be shown is surjectivity of Φ. For that we adopt

the following strategy, given a continuous linear functionalϕ ∈ (Lq(Ω,A,P))∗

we first produce a measure νϕ on (Ω,A) absolutely continuous with re-
spect to P. Then the Radon-Nikodym derivative dνϕ

dP
is absolutely inte-

grable. We will show that it is actually in Lp and Φ(
dνϕ

dP
) = ϕ.

Let ϕ ∈ (Lq(Ω,A,P))∗, 1 ⩽ q < ∞. Define νϕ : A → K as νϕ(A) =

ϕ(χA). Then by linearity we conclude that νϕ is finitely additive. Let
{An}n∈N be a countable collection of mutually disjoint measurable sets and
Bk = ∪k

n=1An,k ∈ N,B = ∪∞
n=1An. Then ∥χBk

− χB∥q → 0. Here we
need q < ∞. Therefore using continuity of ϕ we conclude that νϕ(Bk) →
νϕ(B). This shows countable additivity of νϕ. In other words νϕ is a
complex measure in case K = C, else it is a signed measure. Clearly
νϕ << P. Let us denote the Radon-Nikodym derivative dνϕ

dP
by f. Then

f ∈ Lp(Ω,A,P). We wish to show actually f ∈ Lp(Ω,A,P) and Φ(f) = ϕ.
Note that νϕ(A) = ϕ(χA) =

∫
f · χAdP for all A ∈ A. By linearity we get

for all simple functions g

Φ(f)(g) :=

∫
f · gdP = ϕ(g). (4.3)

We wish to establish that f ∈ Lp(Ω,A,P) and 4.3 for all g ∈ Lq(Ω,A,P).
We will establish this by dividing the problem in two cases.
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Let q = 1,p = ∞. Given any A ∈ A, let gA be the simple function

gA(x) =
sign(f(x))χA

P(A)
.

Then gA ∈ L1((Ω,A,P)). Let {gA,n} be a sequence of simple functions con-
verging to gA pointwise and bounded in absolute value. Then by bounded
convergence theorem the sequence {gA,n} converges to gA in L1((Ω,A,P)).
Note that

ϕ(gA) = limϕ(gA,n) = lim
∫
f · gA,ndP =

∫
f · gAdP =

∫
A

|f|

P(A)
dP.

Therefore, ∫
A

|f|

P(A)
dP ⩽ |ϕ(gA)| ⩽ ∥ϕ∥∥gA∥1 = ∥ϕ∥.

Since this is true for all measurable A, we must have f ∈ L∞(Ω,A,P) and
∥f∥∞ ⩽ ∥ϕ∥. Now given an arbitrary g ∈ L1((Ω,A,P)), let us obtain
a sequence of simple functions converging to g pointwise and |gn(x)| ↑
|g(x)|, ∀x ∈ Ω. Since we have already established that f ∈ L∞((Ω,A,P)),
by dominated convergence theorem we conclude 4.3 for our g.

Let 1 < q <∞, 1 < p <∞. Obtain a sequence of simple functions {fn}
such that (i) |fn(x)| ↑ |f(x)|, ∀x ∈ Ω and (ii) lim fn(x) = f(x), ∀x ∈ Ω. Take

gn(x) = |fn(x)|
(p−1) sign(f(x))

∥fn∥(p−1)
p

.

Since sign(f(x)) is bounded in absolute value by 1, each gn is a bounded
function. Obtain a sequence of bounded simple functions {gnm} converg-
ing pointwise to gn. Then by bounded convergence theorem gnm con-
verges to gn in Lq((Ω,A,P)). Therefore we conclude that the relation 4.3
holds for gn. In other words we have

ϕ(gn) =

∫
f · gndP.

Also

∥gn∥qq =

∫
|fn|

(p−1)q

∥fn∥(p−1)q
p

dP = 1.
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58 4.6. Dual of C0(X)

Therefore,

∥ϕ∥ ⩾ |ϕ(gn)| =

∫
|f||fn|

(p−1)

∥fn∥(p−1)
p

dP ⩾ ∥fn∥p.

So,

∥ϕ∥∥ϕ∥(p−1) ⩾ ∥ϕ∥∥fn∥(p−1)
p ⩾

∫
|f||fn|

(p−1)dP.

By an application of Fatou’s lemma we conclude that∫
|f|p ⩽ lim inf

∫
|f||fn|

(p−1)dP ⩽ ∥ϕ∥p.

Now an application of Hölder’s inequality proves 4.3 for all g ∈ Lq((Ω,A,P)).

4.6 Dual of C0(X), for a locally compact Haus-
dorff space X

We wish to identify the dual of the Banach space C0(X;C) of complex val-
ued continuous functions on a locally compact spaceX vanishing at infin-
ity. For X = [0, 1] this was done by F. Riesz in 1909. A. Markov extended
this to some noncompact spaces and the version in this generality is due
to S. Kakutani. He obtained this in 1941. We will see the proof by Garling.
Idea behind his proof is the cute observation that on a totally disconnected
space it is easy to construct measures. Using the canonical continuous sur-
jection from βX, the Stone-Cech compactification of X to X he obtains an
embedding of C(X) into C(βX). Then an application of Hahn-Banach the-
orem allows him to extend the given linear functional to C(βX). Now one
appeals to the existence of clopen base in βX and obtains a Baire mea-
sure. Finally one appeals to extension theorems. The result is somewhat
lengthy, so we need to follow the development carefully.

Definition 4.6.1. Let X be a compact Hausdorff space. A bounded linear
functional ρ ∈ (C(X))∗ is said to be Hermitian if ρ(f∗) = ρ(f), where f∗

is the function x 7→ f(x). In other words for every self-adjoint f, i.e., f
satisfying f = f∗ or equivalently for every real valued function f, we have
ρ(f) ∈ R.
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4.6. Dual of C0(X) 59

Proposition 4.6.2. Let X be a compact Hausdorff space and ρ ∈ C(X)∗.
Then there exists unique Hermitian functionals ρi, ρ2 so that ρ(f) = ρ1(f)+
iρ2(f),∀f ∈ C(X).

Proof. If there are such ρ1, ρ2 then we will have ρ(f∗) = ρ1(f) + iρ2(f).
Therefore we must have ρ1(f) = 1

2
(ρ(f) + ρ(f∗)) and ρ2(f) = 1

2i
(ρ(f) −

ρ(f∗)). We take these expressions as definitions of ρ1, ρ2 and verify that
they are bounded Hermitian linear functionals on C(X) satisfying ρ(f) =

ρ1(f)+iρ2(f),∀f ∈ C(X). Uniqueness is obvious from the construction.

Definition 4.6.3. A function f ∈ C(X;C) is said to be positive if f is real
valued and f(x) ⩾ 0,∀x ∈ X. This is denoted by f ⩾ 0. A Hermitian linear
functional ρ ∈ (C(X))∗ is said to be positive if ρ(f) ⩾ 0 for all f ⩾ 0. This is
denoted by ρ ⩾ 0. Given two bounded linear functionals ρ1, ρ2 we write
ρ1 ⩾ ρ2 to say both ρ1, ρ2 are Hermitian and ρ1 − ρ2 ⩾ 0.

Proposition 4.6.4. Let ρ ∈ (C(X;C)∗ be a bounded Hermitian linear func-
tional. Then there exists unique positive linear functionals ρ± so that
ρ = ρ+ − ρ− and if ρ = ρ1 − ρ2 is another such decomposition then we
must have ρ+ ⩽ ρ1, ρ− ⩽ ρ2.

Proof. Let f ⩾ 0. Since ρ is Hermitian, for any 0 ⩽ g ⩽ f, we know in
particular g is real. Since ρ is Hermitian, for such g’s ρ(g) ∈ R and ρ(g) ⩽
|ρ(g)| ⩽ ∥ρ∥∥g∥ ⩽ ∥ρ∥∥f∥. That means the set {ρ(g) : 0 ⩽ g ⩽ f} is bounded
and we can legitimately define ρ+(f) = sup{ρ(g) : 0 ⩽ g ⩽ f}. Taking g =

0, fwe conclude that ρ+(f) ⩾ max{ρ(f), 0}. We define ρ−(f) = ρ+(f) − ρ(f).
Then ρ−(f) ⩾ 0 for each f ⩾ 0. Now we will establish that we can extend
ρ as a linear functional. That is done in steps.

Step 1: Claim : ρ+(f1) + ρ+(f2) = ρ+(f1 + f2),∀f1, f2 ⩾ 0:

Proof of claim. Let 0 ⩽ gi ⩽ fi, i = 1, 2. Then 0 ⩽ g1 + g2 ⩽ f1 + f2.
Therefore ρ+(f1) + ρ+(f2) ⩽ ρ+(f1 + f2). To show equality we have to
establish the other inequality. Let ϵ > 0 and 0 ⩽ g ⩽ (f1 + f2) be such
that ρ+(f1 + f2) ⩽ ρ(g) + ϵ. Define g1(x) = min{g(x), f1(x)},∀x ∈ X. Then
g1 ∈ C(X), satisfies 0 ⩽ g1 ⩽ f1. Define g2 = g − g1. Then 0 ⩽ g2 and
g = g1 + g2. We must have g2 ⩽ f2 as well because otherwise if for some
x,g2(x) > f2(x) then for such an xwe must have

0 ⩽ f2(x) < g2(x) = g(x) − min{g(x), f1(x)}.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

60 4.6. Dual of C0(X)

Thus g(x) > min{g(x), f1(x)}. Therefore g(x) > f1(x) and g1(x) = f1(x).
So, g(x) = g1(x) + g2(x) = f1(x) + g2(x) > f1(x) + f2(x), a contradiction
establishing g2 ⩽ f2. So,

ρ+(f1 + f2) ⩽ ρ(g) + ϵ = ρ(g1) + ρ(g2) + ϵ ⩽ ρ+(f1) + ρ+(f2) + ϵ.

Since ϵ is arbitrary we have the other inequality required to establish our
claim.

Step 2: Claim : For a self-adjoint element f ∈ C(X) express f as f = f1 − f2
with f1, f2 ⩾ 0 and define ρ+(f) = ρ+(f1) − ρ+(f2). Of course we have to
show this is well defined.

Proof of claim. Firstly we define f+ = max{f, 0} and f− = f − f+. Then
f± ∈ C(X) and satisfy f = f+ − f−. Indeed we can decompose every real
valued continuous function as a difference of two nonnegative continuous
functions. Now suppose f = f1−f2 = f′1−f

′
2 be two such decompositions.

Then f1+f′2 = f′1+f2. Therefore by step 1, ρ+(f1)+ρ+(f′2) = ρ+(f
′
1)+ρ+(f2)

and consequently

ρ+(f) = ρ+(f1) − ρ+(f2) = ρ+(f
′
1) − ρ+(f

′
2)

becomes well defined.

Step 3: Claim : For 0 < a ∈ R and 0 ⩽ f ∈ C(X), ρ+(a · f) = a · ρ+(f).

Proof pf claim. This is immediate once we note that

ρ+(a · f) = sup{ρ(g) : 0 ⩽ g ⩽ a · f}
= sup{ρ(a · g) : 0 ⩽ g ⩽ f}

= a · sup{ρ(g) : 0 ⩽ g ⩽ f}

= a · ρ+(f).

Step 4: Claim : For all real valued continuous function fwe have ρ+(−f) =
−ρ+(f).

Proof pf claim. If f = f+− f− where f± ⩾ 0, then −f = f−− f+ and the claim
follows.
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4.6. Dual of C0(X) 61

Now for an arbitrary continuous function if we define ρ+(f) = ρ+(ℜ(f))+

iρ+(ℑ(f)) where ℜ(f), ℑ(f) are respectively the real and imaginary parts of
the function f. Then ρ+ is a positive linear functional. Clearly ρ− := ρ+−ρ

is a linear functional and we have already noted that it is a positive linear
functional.

Here is a convenient way of deciding whether a linear functional is
positive or not.

Proposition 4.6.5. Let ρ : C(X) → K be a linear functional. We are not
hypothesising boundedness of ρ. Then ρ is positive iff ρ is bounded with
∥ρ∥ = ρ(IX), where IX : X→ K denotes the constant function x 7→ 1 ∈ K.

Proof. Only if part: Consider the semi-inner product on C(X) given by
⟨f,g⟩ = ρ(f∗g). Then Cauchy-Schwarz inequality gives

|⟨f,g⟩|2 = |ρ(f∗g)|2 ⩽ ρ(f∗f)ρ(g∗g) = ⟨f, f⟩⟨g,g⟩.

Putting f = IX we get |ρ(g)|2 ⩽ ρ(IX)ρ(|g|
2) ⩽ ∥g∥2ρ(IX)2. The last in-

equality follows from ρ(∥g∥2IX − |g|2) ⩾ 0, a consequence of positivity.
Therefore ∥ρ∥ ⩽ ρ(IX). Obviously ρ(IX) ⩽ ∥ρ∥ because ∥IX∥ = 1. This
completes proof of ∥ρ∥ = ρ(IX). If part: Without loss of generality we as-
sume that ρ(IX) = ∥ρ∥ = 1. It is enough to show that 0 ⩽ f ⩽ IX implies
0 ⩽ ρ(f) ⩽ 1. Suppose ρ(f) = z ∈ C \ [0, 1] for some f. Then we can find
an open disc centred at z0 with radius r > 0which contains [0, 1] but not z.
Then for any x ∈ X, we have |f(x)−z0| < r. Therefore ∥f−z0IX∥ < r. Hence
|z− z0| = |ρ(f− z0IX)| ⩽ ∥f− z0IX∥ < r. This contradicts |z− z0| ⩾ r.

Proposition 4.6.6. Let ρ be a Hermitian linear functional. Then ∥ρ∥ =

∥ρ+∥+ ∥ρ−∥.

Proof. By triangle inequality we get

∥ρ∥ ⩽ ∥ρ+∥+ ∥ρ−∥ = ρ+(I) − ρ−(I) = 2ρ+(I) − ρ(I)|.

For the other inequality note that if 0 ⩽ f ⩽ I, then −I ⩽ 2f − I ⩽ I. So,
∥2f− I∥ ⩽ 1 and 2ρ+(I)−ρ(I) = sup{ρ(2f− I) : 0 ⩽ f ⩽ I} ⩽ sup{∥ρ∥∥(2f−
I)∥|0 ⩽ f ⩽ I} ⩽ ∥ρ∥.
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62 4.6. Dual of C0(X)

Definition 4.6.7. Given a topological space X, the Baire σ-algebra BaX is
the smallest σ-algebra of subsets of X, so that every element of C(X;R)
becomes BaX measurable.

Definition 4.6.8. Let X be a compact Hausdorff space. A measure µ on
BX, the Borel σ-algebra of X is said to be regular if it satisfies the following
conditions.

1. Outer regular on Borel sets:

∀A ∈ BX,µ(A) = inf{µ(U) : A ⊆ U,U is open}.

2. Inner regularity on compact sets:

∀ open set U ⊆ X,µ(U) = sup{µ(K)|K ⊆ U,K is compact}.

Theorem 4.6.9 (Riesz-Markov-Kakutani). Let X be a compact Hausdorff topo-
logical space and ρ ∈ (C(X;C)∗ be a positive linear functional. Then there
exists a unique regular finite measure µ on the Borel σ-algebra BX such that
ρ(f) =

∫
fdµ.

We will learn the proof by Garling. His prove has two very clear parts.
There is a functional analytic part and a measure theoretic part. We will
do the functional analytic part and for the measure theoretic part we will
state it clearly with a clear reference.

Proof of Garling. Let βX be the Stone-Cech compactification when we con-
sider X as a discrete set. Then βX is a compact Hausdorff space. Then
using the universal property of Stone-Cech compactification there exists a
unique map ϕ : βX → X so that ϕ(τ(x)) = x, ∀x ∈ X, where τ : X → βX

is the canonical embedding. Let C(ϕ) : C(X;C) → C(βX;C) be the map
C(ϕ)(f) = f ◦ ϕ. Since ϕ is surjective, C(ϕ) is an injective isometry. Let
ρ̃ = ρ ◦ C(ϕ)−1 ∈ (C(ϕ)(C(X;C))∗. By the Hahn-Banach extension theo-
rem ρ̃ admits a norm preserving extension denoted by the same symbol
to a linear functional on C(βX;C). Then ρ̃(IβX) = ρ ◦ C(ϕ)−1(C(ϕ)IX) =

ρ(IX) = ∥ρ∥ = ∥ρ̃∥. By proposition 4.6.5, we conclude that ρ̃ is a positive
linear functional on C(βX;C). Let A be the Boolean algebra of subsets of
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4.6. Dual of C0(X) 63

βX which are both closed and open. Then for each A ∈ A,χA is a contin-
uous function on βX and the span Alg of {χA : A ∈ A} is an involutive,
associative algebra of continuous functions on βX containing the constant
functions that separates points of βX. Therefore by the Stone-Weirstrass
theorem Alg is dense in C(βX) in the norm topology. If we denote by
σ(A) the σ-algebra generated by A, then each χA,A ∈ A is σ(A) measur-
able. In fact σ(A) is the smallest σ-algebra with respect to which every
element of Alg is measurable. Now using the density of Alg in C(βX) we
conclude that BaβX = σ(A). Define µ̃ : A → [0,∞) as µ̃(A) = ρ̃(χA). Pos-
itivity of ρ̃ implies µ̃ takes values in [0,∞). By linearity of ρ̃, we get that
µ̃ is finitely additive. Let us show it’s countable additivity. Let A = ∪An

be a countable union of disjoint elements of A. Since A is a closed subset
of a compact topological space it is compact. Each An is open, therefore
by compactness of A there is a finite subcover. That means except finitely
many n’s rest of the An’s are empty. So, countable additivity reduces to
finite additivity. Thus µ̃ is a premeasure with µ̃(βX) = ρ̃(χβX) = ∥ρ̃∥. By
Caratheodory’s extension theorem µ̃ admits a unique extension to a mea-
sure denoted by the same symbol µ̃ on BaβX. Now it’s time to invoke the
measure theoretic input in the argument.

Theorem 4.6.10. Let µ be a finite measure on the Baire σ-algebra of a compact
Hausdorff space Y. Then µ admits an extension to a regular measure on the Borel
σ-algebra BY .

This result is available in section 7.3 of Dudley, Real Analysis and Prob-
ability. Now using this result for the compact Hausdorff space βX we ob-
tain a regular measure still denoted by the same symbol µ̃ on BβX. For
each A ∈ A we have

∫
χAdµ̃ = ρ̃(χA). Using linearity of integral and ρ̃we

get ρ̃(f) =
∫
fdµ̃. Finally using continuity of ρ̃, density of Alg in C(βX)

and bounded convergence theorem we get

ρ̃(f) =

∫
fdµ̃,∀f ∈ C(βX).

Let µ = µ̃ ◦ ϕ−1 be the push-out of µ̃ to a measure on (X,BX) using the
continuous map ϕ. It is easy to see that µ is regular. Let f ∈ C(X;C). Then
by the abstract change of variable theorem we have∫

fdµ =

∫
f ◦ ϕdµ̃ =

∫
C(ϕ)(f)dµ̃,∀f ∈ C(X).
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64 4.7. Markov-Kakutani fixed point theorem

Therefore for all f ∈ C(X) we have

ρ(f) = ρ ◦ C(ϕ)−1(C(ϕ)(f)) = ρ̃(C(ϕ)(f)) =

∫
C(ϕ)(f)dµ̃ =

∫
fdµ.

Only thing remains to be shown is uniqueness of µ. Let ν be another
regular Borel measure on X such that ρ(f) =

∫
fdν,∀f ∈ C(X). Thanks

to the outer regularity to show µ(A) = ν(A),∀A ∈ BX it is enough to
show that µ(U) = ν(U) for all open U. Let us fix an open set U. By
Urysohn lemma we know that given any compact set K ⊆ U, there ex-
ists a continuous function fK : X → [0, 1] such that fK(x) = 1,∀x ∈ K and
supp(fK) ⊆ U. Therefore µ(K) ⩽ ρ(fK) =

∫
fKdµ ⩽ µ(U). By inner reg-

ularity, µ(U) = sup{ρ(fK) : K ⊆ U,K is compact }. Clearly the right hand
side also describes ν(U). Hence we have µ(U) = ν(U) for all open U.

4.7 Markov-Kakutani fixed point theorem

Now we will discuss applications of Hahn-Banach separation theorems.
We begin with a cute application of theorem (3.2.5) yielding a proof of
Markov-Kakutani fixed point theorem for locally convex spaces. This ar-
gument is due to Dirk Werner.

Theorem 4.7.1 (Markov-Kakutani fixed point theorem). Let C be a compact
convex set in a locally convex space E. A continuous map T : C → C is said to
be affine if T(λx + (1 − λ)y) = λT(x) + (1 − λ)T(y), ∀x,y ∈ C,∀λ ∈ [0, 1].
Every commuting family {Ti}i∈I of continuous affine endomorphisms of C has a
common fixed point.

Lemma 4.7.2. Let C be a compact convex set in a locally convex Hausdorff space
E and let T : C → C be a continuous affine transformation. Then T has a fixed
point.

Proof. Let∆ = {(x, x) : x ∈ C} be the diagonal inC and Γ = {(x, Tx) : x ∈ C}.
If T has no fixed point then ∆ ∩ Γ = ∅. Both ∆ and Γ are compact convex
sets in E×E. By the Hahn-Banach theorem (3.2.5) we get continuous linear
functionals ϕ1,ϕ2 and α,β ∈ R,α < β such that

ℜ(ϕ1(x) + ϕ2(x)) ⩽ α < β ⩽ ℜ(ϕ1(y) + ϕ2(Ty)).
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Consequently ℜ(ϕ2(Tx)−ϕ2(x)) ⩾ β−α > 0. Iterating this inequality we
get ℜ(ϕ2(T

nx) − ϕ2(x)) ⩾ n(β− α) → ∞ for arbitrary x ∈ C. This makes
the sequence {ℜϕ2(T

n(x))}n unbounded contradicting the compactness of
ℜϕ2(C).

Proof of Markov-Kakutani fixed point theorem. Let Ci be the fixed points of
Ti. Then Ci ̸= ∅,Ci is compact and convex. We need to show ∩Ci ̸= ∅.
But that will follow once we establish finite intersection property. Since
TiTj = TjTi, Ti(Cj) ⊆ Cj. Hence Ti|Cj

has a fixed point by lemma. In other
words Ci ∩ Cj ̸= ∅. An obvious induction shows ∩i∈FCi ̸= ∅,∀ finite F ⊆
I.

4.8 Bi-polar theorem

We have already seen the concepts of left and right polar. They allow us to
describe closures of certain sets in locally convex spaces. There are various
versions of this result. We will do the real version.

Definition 4.8.1. Let E be a real vector space. The real polar of a subset
A ⊆ E is defined as

Ar := {ϕ ∈ E∗| sup
x∈A

ϕ(x) ⩽ 1}.

The real prepolar of a set A ⊆ E∗ is defined as

rA := {x ∈ E : sup
ϕ∈A

ϕ(x) ⩽ 1}.

Remark 4.8.2. This concept is related but little different from the earlier
notion of polar. The earlier notion is also referred as the absolute polar.

Theorem 4.8.3. Let A ⊆ E be a subset of a locally convex space E over R. Then
r(Ar) = Co({0} ∪A). In other words closure of the convex hull of {0} ∪A is the
real pre-polar of the real polar of A. Instead of r(Ar) we will also use Arr.

Proof. Since Arr is a closed convex set containing 0,A we have Arr ⊇
Co({0} ∪ A). Suppose the inclusion is proper and x0 ∈ Arr \ Co({0} ∪ A).
By corollary 3.2.3 we get a bounded linear functional ϕ ∈ E∗ such that

0 ⩽ sup{ϕ(y)|y ∈ Co({0} ∪A)} < ϕ(x0).
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66 4.9. Krein-Milman theorem

Let α > 0 be an element of the open interval (sup{ϕ(y)|y ∈ Co({0} ∪
A)},ϕ(x0)). Then ψ := α−1ϕ ∈ Ar ⊆ E∗ and ψ(x0) > 1. Thus x0 /∈ Arr, a
contradiction.

Exercise 4.8.4. Let E be an LCS and A ⊆ E. Then the closure of the convex
hull of the balanced hull of A is given by ◦(A◦).

Here is another application of a similar argument.

Lemma 4.8.5 (Mazur). LetC ⊆ E be a convex subset of a locally convex space E.
ThenC = C

w
, where the left hand side denotes the closure in the original topology

of E and the right hand side denotes the closure of C in the weak topology of E.

Proof. The weak topology is coarser than the original topology and conse-
quently we have C ⊆ Cw

. Suppose ∃x0 ∈ Cw
\C. By corollary 3.2.3 we get

a bounded linear functional ϕ ∈ E∗ such that

ℜϕ(x0) < inf{ℜϕ(y)|y ∈ C}.

Let α ∈ (ℜϕ(x0), inf{ℜϕ(y)|y ∈ C}). Consider F =:= {x ∈ E : ℜϕ(x) ⩾ α}.
Then C ⊆ F and F is convex, weakly closed. Therefore C

w ⊆ F. Since
x0 ∈ Cw

we get x0 ∈ F. But clearly x0 /∈ F. This contradiction completes
the proof.

4.9 Krein-Milman theorem

Definition 4.9.1. Let E be locally convex Hausdorff topological vector space
and K ⊆ E be a convex subset. A point x ∈ K is called an extreme point if
x = ty+ (1− t)z, for some t ∈ (0, 1) implies y = z = x. The set of extreme
points will be denoted by Ext(K).

Theorem 4.9.2 (Krein-Milman). Let E be a Hausdorff, LCS and K ⊆ E be a
compact convex subset. Then K is the closed convex hull of the set of extreme
points of K. In particular this means that the set of extreme points is nonempty.

Definition 4.9.3. Let K ⊆ E be a nonempty compact convex subset. A face
of K is a nonempty closed, convex subset F of K such that ty+ (1− t)z ∈ F
for some t ∈ (0, 1),y, z ∈ K implies y, z ∈ F.
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Proof. Let F := {F ⊆ K|F is a face of K}. Consider the partial order F1 ⪰ F2
iff F1 ⊆ F2. By Zorn’s lemma choose a maximal element F ∈ F. We will
showthat F is a singleton {x} for some x. Then it will follow that Ext(K) ̸= ∅.
Suppose x ̸= y are two elements of F. Since E is Hausdorff, E∗ separates E.
There exists ϕ ∈ E∗ such that ℜϕ(x) < ℜϕ(y). Let α = sup{ℜϕ(u) : u ∈ F}
and F′ = {z ∈ F|ℜϕ(z) = α}. Since F is compact the supremum is attained
and F′ is nonempty. Therefore F′ is a face of F and is properly contained in
F because x ∈ F \ F′. This contradicts maximality of F. Therefore Fmust be
a singleton set.

Let L := CoExt(K). Since K is closed and convex we have L ⊆ K. As-
sume x0 ∈ K \ L. Then by corollary 3.2.3 there exists ϕ ∈ E∗ such that
ℜϕ(x0) > supx∈L ℜϕ(x). Let α = supx∈K ℜϕ(x) and F = {x ∈ K|ℜϕ(x) =
α}. Then F is a face of K. Let z ∈ Ext(F) ⊆ Ext(K). Note that F ∩ L = ∅
because α ⩾ ϕ(x0). So, z /∈ L. This contradicts Ext(K) ⊆ L.

We will close our discussion on Hahn-Banach and its applications by
proving Banach-Stone theorem as an application of Krein-Milman theo-
rem.

Theorem 4.9.4 (Banach-Stone). Let K,L be compact Hausdorff spaces. Then
C(K) is isometrically isomorphic with C(L) iff K is homeomorphic with L.

Remark 4.9.5. There is a bit of ambiguity in our notation for C(K),C(L) etc.
We have not specified the field of scalars. We will prove it for real scalars.
That means for us C(K),C(L) denotes C(K,R),C(L,R). We do this because
we have not talked about complex measures. However we will write our
argument in a manner so that it works for the complex scalar case as well.

Proof. Given x ∈ K we denote by δx the Dirac delta mass at x. The ex-
treme points of the unit ball of C(K) are precisely measures of the form
λ(x)δx where λ(x) ∈ K, |λ(x)| = 1. Let T : C(K) → C(L) be an isometric
isomorphism. Then T∗(BC(L)∗) = BC(K)∗ .
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Chapter 5

Baire Category Theorem and its
Consequences

For a play we need a stage and the actors. We have got our stage namely
topological vector spaces. In fact we have various classes of them like,
LCTVS, Banach spaces, Hilbert spaces etc. We have also got some idea
about continuous linear maps. These are the actors of the play. Now let
us ask what was the first result we learnt in our linear algebra course and
can we extend it to this framework. We could have developed the theory
in the generality of Frechet spaces but simplicity demands instead we do
it in the framework of Banach spaces.

5.1 Baire Category Theorem

Theorem 5.1.1 (Baire Category Theorem). Let X be a complete metric space.
If Un is a sequence of open dense sets in X then ∩Un is also dense in X.

Proof. Let d be a distance defining the topology of X. Let B be an open ball
and we want to show that B ∩ Un ̸= ϕ. Clearly it suffices to show that
for any closed ball B̄ ∩ Un ̸= ϕ. Replacing X by B̄ it suffices to show that
∩Un ̸= ϕ. We shall define a sequence xn and positive real numbers rn such
that (i) B ′(xn, rn) ⊆ Un ∩ B(xn−1, rn−1) and (ii) rn < 1/n. Here B ′(u, r)
denotes the closed ball with center u and radius r. Start with x1 ∈ U1

and r1 < 1 such that B ′(x1, r1) ⊆ U1. After defining X1, · · · , xn−1 choose
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xn ∈ Un ∩B(xn−1, rn−1) and rn < 1/n such that (ii) holds. One can do this
becauseUn is dense andUn∩B(xn−1, rn−1) is open. Clearly d(xn, xn+p) <

rn < 1/n for each n ⩾ 1 and p. Hence xn is a Cauchy sequence and by
hypothesis it converges to some x ∈ E. Since xn+p ∈ B ′(xn, rn) for all
p > 1 , x ∈ B ′(xn, rn) ⊆ Un for each n. Therefore x ∈ ∩Un.

Corollary 5.1.2. Let X be a complete metric space and Cn a sequence of
closed sets such that X = ∪Cn. Then at least one of them has nonempty
interior.

Proof. On the contrary suppose every Cn has empty interior. Let Un =

X \Cn, then Un’s are dense open subsets of X and by Baire’s theorem ∩Un

is dense. On the other hand

∩Un = ∩(X \ Cn) = X \ (∪Cn) = X \ X = ϕ

a contradiction.

5.2 The uniform boundedness principle and an
application

Theorem 5.2.1 (Uniform Boundedness Principle). Let {Tα : E→ F}α∈A be a
family of continuous linear maps such that for each x ∈ E there exists Mx such
that supα ∥Tα(x)∥ ⩽Mx∥x∥, then there existsM such that supα ∥Tα∥ ⩽M.

Proof. Let Cn = {x ∈ E : ∀α, ∥Tα(x)∥ ⩽ n∥x∥}. Then clearly each Cn is
closed and they cover E. Therefore at least one of them say Ck contains
a ball of radius r around x0 for some r and x0. Hence ∥Tα(x∥ ⩽ k∥x∥
whenever ∥x − x0∥ < r and consequently for x with ∥x − x0∥ ⩽ r using
∥x∥ ⩽ ∥x0∥+ rwe get

∥Tα(x− x0)∥ ⩽ ∥Tα(x)∥+ ∥Tα(x0)∥ ⩽ k∥x∥+ k∥x0∥ ⩽ k(2∥x0∥+ r).

Therefore supα ∥Tα∥ ⩽ k(2∥x0∥+r)
r

.

Corollary 5.2.2. Let E be a Banach space. Let X be a weakly bounded
subset of E. That means for all ϕ ∈ E∗, ϕ(X) is a bounded subset of K.
Then X is a norm bounded subset of E.

[Lecture Notes of P.S.Chakraborty]
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Proof. Let j : E→ E∗∗ be the canonical embedding. Then by hypothesis

∀ϕ ∈ E∗, ∃Mϕ such tat sup
x∈X

∥j(x)(ϕ)∥ < Mϕ.

By the uniform boundedness principle there existsM such that

sup
x∈X

∥x∥ = sup
x∈X

∥j(x)∥ < M.

5.3 A typical application

Let 1 < p < ∞ and {αn} be a sequence of scalars such that
∑
αnβn con-

verges for all {βn} ∈ ℓp. Then {αn} ∈ ℓq. To see this consider the linear
functional TN ∈ ℓ∗p given by TN({βn}) =

∑N
n=1 αnβn. From convergence

of
∑
αnβn we conclude that the hypothesis of UBP is met. Therefore UBP

gives us M such that M > supN ∥TN∥ = supN

q

√∑N
n=1 |αn|q. Therefore∑∞

n=1 |αn|
q ⩽M <∞.

5.4 Quotient spaces

Now that we have some idea about bounded linear maps on normed lin-
ear spaces we can ask how about extending some of the results of linear
algebra to normed linear spaces. The first theorem we learnt was the first
isomorphism theorem. Recall that first isomorphism theorem says if T is
a linear map from a linear space E onto another linear space F then T in-
duces an isomorphism qT : E/ ker T → F. Now if we want to extend this
to normed linear spaces first thing we need is the notion of quotients.

Definition/Proposition 5.4.1. Let E be a normed linear space and F ⊆ E a
closed subspace. Then ∥[x]∥ := inf{∥x + y∥ : y ∈ F} defines a norm on the
vector space E/F.

Proof. Let x1, x2 ∈ E. Then ∀y1,y2 ∈ Fwe have

∥x1 + y1 + x2 + y2∥ ⩽ ∥x1 + y1∥+ ∥x2 + y2∥.

[Lecture Notes of P.S.Chakraborty]
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Taking infimum over both sides as y1,y2 varies over Fwe get ∥[x1+x2]∥ ⩽
∥[x1]∥+∥[x2]∥. Similarly we get ∥[λx]∥ = |λ|∥[x]∥. Finally note that ∥[x]∥ = 0

iff x = limyn for some sequence {yn} ⊆ F. Since F is closed, this happens
iff x ∈ F. In other words [x] = 0 ∈ E/F.

Lemma 5.4.2. Let E be a normed linear space. Then E is complete iff convergence
of
∑

∥xn∥ implies convergence of
∑
xn.

Proof. Only if part is easy and we only show the if part. Let {xn} be a
Cauchy sequence in E. Then we can extract a subsequence {xnk

} such that
∥xnk+1

− xnk
∥ < 1

2k ,∀k. Then the series
∑

∥xnk+1
− xnk

∥ converges. By
our hypothesis

∑N
k=1(xnk+1

− xnk
) converges. That means xnk

− xn1
con-

verges. In other words the subsequence {xnk
} converges. Since the original

sequence is Cauchy from the convergence of a subsequence we conclude
convergence of the whole sequence.

Proposition 5.4.3. Let E be a Banach space and F ⊆ E is a closed subspace.
Then E/Fwith the quotient norm is a Banach space.

Proof. Let
∑

∥[xn]∥ <∞ to show completeness of E/F it is enough to show
convergence of

∑
[xn]. For each n obtain yn ∈ F such that ∥xn + yn∥ ⩽

∥[xn]∥ + 1
2n . Then

∑
∥xn + yn∥ < ∞ and using completeness of E we

conclude convergence of
∑

(xn+yn) say to x0. In other words ∥
∑N

n=1(xn+

yn) − x0∥ → 0. Since
∑N

n=1 yn ∈ Fwe have

∥
N∑

n=1

[xn] − [x0]∥ ⩽ ∥
N∑

n=1

(xn + yn) − x0∥ → 0.

Thus we have established lim
∑N

n=1[xn] = [x0].

5.5 Open mapping theorem and its main corol-
lary

Theorem 5.5.1 (Open Mapping Theorem). Let T : E → F be a continuous
surjection, then T is an open mapping.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

5.5. Open mapping theorem and its main corollary 73

Lemma 5.5.2. Let T : E → F be a bounded operator from a Banach space E to
another Banach space F. Let BE and BF be the unit balls of E and F respectively.
Suppose that T(BE) closure contains rBF for some r > 0, then T(BE) contains
rBF.

Proof. Let y ∈ rBF and δ ∈ (0, 1) such that y ′ = δ−1y ∈ rBF. By the
assumption, there exists x1 ∈ BE such that ∥y ′ − T(x1)∥ < (1 − δ)r. Since
T((1− δ)BE) contains (1− δ)rBF, there exists x2 ∈ (1− δ)BE such that ∥y−
T(x1)− T(x2)∥ < r(1− δ)2. Since T((1− δ)2BE) contains (1− δ)2rBF, there
exists x3 ∈ (1− δ)2BE such that ∥y − T(x1) − T(x2) − T(x3)∥ < r(1− δ)3.
Continuing this process we get a sequence xn ∈ (1− δ)n−1

BE such that

∥y− T(x1) − T(x2) − · · ·− T(xn)∥ < r(1− δ)n.

Since
∑

∥xn∥ converges and E is complete the series
∑
xn converges to x ′

say. Since T is continuous T(x ′) = y ′ and ∥x ′∥ <
∑

(1− δ)−1 = δ−1. Put
x = δx ′, then clearly x ∈ BE and T(x) = δy ′ = y.

Open Mapping Theorem. We have to show that the image of an open ball
around zero under T contains an open ball around zero. Since T is sur-
jective, F = ∪T(nBE). But by the corollary to the Baire theorem we get
closure of T(mBE) contains an open ball V = y+ϵBF. Put r = ϵ

2m
and take

z ∈ rBF. Since y,y + 2mz ∈ V , there exists sequences yn,y ′
n ∈ T(mBE)

such that limyn = y, limy ′
n = y+ 2mz. Hence zn = yn − y ′

n ∈ T(2mBE)

converges to 2mz, and thus 1
2m
zn ∈ T(BE) converges to z. Thus we can

apply the previous lemma and conclude the proof.

Remark 5.5.3 (A typical application). Let ∥ · ∥1, ∥ · ∥2 be two norms on a
linear space E turning E into a Banach space. Suppose there exists C > 0
such that ∥x∥1 ⩽ C∥x∥2, ∀x ∈ E. Then there exists C′ such that ∥x∥2 ⩽
C′∥x∥1,∀x ∈ E. To see this just observe that the identity map from (E, ∥·∥2)
to (E, ∥ · ∥1) is a bijective continuous surjection. By the open mapping
theorem this mapping has a continuous or equivalently bounded inverse.
We can take C′ to be the norm of the inverse.

Theorem 5.5.4 (Closed Graph Theorem). Let E, F be Banach spaces and T :

E → F a linear map such that the graph of T , Γ = {(x, T(x)) : x ∈ E} is a closed
subset of E× F. Then T is continuous.

[Lecture Notes of P.S.Chakraborty]
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Proof. The vector space E × F is a Banach space with the norm ∥(x,y)∥ =

∥x∥E+∥y∥F. By hypothesis Γ is a closed subspace of a Banach space, hence
Γ becomes a Banach space. Define π1 : Γ → E as π1((x, T(x))) = x and
π2 : E × F → F, as π2((x,y)) = y. By the open mapping theorem π−1

1 is a
continuous linear map from X to Γ . But T = π2◦π−1

1 , hence continuous.

Proposition 5.5.5. Let ∥ · ∥N be a norm on C([0, 1]) turning it into a Banach
space. Also ∥fn − f∥N → 0 implies lim fn(x) = f(x),∀x ∈ [0, 1]. Then ∥ · ∥N
must be equivalent with the sup norm.

Proof. Because of remark (5.5.3) it is enough to show that the identity map-
ping from (C([0, 1]), ∥·∥sup) to (C([0, 1]), ∥·∥N) is continuous. We can appeal
to closed graph theorem provided we show that the graph of identity map-
ping is closed. In other words if lim ∥fn− f∥sup = 0, lim ∥fn−g∥N = 0 then
we must show g = f. But that follows from g(x) = lim fn(x) = f(x).

5.6 Practice problem set 3

1. Let E be a Banach space and F a finite dimensional subspace. Show
that F is closed.

2. Let E be a finite dimensional Banach space. Can you give a dense
proper subspace of E?

3. Let E be an infinite dimensional Banach space. Give a dense proper
subspace of E.

4. Let E be a Banach space and F a closed subspace. We say F is alge-
braically complemented if there is another closed subspace F′ such
that F⊕ F′ = E. Suppose F is finite dimensional. Then show that F is
algebraically complemented.

5. Let E be a Banach space and F a closed subspace. We say F is topo-
logically complemented if it is algebraically complemented and the
norm on E is equivalent to the norm on the ℓ1-sum of F and F′ where
F, F′ are endowed with norms obtained from E as its subspaces. Show
that if a closed subspace is algebraically complemented then it is
topologically complemented.

[Lecture Notes of P.S.Chakraborty]
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6. Let E be a Banach space and ϕ : E → K be an unbounded linear
functional then show that kerϕ is dense in E.

7. Let E be a Banach space and ϕ : E → K be a linear map. If kerϕ is a
dense proper subspace then show that ϕmust be unbounded.

8. Let E be a Banach space and ϕ : E → K. Then kerϕ is closed iff ϕ is
continuous.

9. Show that there is a bounded linear map L : ℓ∞ → R such that

(a) lim inf x ⩽ L(x) ⩽ lim sup x.

(b) L(x) = lim xn if L(x) = {xn} is a convergent sequence.

(c) L(x) = L(S(x)) where S : ℓ∞ → ℓ∞ is the shift operator given by
S(x)n = (x)n+1.

10. Let E, F be Banach spaces and Tn ∈ L(E; F) be such that for all x ∈ E,
the sequence {Tn(x)} is convergent. Then show that supn ∥Tn∥ < ∞.
Let T(x) := lim Tn(x). Then show that T ∈ L(E; F). If xn → x, then
show that Tn(xn) → T(x).

11. Show that for each n,k there exists Cn,k > 0 such that for all poly-
nomials P of degree less than or equal to n, in k variables with K
coefficients we have

sup
x∈B(0;r)⊆Rk

|P(x)| ⩽ Cn,k

∫
B(0;r)

|P(x)|

Vol(B(0; r))
dx.

12. Given any two isomorphic Banach spaces E, F define their Banach
Mazur distance as

δBM(E, F) := inf{∥T∥.∥T−1∥ : T ∈ L(E, F) is invertible with T−1 ∈ L(F,E)}

Then show that δBM(E, F) ⩾ 1 and δBM(E, F) = 1 along with dimE <∞ implies E, F are linearly isometrically isomorphic.

13. Let F ⊆ E be normed linear spaces with F closed and q : E → E/F

be the quotient map. Note that q is a surjection of norm less than
or equal to 1. Show that whenever we have a normed space G and
T ∈ L(E;G) with F ⊆ ker T there exists unique T̃ ∈ L(E/F;G) such
that T = T̃ ◦ q.

[Lecture Notes of P.S.Chakraborty]
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14. Let F ⊆ E be normed linear spaces with F closed. Suppose we have a
normed linear space G and a surjective bounded linear map q : E→
Gwith F ⊆ kerq, ∥q∥ ⩽ 1 so that whenever we have a normed space
H and T ∈ L(E;H) with F ⊆ ker T there exists unique T̃ ∈ L(G;H)

such that T = T̃ ◦ q, then Gmust be isomorphic with E/F.

15. Let E be a normed linear space and F ⊆ E be a complete subspace.
Show that E is complete provided so is E/F.

16. Let F ⊆ E be a closed subspace of a Banach space. Show that Φ :

(E/F)∗ → F⊥ := {x∗ ∈ E∗ : ⟨x∗, x⟩ = 0,∀x ∈ F} given by Φ(ϕ)(x) =

ϕ([x]) is a linear isometric one to one onto map.

17. Let F ⊆ E be a closed subspace of a Banach space. Define Ψ : F∗ →
E∗/F⊥ as follows: given ϕ ∈ F∗ by Hahn Banach obtain a norm pre-
serving extension ϕ̃. Define Ψ(ϕ) = [ϕ̃]. Show that Ψ is a linear
isometric isomorphism.

18. Let F ⊆ E be a closed subspace of a Banach space. If E is reflexive
then show that so is E/F.

19. Let E be a reflexive Banach space. Show that for all x∗ ∈ E∗, ∃x ∈
E, ∥x∥ = 1, x∗(x) = ∥x∗∥.

20. Goal of this exercise is showing the collection of continuous nowhere
differentiable functions is a dense Gδ subset of C[0, 1].

(a) Let Fn = {f ∈ C[0, 1] : ∃xf ∈ [0, 1], such that ∀y ∈ [0, 1], |f(y) −
f(xf)| ⩽ n|y− xf|, }. Then show that Fn is closed.

(b) Let f ∈ C[0, 1] be differentiable at x. Then show that f ∈ ∪nFn.

(c) Finally show that Fn has empty interior.

(d) Conclude that no where differentiable continuous functions form
a dense Gδ subset of C[0, 1].

[Lecture Notes of P.S.Chakraborty]
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Chapter 6

Hilbert Spaces

We will introduce Hilbert spaces and develop them. Hilbert spaces are
easy to classify but that is not the end of story so we indicate what makes
Hilbert spaces interesting.

6.1 Inner product spaces

Let us quickly recall some notions you are already familiar with.

Definition 6.1.1. Let H be a vector space. A pre-inner product on H is a
sesquilinear map ⟨·, ·⟩ : H ×H → K such that

1. ⟨u, v⟩ = ⟨v,u⟩,∀u, v ∈ H.

2. ⟨u,αv+ βw⟩ = α⟨u, v⟩+ β⟨u,w⟩,∀α,β ∈ K,∀u, v ∈ H.

3. ⟨u,u⟩ ⩾ 0 ∀u ∈ H.

Definition 6.1.2. A Pre-Hilbert Space or a pre-inner product space is a
pair consisting of vector space along with a pre-inner product.

Proposition 6.1.3 (Cauchy-Schwarz Inequality). Let H be a vector space
equipped with a pre-inner product, then

| < u, v > | ⩽
√

⟨u,u⟩
√
⟨v, v⟩,∀u, v ∈ H.
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Proof. Let ⟨u, v⟩ = reiθ, r ⩾ 0. Note that if the scalar field is R then θ ∈
{π, 0}. We will divide the proof in cases. The first one is⟨u,u⟩ = ⟨v, v⟩ = 0.

0 ⩽ ⟨u− e−iθv,u− e−iθv⟩
= ⟨u,u⟩+ ⟨v, v⟩− e−iθ⟨u, v⟩− eiθ⟨v,u⟩
= −2r ⩽ 0.

Thus we get r = 0 proving the inequality in this case. Next case is both
⟨u,u⟩ and ⟨v, v⟩ are not simultaneously zero. Without loss of generality we
can assume that ⟨v, v⟩ ≠ 0. Let t = − ⟨u,v⟩√

⟨v,v⟩
, then,

0 ⩽ ⟨u+ tv,u+ tv⟩

= ⟨u,u⟩+ |t|
2⟨v, v⟩− 2|⟨u, v⟩|2

⟨v, v⟩

= ⟨u,u⟩+ |⟨u, v⟩|2

⟨v, v⟩
−
2|⟨u, v⟩|2

⟨v, v⟩

= ⟨u,u⟩− |⟨u, v⟩|2

⟨v, v⟩
.

Now transferring |⟨u,v⟩|2
⟨v,v⟩ to the other side and multiplying both sides by

⟨v, v⟩ we get the result.

Corollary 6.1.4. We have ⟨u, v⟩ = 0 whenever ⟨v, v⟩ = 0.

Corollary 6.1.5. N = {v ∈ H : ⟨v, v⟩ = 0} is a subspace.

Proof. ClearlyN is closed under scalar multiplication. Only thing we need
to show that it is closed under addition. Let u, v ∈ N. Then by the C-S
inequality we get ⟨u, v⟩ = 0. Thus ⟨u+ v,u+ v⟩ = 0.

Corollary 6.1.6.
√

⟨u,u⟩ = supv:⟨v,v⟩=1 |⟨u, v⟩|

Proof. If ⟨u,u⟩ = 0 then both sides are zero. Otherwise by the C-S in-
equality left hand side is less than or equal to right hand side and taking
v = u/

√
⟨u,u⟩ we get the other inequality.

Definition 6.1.7. Let H be a vector space. An inner product on H is a
sesquilinear map ⟨·, ·⟩ : H ×H → K such that

[Lecture Notes of P.S.Chakraborty]
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1. ⟨·, ·⟩ is a pre-inner product.

2. Positive definiteness: ⟨u,u⟩ = 0 =⇒ u = 0.

An inner product space (H, ⟨·, ·⟩) is a pair consisting of a vector space H

along with an inner product on H

Definition/Proposition 6.1.8. Let (H, ⟨·, ·⟩) be an inner product space, then
the map ∥ · ∥ : H → R+ given by

∥v∥ =

{√
⟨v, v⟩, v ̸= 0

0, for v = 0.

is a norm on H. This norm is referred as the norm associated with the
inner product ⟨·, ·⟩.

Proof. Let u, v ∈ H. Only thing we need to verify is ∥u + v∥ ⩽ ∥u∥ + ∥v∥.
That follows from,

∥u+ v∥2 = ⟨u+ v,u+ v⟩ = ∥u∥2 + ∥v∥2 + 2ℜ(⟨u, v⟩)
⩽ ∥u∥2 + ∥v∥2 + 2∥u∥∥v∥ = (∥u∥+ ∥v∥)2

Definition 6.1.9. An inner product space (H, ⟨·, ·⟩) is called a Hilbert space
if H is complete with respect to the norm associated with the inner prod-
uct.

Definition 6.1.10. Let H1,H2 be Hilbert spaces. A linear map U : H1 →
H2 is called unitary if it is one-to-one, onto and preserves inner products
that is, ⟨Ux,Uy⟩ = ⟨x,y⟩, for all x,y ∈ H1. The Hilbert spaces H1,H2 are
called unitarily equivalent if there is a unitary U from H1 to H2.

Proposition 6.1.11. Let H1,H2 be Hilbert spaces with dense subspaces
S1,S2 respectively. Let U : S1 → S2 be a bijection such that ⟨Ux,Uy⟩ =

⟨x,y⟩, for all x,y ∈ S1, then U extends to a unitary map denoted by the
same symbol U from H1 to H2.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N

80 6.2. Key properties

Proof. Observe that ∥U(x)∥ = ∥x∥, for all x ∈ S1. Therefore U converts
Cauchy sequences to Cauchy sequences. If x is an element in H1 there is
a sequence {xn} of elements of S1 converging to x. Now {U(xn)} is also
Cauchy and therefore converges to some limit. Define Ux as this limit.
Clearly this is well defined. By playing the same game with U−1 we con-
clude that the extended map is bijective as well. Continuity of the inner-
product combined with the density of Si’s give ⟨Ux,Uy⟩ = ⟨x,y⟩, for all
x,y ∈ H1.

Definition/Proposition 6.1.12. Let (Hpre, (·, ·)) be a pre-Hilbert space. Let
N = {v ∈ Hpre : (v, v) = 0}. Then ⟨u + N, v + N⟩ = (u, v) defines an
inner product on Hpre/N. Completion of Hpre/N with respect to the as-
sociated norm is called the Hilbert space associated with the pre-Hilbert
space Hpre.

Proof. By corollary (6.1.4) the sesquilinear form ⟨·, ·⟩ is well defined. Only
thing we need to verify is positive definiteness. Let u ∈ Hpre be such that
⟨u+N,u+N⟩ = (u,u) = 0. Then u ∈ N and consequently u+N = N.

6.2 Key properties of Hilbert spaces

Now we will discuss key properties of Hilbert spaces.

Proposition 6.2.1. Let H be a Hilbert space and C ⊆ H be a closed convex
set. Then for all x /∈ C there exists unique z̃ ∈ C such that ∥x − z̃∥ =

inf{∥x− z∥ : z ∈ C}. Verbally this means C has a unique point closest to x.

Proof. Uniqueness: Let z1, z2 ∈ C be equidistant from x. In other words
∥x− z1∥ = ∥x− z2∥. Then by the parallelogram identity

∥(x− z1) + (x− z2)∥2 + ∥(x− z1) − (x− z2)∥2 = 2(∥x− z1∥2 + ∥x− z2∥2)

Therefore

∥x− z1 + z2
2

∥2 + 1

4
∥z1 − z2∥2 = ∥x− z1∥2 = ∥x− z2∥2.

So, either z1 = z2 or else their midpoint z1+z2
2

is a point from C closer to x.
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Existence: Let c = inf{∥x − z∥2 : z ∈ C}. Then there exists a sequence
{zn} ⊆ C such that c ⩽ ∥x − zn∥2 ⩽ c + 1

n
. Then using parallelogram

identity we get

∥zn − zm∥2 = 2(∥x− zn∥2 + ∥x− zm∥2) − 4∥x− z1 + z2
2

∥2

⩽ 2(c+ 1/n+ c+ 1/m) − 4c = 2(1/n+ 1/m).

Since H is complete and C is closed {zn} converges to some z̃ ∈ C. Using
continuity of corm we conclude

∥x− z̃∥ = lim ∥x− zn∥ = c = inf{∥x− z∥2 : z ∈ C}.

Proposition 6.2.2. Let H0 ⊆ H be a closed subspace and x /∈ H0. Let z̃ be
the unique solution to the minimization problem min{∥x − z∥ : z ∈ H0}.
Then ⟨x− z̃, z⟩ = 0,∀z ∈ H0.

Proof. We do it for complex scalars. The real case is easier. Let λ ∈ C and
z ∈ H0. Then

∥x− z̃∥2 ⩽ ∥x− z̃− λz∥2

So, for all such λ and z

−2ℜ⟨x− z̃, λz⟩+ |λ|2∥z∥2 ⩾ 0.

Write λ = |λ|eiθ, fix θ, divide by |λ| and let |λ| go to zero to conclude

−2ℜ⟨x− z̃, eiθz⟩ ⩾ 0.

Since θ is arbitrary we must have ⟨x− z̃, z⟩ = 0.

Definition 6.2.3. Let S ⊆ H be a subset. Then S⊥ := {x ∈ H : ⟨x,y⟩ =

0,∀y ∈ S}.

Proposition 6.2.4. Let S ⊆ H be a subset. Then the following holds.

1. S⊥ is a closed subspace.

2. S⊥⊥ := (S⊥)⊥ is the closure of linear span of S.

3. S ∩ S⊥ ⊆ {0}. If 0 ∈ S then S ∩ S⊥ = {0}.
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Proof. Obvious.

Theorem 6.2.5 (Projection theorem). Let H0 ⊆ H be a closed subspace. Then
every x ∈ H can be written uniquely as y + z where y ∈ H0, z ∈ H⊥

0 . The
mapping PH0

: x 7→ y is a bounded linear map from H to itself so that P2H0
=

PH0
.

Proof. Let y = argmin{∥x − u∥ : u ∈ H0} and z = x − y ∈ H⊥
0 by

proposition (6.2.2). To see uniqueness of the decomposition note that if
x = y1 + z1 = y2 + z2 with y1,y2 ∈ H0, z1, z2 ∈ H⊥

0 , then y1 − y2 =

z2− z1 ∈ H0 ∩H⊥
0 = {0}. Clearly PH0

: x 7→ y is linear. To see it is bounded
let us calculate ∥x∥2, keeping in mind ⟨y, z⟩ = 0.

∥x∥2 = ⟨y+ z,y+ z⟩ = ⟨y,y⟩+ ⟨z, z⟩ = ∥y∥2 + ∥z∥2 ⩾ ∥y∥2 = ∥PH0
(x)∥2.

Therefore PH0
is bounded with norm bounded by 1. If H0 ̸= {0} then

∥PH0
∥ = 1.

Theorem 6.2.6 (Riesz Representation Theorem). Let ϕ ∈ H∗, then there is
unique uϕ ∈ H so that ϕ(v) = ⟨uϕ, v⟩. Moreover ∥ϕ∥ = ∥uϕ∥. The mapping
ϕ 7→ uϕ gives a conjugate linear isometry from H∗ to H.

Proof. Let H0 = kerϕ. Note that ϕ = 0 if and only if kerϕ = H. So, if
ϕ = 0we can take uϕ = 0. Let us now consider the case ϕ ̸= 0. Then H0 is
a proper subspace. So there exists v ∈ H⊥

0 satisfying ϕ(v) = 1. By the first
isomorphism theorem of linear algebra H⊥

0 = Cv. Let uϕ = v
∥v∥2 , then

⟨uϕ,w⟩ =

{
0, if w ∈ H0

1, if w ∈ H⊥
0 .

Thus ϕ(w) = ⟨uϕ,w⟩,∀w. An application of Cauchy-Schwarz inequality
yields ∥ϕ∥ = ∥uϕ∥.

Definition 6.2.7. Let H be a Hilbert space.

1. Orthogonal set: A subset S ⊆ H is said to be orthogonal if every
element of S is nonzero and v,w ∈ S, v ̸= w implies ⟨v,w⟩ = 0.

2. Orthonormal set: A subset S ⊆ H is said to be orthonormal if it is
orthogonal and every element of S has norm one.
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3. Orthonormal basis: A maximal with respect to inclusion orthonor-
mal set is called an orthonormal basis to be abbreviated as O.N.B. It
exists by a simple application of Zorn’s lemma.

4. An orthonormal set S is said to be complete if H = SpanS.

Definition 6.2.8. Let X be a set and f : X → R⩾0 be a function. Let F :=

{F ⊆ X : F is a finite set }. This is directed by inclusion. The limit of the net
{sF :=

∑
x∈F f(x)}F∈F if exists is denoted by

∑
x∈X f(x).

Theorem 6.2.9 (Bessel’s inequality). Let B be an orthonormal set. Then for all
v ∈ H we have

∑
u∈B |⟨u, v⟩|2 ⩽ ∥v∥2.

Proof. Let F ⊆ B be a finite subset. Then {⟨u, v⟩u : u ∈ F}∪{v−
∑

u∈F⟨u, v⟩u}
is an orthogonal set and by exercise (6.2.10) we have∑

u∈F

∥⟨u, v⟩u∥2 + ∥v−
∑
u∈F

⟨u, v⟩u∥2 = ∥v∥2.

Therefore
∑

u∈F ∥⟨u, v⟩u∥2 ⩽ ∥v∥2. The net F 7→ ∑
u∈F ∥⟨u, v⟩u∥2 is a

montone net bounded by ∥v∥2. Hence it converges to
∑

u∈B |⟨u, v⟩|2 ⩽
∥v∥2.

Exercise 6.2.10. Let S be a finite orthogonal set. Then ∥
∑

u∈S u∥2 =
∑

u∈S ∥u∥2.

Proposition 6.2.11. Every orthonormal set can be extended to an orthonor-
mal basis.

Proof. Let B be an orthonormal set. Consider the partially ordered set
P := {B′ : B′ ⊃ B,B′ is an O.N.B } ordered by inclusion. Clearly every
chain in this partially ordered set has an upper bound it has a maximal
element B′. This gives an orthonormal basis containing B.

Lemma 6.2.12. Let S be an orthonormal set and x ∈ H, then the orthogonal
projection of x on span of S is given by

∑
v∈S⟨v, x⟩v.

Proof. Note that ⟨x−
∑

v∈S⟨v, x⟩v,w⟩ = 0,∀w ∈ S. Therefore

∥x−
∑
v∈S

λvv∥2 = ∥x−
∑
v∈S

⟨v, x⟩v+
∑
v∈S

(λv + ⟨v, x⟩)v∥2

= ∥x−
∑
v∈S

⟨v, x⟩v∥2 +
∑
v∈S

|(λv + ⟨v, x⟩)|2 [By pythagoras

⩾ ∥x−
∑
v∈S

⟨v, x⟩v∥2 (6.1)
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Thus
∑

v∈S⟨v, x⟩v = argmin{∥x− u∥ : u ∈ SpanS}.

Proposition 6.2.13. Let S ⊆ H be an orthonormal set then the following
are equivalent.

1. S is an orthonormal basis.

2. S is complete.

3. For all x ∈ H, ∥x∥2 =
∑

v∈S |⟨v, x⟩|2

Proof. (1) =⇒ (2) : Let H0 be the closed linear span of S. If H0 ⊊ H, then
choose v ∈ H \ H0. The vector w := v − PH0

v must be non-zero because
otherwise v = PH0

v ∈ H0. Sincew ∈ H⊥
0 ,S∪ { w

∥w∥ } is an orthonormal basis
properly containing S. This contradicts maximality of S!

(2) =⇒ (3) : Let x ∈ H. Then for any finite set F ⊆ S, (x−
∑

v∈F⟨v, x⟩v) ⊥
v,∀v ∈ F. Therefore by pythagoras’ theorem

∥x∥2 =
∑
v∈F

|⟨v, x⟩|2 + ∥x−
∑
v∈F

⟨v, x⟩v∥2 (6.2)

Using completeness of S, for each ϵ > 0 we get v1, . . . , vn(ϵ) ∈ S and
scalars λ1, . . . , λn(ϵ) so that ∥x −

∑n(ϵ)
j=1 λjvj∥ < ϵ. If we call the finite set

{v1, . . . , vn(ϵ)}, Fϵ then by (6.1)

∥x−
∑
v∈Fϵ

⟨v, x⟩v∥2 ⩽ ∥x−
n(ϵ)∑
j=1

λjvj∥2 < ϵ2 (6.3)

Therefore the net F 7→ x −
∑

v∈Fϵ
⟨v, x⟩v defined on the directed set of fi-

nite subsets of S converges to 0. In other words the second term in (6.2)
converges to 0. This proves ∥x∥2 = limF

∑
v∈F |⟨v, x⟩|2.

(3) =⇒ (1) : If possible let x ∈ H\S be such that {x}∪S be orthonormal.
Then ⟨v, x⟩ = 0,∀v ∈ S. Therefore ∥x∥2 =

∑
v∈S |⟨v, x⟩|2 = 0, a contradic-

tion to orthonormality of {x} ∪ S.

Corollary 6.2.14 (Abstract Fourier Expansion). Let S be an orthonormal
basis. Then for all x ∈ H we have x =

∑
v∈S⟨v, x⟩v.

Proof. Since ∥x∥2 = limF

∑
v∈F |⟨v, x⟩|2, from (6.2) we have limF ∥x−

∑
v∈F⟨v, x⟩v∥ =

0 or equivalently x = limF

∑
v∈F⟨v, x⟩v =:

∑
v∈S⟨v, x⟩v.
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Proposition 6.2.15. Any two o.n.b have same cardinality.

Proof. Let H be a Hilbert space with two orthonormal basis A,B. We will
prove the proposition in the infinite dimensional case only. Fix a countable
dense subset K′ of K. Let,

HA = {v ∈ H|{a ∈ A : ⟨v,a⟩ ≠ 0} is finite and ⟨v,a⟩ ∈ K′,∀a ∈ A}

Then HA is dense in H and is in bijection with ∪∞
n=1A

n × K′n which is
in bijection with A. Define f : B → HA, such that ∥b − f(b)∥ < 1/8, for
all b ∈ B. Orthonormality of B implies ∥b − b ′∥ > 1 whenever we have
two distinct elements of B. Thus given any two distinct elements b,b ′ ∈ B
we have ∥f(b) − f(b ′)∥ > 1/2. That is to say that f is one to one. This
shows that the cardinality of A is greater than or equal to that of B. By
symmetry we get the other inequality and conclude both A and B have
the same cardinality.

Proposition 6.2.16. Let H be a separable Hilbert space. Then any o.n.b is
countable.

Proof. Fix a countable dense set S. Let A be an o.n.b. Define a function
f : A → S such that ∥f(α) − α∥ < 1/2. Then f is one to one because, given
any two distinct α,α′ of A, we have

∥f(α) − f(α′)∥ ⩾ ∥α−α′∥− ∥f(α) −α∥− ∥f(α′) −α′∥ > 1− 1/2− 1/2 = 0.

This shows that A is countable.

6.3 Applications of Riesz representation theorem

Proposition 6.3.1. Let H be a Hilbert space and T : H × H → K be a
sesquilinear form. If there exists a positive constant C such that

|T(u, v)| ⩽ C∥u∥∥v∥,∀u, v ∈ H.

Then there is a unique bounded linear map T̃ ∈ B(H) such that ∥T̃∥ ⩽ C

and
T(u, v) = ⟨T̃(u), v⟩, ∀u, v ∈ H.
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Proof. Consider the linear map ϕu : H → K, v 7→ T(u, v). Then by the
Riesz representation theorem there exists T̃(u) such that ∥T̃(u)∥ = ∥ϕu∥
and ⟨T̃(u), v⟩ = ϕu(v) = T(u, v) for all v ∈ H. Of course we need to verify
that the map u 7→ T̃(u) is linear. Note that

⟨T̃(α · u+ β · v),w⟩ = T(α · u+ β · v,w)
= αT(u,w) + βT(v,w)
= ⟨α · T̃(u),w⟩+ ⟨β · T̃(v),w⟩.
= ⟨α · T̃(u) + β · T̃(v),w⟩.

Thus we have

⟨T̃(α · u+ β · v) − α · T̃(u) − β · T̃(v),w⟩ = 0, ∀w ∈ H

In particular taking w = T̃(α · u+ β · v) − α · T̃(u) − β · T̃(v) we get

T̃(α · u+ β · v) − α · T̃(u) − β · T̃(v) = 0.

That is to say that T̃ is a linear map. To see that it is bounded note that

∥T̃(u)∥ = ∥ϕu∥ = sup
v:∥v∥=1

|T(u, v)| ⩽ C∥u∥.

Uniqueness of T̃ is obvious because if there were two such maps T̃1 and
T̃2, then

⟨T̃1(u) − T̃2(u), v⟩ = T(u, v) − T(u, v) = 0, ∀v ∈ H.

Again taking v = T̃1(u) − T̃2(u) we see that T̃1(u) = T̃2(u).

Remark 6.3.2. Similarly one can show that if we have Hilbert spaces H1,H2,
and a sesquilinear map B : H1 ×H2 → K such that

|B(u, v)| ⩽ C∥u∥∥v∥, ∀u ∈ H1, ∀v ∈ H2

where C is a positive constant then there exists a bounded linear map T :

H1 → H2 of norm less than or equal to C and

B(u, v) = ⟨T(u), v⟩,∀u ∈ H1,∀v ∈ H2.
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Corollary 6.3.3. Let T ∈ B(H). Then there is a unique linear map denoted
by T∗ such that

⟨T∗(u), v⟩ = ⟨u, T(v)⟩, ∀u, v ∈ H. (6.4)

Moreover ∥T∗∥ = ∥T∥ and T∗∗ = T .

Proof. Note that |⟨u, T(v)⟩| ⩽ ∥T∥∥u∥∥v∥. So, we can apply the previous
proposition to the sesquilinear form (u, v) 7→ ⟨u, T(v)⟩ to obtain a linear
map T∗ such that (6.4) holds. To see the statement about the norms,

∥T∗∥ = sup
u:∥u∥=1

∥T∗(u)∥

= sup
u:∥u∥=1

sup
v:∥v∥=1

|⟨T∗(u), v⟩|

= sup
u:∥u∥=1

sup
v:∥v∥=1

|⟨u, T(v)⟩|

= sup
v:∥v∥=1

∥T(v)∥, by corollary (6.1.6)

= ∥T∥.

Corollary 6.3.4. In the set up of proposition (6) there exists a unique bounded
linear map T ′ ∈ B(H) such that ∥T ′∥ ⩽ C and

T(u, v) = ⟨u, T ′(v)⟩, ∀u, v ∈ H.

Proof. Take T ′ = T̃∗.

Definition 6.3.5. A bounded linear operator T ∈ B(H) is called self-adjoint
if T = T∗

Exercise 6.3.6. A bounded linear map U on a Hilbert space is a unitary iff
U∗U = UU∗ = I, where I stands for the identity operator.
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6.4 Practice problems set 4

1. Let E be a real Banach space and U : E→ E a bijective map such that

∥Ux−Uy∥ = ∥x− y∥,∀x,y ∈ E.

Such maps will be referred as bijective isometry. Fix x1, x2 ∈ E. For
any bijective isometry ϕ define

def(ϕ) = ∥ϕ(x1 + x2
2

) −
ϕ(x1) + ϕ(x2)

2
∥

(a) Show that def(ϕ) ⩽ ∥x1−x2∥
2

.

(b) Let ρU : E → E be ρU(z) = U(x1) + U(x2) − z and U′ = U−1 ◦
ρU ◦U. Then def(U′) = 2def(U).

(c) Conclude def(U) = 0 and U is affine.

2. Let E be a Banach space. Let X be a weakly bounded subset of E.
That means for all ϕ ∈ E∗, ϕ(X) is a bounded subset of K. Then X is
a norm bounded subset of E.

3. Let H be a Hilbert space and u, v ∈ H. Let Hu,Hv be the spans of
u, v respectively. Suppose

∥v− u∥ = inf{∥v−w∥ : w ∈ Hu} = inf{∥u−w∥ : w ∈ Hv},

then show that v = u.

4. We know that every closed convex subset in a Hilbert space has a
unique element of maximum norm. However this exercise shows
there may not be any element of maximum norm. Let {ϕn : n ∈ N}
be an orthonormal basis for the Hilbert space H. Let

C :=

{
x ∈ H|

∑(
1+

1

n

)2

|⟨x,ϕn⟩|2 ⩽ 1

}
.

Show that C is a closed, bounded and convex set, but it contains no
vector of maximal norm. (Hint: Define T(x) =

∑
(1 + 1

n
)⟨ϕn, x⟩ϕn.
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Then T ∈ B(H) and C = {x ∈ H : ∥T(x)∥ ⩽ 1}. This shows C is closed
and convex. Also for every

∥x∥2 =
∑

|⟨ϕn, x⟩|2 <
∑(

1+
1

n

)2

|⟨ϕn, x⟩|2 ⩽ 1.

5. Let S = {ϕn : n ∈ N} ⊆ L2([0, 1],dλ) be an orthonormal set. Show
that the following are equivalent

(a) S is an orthonormal basis.

(b) For all x ∈ [a,b],
∑∞

n=1 |
∫x

a
ϕn(t)dt|

2 = (x− a).

(c)
∑∞

n=1

∫b

a
|
∫x

a
ϕn(t)dt|

2dx = 1
2
(b− a)2.

6. Let H be a Hilbert space and T : H ×H → K be a sesquilinear form.
If there exists a positive constant C such that

|T(u, v)| ⩽ C∥u∥∥v∥,∀u, v ∈ H.

Then there is a unique bounded linear map T̃ ∈ B(H) such that ∥T̃∥ ⩽
C and

T(u, v) = ⟨T̃(u), v⟩,∀u, v ∈ H.

7. If we have Hilbert spaces H1,H2, and a sesquilinear map B : H1 ×
H2 → K such that

|B(u, v)| ⩽ C∥u∥∥v∥,∀u ∈ H1,∀v ∈ H2

whereC is a positive constant then there exists a bounded linear map
T : H1 → H2 of norm less than or equal to C and

B(u, v) = ⟨T(u), v⟩,∀u ∈ H1,∀v ∈ H2.

8. Let x,y : [0, 1] → R be C1-functions such that ∥dx
dt
∥2
2
+ ∥dy

dt
∥2
2
= ℓ2,

then |
∫1

0
y(t)dx

dt
dt| ⩽ ℓ2

4π
.

9. The bilinear form T is called coercive if ∃a > 0 such that T(u,u) ⩾
a∥u∥2,∀u ∈ H. By exercise (6) we know that there exists T̃ ∈ B(H)

such that T(u, v) = ⟨T̃(u), v⟩. If T is given to be coercive.
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(i) Show that T̃ is one to one.

(ii) Let Ran be the range of T̃ . Consider S : Ran → H given by
S(u) = v where u = T̃(v). Show that S is bounded. and using
this show that Ran is closed.

(iii) Show that T̃ is onto i.e., Ran = H.

(iv) Conclude given ϕ ∈ H there exists unique u ∈ H such that
T(u, v) = ⟨ϕ, v⟩,∀v ∈ H.

10. Let (Ω,S,µ) be a probability space and S′ ⊆ S a sub-σ-algebra. Let
f be a nonnegative measurable L1 function. Let L2(S′) be the space
of square integrable S′ measurable functions. Then L2(S′) ⊆ L2(S)

is a closed subspace. Let P be the corresponding projection. Show
that

(a) If 0 ⩽ f ⩽ C then ∃N ∈ S′,µ(N) = 0 and a S′ measurable g
such that on Nc, 0 ⩽ g ⩽ C and g = Pf a.e. Such a g will be
called a version of Pf.

(b) ∫
A

fdµ =

∫
A

Pfdµ,∀A ∈ S′.

(c) Let fn = f∧n, then ∃N ∈ S′,µ(N) = 0 such that outsideN, each
Pfn has a version gn such that 0 ⩽ gn ⩽ n and gn ⩽ gn+1,∀n ⩾
1. Let g = limgn. Show that∫

A

fdµ =

∫
A

gdµ,∀A ∈ S′. (6.5)

Such a g is called the conditional expectation of f given S′ and
is denoted by E(f|S′). This is an S′ measurable integrable func-
tion unique upto a µ null set.
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Chapter 7

Spectral theory

In this chapter we explore the structure of linear operators on Hilbert
spaces. We will begin with compact operators and prove spectral theo-
rem. Then we move on to bounded operators and prove spectral theorem.
Finally if time permits we will move to spectral theorem for unbounded
self-adjoint operators.

7.1 Compact operators

Let H,K be Hilbert spaces. We are interested in exploring the structure of
L(H,K), the collection of bounded linear maps from H to K. To begin our
exploration we begin by asking examples of bounded linear maps. Those
examples may lead to further curiosities and the ball will get rolling.

Let H be a Hilbert space and u ∈ H. The vector u has two kinds of
life. On the one hand we can think of it as an element of H. If we wish to
emphasize this roll we use the notation |u⟩ instead of u and we read |u⟩ as
a ket-vector. On the other we can also think of u as a linear functional on
H and by the Riesz representation theorem every linear functional arises
in this manner. When we wish to emphasize this roll we use the notation
⟨u| instead of u and call it a bra-vector. Given a bra-vector ⟨u| from H

and a ket-vector |v⟩ from H, the action of the linear functional associated
with bra-vector ⟨u| on the ket-vector |v⟩ is not denoted by ⟨u|(|v⟩). It is
instead denoted by ⟨u, v⟩. This notation is due to Paul Dirac. Given a pair
of vectors u ∈ H, v ∈ K where H,K are Hilbert spaces, |v⟩⟨u| : H → K
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stands for the linear map w 7→ ⟨u,w⟩v. In particular Pu := |u⟩⟨u| is the
orthogonal projection onto the span of u.

Let us check whether |v⟩⟨u| : H → K is bounded or not? Let w ∈ H.
Then

∥(|v⟩⟨u|)(|w⟩)∥ = ∥⟨u,w⟩v∥ = |⟨u,w⟩|∥v∥ ⩽ ∥u∥∥v∥∥w∥.

Taking supremum asw varies with ∥w∥ = 1we get |v⟩⟨u| is bounded with
∥|v⟩⟨u|∥ ⩽ ∥u∥∥v∥. An operator of the form |⟨u,w⟩|∥v∥ is called a rank one
operator. A finite linear combination of rank one operators is called a finite
rank operator. Given a bounded linear map how can we tell whether it is
a finite rank operator or not? That’s answered in the following exercise.

Exercise 7.1.1. Let H,K be Hilbert spaces. A bounded linear map T ∈
L(H,K) is a finite rank operator iff T(H) ⊆ K is a finite dimensional sub-
space.

Remark 7.1.2. We have finite rank operators and a mechanism to recognise
them. This is an instance of a recognition principle, albeit a rather easy
one.

Now that we have a supply of bounded linear maps namely finite rank
ones we can ask several questions.

1. Is the collection of finite rank operators closed?

2. If not then we can get more bounded operators by forming the clo-
sure of the set of finite rank operators.

3. Can there be a recognotion principle for the closure?

Exercise 7.1.3. Show that the set of finite rank operators is not closed.

To describe the closure we need the following concept.

Definition 7.1.4. Let H,K be Hilbert spaces. A linear map T : H → K is
said to be compact if T(BH) is compact, where BH is the unit ball of H. The
set of compact operators from H to K is denoted by B0(H,K) or L0(H,K).

Remark 7.1.5. It is immediate that the concept of a compact operator can be
defined for maps between Banach spaces as well. We have defined it for
Hilbert spaces because we are not going to study the Banach space case.

[Lecture Notes of P.S.Chakraborty]
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Example 7.1.6. If T is a finite rank operator then by the Heine-Borel theo-
rem image of unit ball under T becomes relatively compact. Therefore T
becomes compact.

Exercise 7.1.7. Show that a compact operator is bounded.

Proposition 7.1.8. Let H,K be Hilbert spaces. Then L0(H,K) is a closed
subspace of L(H,K).

Proof. Let {Tn} ⊆ L0(H,K) be a sequence converging to T ∈ L(H,K). We
have to show that T is compact. Let ϵ > 0. Enough to find an ϵ-net for
T(BH). Get an N so that ∥T − TN∥ < ϵ/3. Since TN is compact there exists
a finite set F ⊆ BH so that

∀x ∈ BH,∃xF ∈ F, such that ∥TN(x) − TN(xF)∥ < ϵ/3.

Then for all x ∈ BH,

∥T(x) − T(xF)∥ ⩽ ∥T(x) − TN(x)∥+ ∥TN(x) − TN(xF)∥+ ∥T(xF) − TN(xF)∥

< ∥T − TN∥∥x∥+
ϵ

3
+ ∥T − TN∥∥xF∥

< ϵ.

In other words F is an ϵ-net for T(BH).

Corollary 7.1.9. Let T = lim Tn be a limit of finite rank operators. Then T
is compact.

Proof. Immediately follows once we note that finite rank operators are
compact.

Proposition 7.1.10. Let T ∈ B(H) then T is compact if and only if T con-
verts weakly convergent sequences to norm convergent sequences. That
is

(⟨v,un⟩ → ⟨v,u⟩,∀v ∈ H) =⇒ ∥T(un) − T(u)∥ → 0.

Proof. Let {un}α∈A be a weakly convergent sequence with u as its limit.
The sequence {T(un)} weakly converges to T(u) because

⟨v, T(un)⟩ = ⟨T∗(v),un⟩ → ⟨T∗(v),u⟩ = ⟨v, T(u)

[Lecture Notes of P.S.Chakraborty]
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In order to utilize the hypothesis that T is a compact operator note that the
set {un : n ∈ N} is weakly bounded. Hence by corollary (5.2.2) it is norm
bounded. So there exists M such that sup{∥un∥ : n ∈ N} < M. Since T is
compact any subnet of {T(un)} has a convergent subsequence and the limit
must be T(u), because {T(un)} weakly converges to T(u). Since the limit of
the convergent subsequence of any given subsequence does not depend
on the subsequence the original sequence must be convergent with the
same limit, i.e., ∥T(un) − T(u)∥ → 0.

Conversely, let {T(un)} be a sequence in T(B(0, 1)). By Banach-Alaoglu
theorem we can conclude that {un} has a weakly convergent subsequence{unk

}.
Then the corresponding subsequence {T(unk

)} converges. This shows that
T(B(0, 1)) is relatively compact or equivalently has compact closure.

Corollary 7.1.11. Let H,K be Hilbert spaces and R ∈ L(H),S ∈ L(K), T ∈
L0(H,K), then TR ∈ L0(H,K),ST ∈ L0(H,K).

Theorem 7.1.12. Let H be an infinite dimensional Hilbert space and T ∈ B(H)

be a nonzero self-adjoint compact operator, then

Λ+ = sup{⟨u, Tu⟩ : ∥u∥ = 1} = sup{⟨u, Tu⟩ : ∥u∥ ⩽ 1}

Λ− = inf{⟨u, Tu⟩ : ∥u∥ = 1} = inf{⟨u, Tu⟩ : ∥u∥ ⩽ 1}

are attained. Let u+,u− be the vectors where Λ+,Λ− are attained, then at least
one of the following holds,

Tu± = Λ±u±.

Proof. Let F(u) = ⟨u, Tu⟩, then this is a real valued function because,

F(u) = ⟨Tu,u⟩ = ⟨u, T∗u⟩ = ⟨u, Tu⟩ = Fu.

Also for ∥u∥ ⩽ 1, |F(u)| ⩽ ∥u∥2∥T∥ ⩽ ∥T∥. Therefore Λ± makes sense. Let
{un} be a sequence such that ∥un∥ ⩽ 1 and F(un) → Λ+. Since a Hilbert
space is reflexive by Banach-Alaoglu theorem its unit ball is weakly com-
pact the sequence {un} has a weakly convergent subsequence. Without

[Lecture Notes of P.S.Chakraborty]
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loss of generality we can assume that un → u+, weakly. Then,

|F(un) − F(u+)| = |⟨un, Tun⟩− ⟨u+, Tu+⟩|
⩽ |⟨un, Tun − Tu+⟩|+ |⟨un − u+, Tu+⟩|
⩽ ∥Tun − Tu+∥+ |⟨un − u+, Tu+⟩|→ 0.

Since T is sompact the first term goes to zero and the second term goes to
zero because {un} weakly converges to u+. Therefore F(u+) = lim F(un) =

Λ+. Let {en : n ⩾ 1} be an infinite orthonormal set. Then {en} weakly
converges to zero, hence {T(en)} converges to zero in norm. Therefore
{F(en)} converges to zero. Thus Λ+ ⩾ 0. If ∥u+∥ < 1 there exists ϵ > 0

such that ∥(1 + ϵ)u+∥ = 1, and F((1 + ϵ)u+) = (1 + ϵ)F(u+) ⩾ F(u+).
Similarly we obtain u− such that F(u−) = Λ−.

Λ± both can not be zero: Suppose thatΛ+ = Λ− = 0. Then for any u of unit
norm, F(u) = 0. Thus for any u, we get ⟨u, Tu⟩ = 0. Then by polarization
we get

2⟨v, Tu⟩ = ⟨u+ v, T(u+ v)⟩+ i⟨u+ iv, T(u+ iv)⟩ = 0.

Therefore T = 0 a contradiction to T ̸= 0!

Without loss of generality we assume that Λ+ ̸= 0. Then ⟨u+, Tu+⟩ =
Λ+ > 0. Therefore, T(u+) ̸= 0.
Claim: v ∈ H, ∥v∥ = 1, v ⊥ u+ =⇒ v ⊥ Tu+

Proof of Claim: Let vθ = (Cosθ)v+ (Sinθ)u+, then ∥vθ∥ ⩽ 1 and

F(vθ) = Cos2θ.F(v) + Sin2θ.F(u+) + CosθSinθ⟨v, Tu+⟩
+SinθCosθ⟨u+, Tv⟩

= Cos2θF(v) + Sin2θF(u+) + Sin2θℜ⟨v, Tu+⟩

We know that the function θ 7→ F(vθ) attains its maximum at θ = π/2.
Therefore

dF(vθ)

dθ
|θ=π/2 = ℜ⟨v, Tu+⟩ = 0.

[Lecture Notes of P.S.Chakraborty]
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Instead of v if we put
√
−1vwe obtain ℑ⟨v, Tu+⟩ = 0. Therefore ⟨v, Tu+⟩ =

0.

Thus, Tu+ ∈ u⊥⊥
+ = Cu+. Let Tu+ = λu+, and

Λ+ = F(u+) = ⟨u+, Tu+⟩ = λ∥u+∥2 = λ.

If Λ− ̸= 0 we similarly conclude that Tu− = Λ−u−.

Lemma 7.1.13. Let T be a self-adjoint operator on a Hilbert space H. Then

∥T∥ = sup{
|⟨u, Tu⟩|
∥u∥2

: ∥u∥ ≠ 0}. (7.1)

Proof. Let M be the right hand side of 7.1. By Cauchy-Schwarz inequality
we see thatM ⩽ ∥T∥. Let u, v ∈ H, then

⟨u+ v, T(u+ v)⟩ = ⟨u, Tu⟩+ ⟨u, Tv⟩+ ⟨v, Tu⟩+ ⟨v, Tv⟩
⟨u− v, T(u− v)⟩ = ⟨u, Tu⟩− ⟨u, Tv⟩− ⟨v, Tu⟩+ ⟨v, Tv⟩

Subtracting and taking absolute values we get

2|⟨u, Tv⟩+ ⟨v, Tu⟩| = |⟨u+ v, T(u+ v)⟩− ⟨u− v, T(u− v)⟩| (7.2)

If T is the zero operator then clearly ∥T∥ ⩽ M. So, we can assume T ̸= 0.
Let u be an arbitrary unit vector such that Tu ̸= 0. Let v = Tu

∥Tu∥ . Then,
⟨u, Tv⟩ = ⟨Tu, v⟩ = ∥Tu∥. Putting these in 7.2 we get

4∥Tu∥=|⟨u+ v, T(u+ v)⟩− ⟨u− v, T(u− v)⟩|
⩽M(∥u+ v∥2 + ∥u− v∥2)
=M2(∥u∥2 + ∥v∥2) [ by parallelogram identity
=4M [since ∥u∥ = ∥v∥ = 1.

Therefore ∥T∥ ⩽ M, establishing the other inequality required to show
(7.1).

Theorem 7.1.14 (Spectral Theorem for Compact Self-adjoint Operator). Let
T ̸= 0 be a compact self-adjoint operator on H. Then there exists a sequence {λn}

[Lecture Notes of P.S.Chakraborty]
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of real numbers and a sequence of mutually orthogonal vectors {en} such that
|λn| → 0, ∥en∥ = 1∀n and

T =
∑

λn|en⟩⟨en|, (7.3)

where the sum appearing in (7.3) is norm convergent. The expansion (7.3) is
called a spectral resolution of T .

Proof. Let T (0) = T ,H(0) = H. Now we will successively define

1. Hilbert spaces H(n) for n ⩾ 0 such that H(n+1) ⊆ H(n).

2. Compact self-adjoint operators T (n) : H(n) → H(n).

3. Vectors en+1 ∈ H(n) orthogonal to H(n+1) and scalars λn+1 forn ⩾ 0.

This will be defined in a manner so that if Q(n) denotes the orthogonal
projection onto H(n+1) then

T (n+1) = T (n)Q(n) = Q(n)T (n) (7.4)

T (n) = λn+1Pen+1
+ T (n+1), for n ⩾ 0, (7.5)

∥T (n+1)∥ ⩽ |λn+1|. (7.6)

This is achieved through repeated applications of theorem (7.1.12). As-
sume that we have defined (T (k),H(k)) for k ⩽ n. If T (n) = 0 then T (n+1) =

0, λn+1 = 0, en+1 an arbitrary unit vector in H(n) and H(n+1) = H(n) ∩
{en+1}

⊥,. Otherwise apply theorem (7.1.12) for the operator T (n).

(λn+1, en+1) =

{
(Λ+(T

(n)),u+(T
(n))), if Λ+(T

(n)) ⩾ −Λ−(T
(n))

(Λ−(T
(n)),u−(T

(n))) otherwise.

Then T (n)en+1 = λn+1en+1 and consequently λn+1Pen+1
= T (n)Pen+1

=

Pen+1
T . Let Q(n) = IH(n) − Pen+1

and H(n+1) be the range of Q(n). If we
take T (n+1) = T (n)Q(n) then all the conditions will be met. To see (7.6)
observe that

∥T (n+1)∥ ⩽ ∥T (n)∥ = |λn+1|, by lemma (7.1).

[Lecture Notes of P.S.Chakraborty]
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Adding (7.5) for 0 ⩽ n ⩽ k we obtain,

T =

k∑
n=0

λn+1Pen+1
+ T (k+1)

Since {en} converges to zero weakly |λn| = ∥T(en)∥ converges to zero.
It follows from the inequality (7.6) that ∥T (n)∥ converges to zero. This
proves (7.3).

Definition 7.1.15. Let T ∈ B(H), then λ is an eigenvalue of T with eigen-
vector u ̸= 0 if Tu = λu. The subspace Eλ = {u ∈ H : Tu = λu} is called
the eigenspace corresponding to the eigenvalue λ.

Corollary 7.1.16. Let T ̸= 0 be a compact operator with a spectral resolu-
tion given by (7.3). Then λ ̸= 0 is an eigenvalue iff λ equals one of the λn’s.
Also Eλ = span{en : λn = λ}.

Proof. Let A be the orthonormal set consisting of en’s. Extend it to an
orthonormal basis A′. Let λ ̸= 0 be an eigenvalue with eigenvector u.
Then by corollary (6.2.14) u =

∑
n⟨en,u⟩en +

∑
α∈A′\A⟨α,u⟩α. There-

fore Tu =
∑

n λn⟨en,u⟩en. On the other hand λu =
∑

n λ⟨en,u⟩en +∑
α∈A′\A⟨α,u⟩α. Using Tu = λu we obtain,

⟨α,u⟩ = 0, ∀α ∈ A′ \A (7.7)
λ⟨en,u⟩ = λn⟨en,u⟩, ∀n. (7.8)

Equation (7.7) tells us u belongs to the closed linear span of en’s. Hence
there exists n such that ⟨en,u⟩ ≠ 0. Using equation (7.8) for that n we
conclude λ = λn.

Corollary 7.1.17. Let H,K be Hilbert spaces and T ∈ B0(H,K) be a com-
pact operator. Then there exists a unique compact self-adjoint operator in
B0(H), denoted by |T | and referred as the modulus of T so that T∗T = |T |2.

Proof. Since T is compact, so is T∗T . Also ⟨u, T∗Tu⟩ = ∥Tu∥2 ⩾ 0,∀u.
Therefore every eigenvalue of T∗T must be nonnegative. Let T∗T =

∑
λnPn

be the spectral resolution of T∗T , where λn’s are the distinct eigenvalues.
Then define |T | =

∑√
λnPn. Since lim

√
λn = 0, this sum is norm con-

vergent. Also |T |2 = T∗T . Uniqueness follows because if S is any such
operator then Smust have the spectral resolution of |T |.
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Our next result is a structure theorem for arbitrary compact operators.
This is done via polar decomposition of an operator tobe defined shortly.

Definition 7.1.18. Let H,K be Hilbert spaces. A linear map U : H → K is
said to be a partial isometry with initial space H′ ⊆ H and terminal/final
space K′ ⊆ K if

1. U(H′) = K′;

2. U|H′⊥ = 0 and

3. ⟨Uu,Uv⟩ = ⟨u, v⟩, ∀u, v ∈ H′.

Exercise 7.1.19. Let H,K be Hilbert spaces and U : H → K be a bounded
linear map. Then show that the following are equivalent.

1. UU∗U = U.

2. U∗UU∗ = U∗.

3. UU∗ is an orthogonal projection.

4. U∗U is an orthogonal projection.

Also show that these are equivalent to saying that U is a partial isometry.

Theorem 7.1.20 (Polar decomposition). Let H,K be Hilbert spaces and T :

H → K be a compact linear map. Then there is a partial isometry U : H → K

with initial space Ran(|T |) and final space Ran(T) so that T = U|T |.

Proof. It is enough to define an inner product preserving onto map from
Ran(|T |) to Ran(T). Define U : |T |u 7→ Tu. Then forall u, v ∈ H we have

⟨U(|T |u),U(|T |v)⟩ = ⟨Tu, Tv⟩ = ⟨u, T∗Tv⟩ = ⟨u, |T |2v⟩ = ⟨|T |u, |T |v⟩.

This showsU is well defined and a partial isometry. The equation T = U|T |

is immediate.

Remark 7.1.21. Later we will show that given any bounded operator T ∈
L(H,K) there exists unique selfadjoint operator whose square is T∗T . In
other words |T | makes sense in that generality. Given that fact the proof of
polar decomposition works for bounded operators.

[Lecture Notes of P.S.Chakraborty]
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Corollary 7.1.22 (Singular Value Decomposition). Let T ̸= 0 be a compact
operator. Then there exists countable orthonormal sets {en}, {fn} and a se-
quence of positive scalars {sn(T)}, sn(T) ↘ 0, such that

T =
∑
n

sn(T)|fn⟩⟨en| (7.9)

where the sum is norm convergent. The scalar sn(T) is called the n-th
singular value of T . A representation of the form 7.9 is called a singular
value decomposition. Such a decomposition may not be unique, however
sn(T)’s are unique and sn(T) is called the n-th largest singular value of T .

Proof. Let S = T∗T . Then S is compact and nonzero because if Tu ̸= 0

then ⟨u,Su⟩ = ∥Tu∥2 > 0. Hence S is nonzero and eigenvalues of S must
be nonnegative. Let {sn(T)2} be the sequence of nonzero eigenvalues of
S arranged in decreasing order repeated according to their multipliciities.
Then there exists an orthonormal family {en} so that |T | =

∑
sn(T)|en⟩⟨en|.

Let fn := U(en) whereU is the partial isometry in the polar decomposition
of T . Then

T = U(|T |) =
∑

sn(T)U(|en⟩⟨en|) =
∑

sn(T)|fn⟩⟨en|,

where the second equality is justified by the facts that U is a bounded
linear map and the sum is norm convergent. Uniqueness of sn(T)’s are
obvious because they are precisely the eigenvalues of |T |.

Corollary 7.1.23. Let T be a compact operator on a Hilbert space H. Then-
for all nwe have sn(T) = sn(T∗).

Proof. Let T =
∑
sn(T)|fn⟩⟨en| be a singular value decomposition. Then

T∗ =
∑
sn(T)|en⟩⟨fn|. Therefore TT∗ =

∑
sn(T)

2|fn⟩⟨fn|. Consequently

sn(T
∗) =

√
sn(T)2 = sn(T).

Theorem 7.1.24 (Min-max principle). Let T be a self-adjoint compact operator
with ⟨u, Tu⟩ ⩾ 0 for all u. Such operators are called positive. Then λn(T), the
n-th largest eigenvalue of T satisfies

λn+1(T) = min
dim(S)=n

max
u⊥S

∥u∥=1

⟨u, Tu⟩.
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Proof. We have to show inequalities in both directions. To show that the
left hand side is less than or equal to the right hand side, given a subspace
S of dimension nwe have to show that there exists u ∈ S⊥ of norm 1 with
λn+1(T) ⩽ ⟨u, Tu⟩. For the other inequality suffices to show there exists a
subspace S0 of dimension n so that λn+1(T) ⩾ max u⊥S0

∥u∥=1

⟨u, Tu⟩.

Let us begin with the second assertion. Let T =
∑
λn(T)|en⟩⟨en| be the

spectral resolution of T . Take S0 = span{e1, . . . , en}. Then we have

λn+1(T) ⩾ max
u⊥S0
∥u∥=1

⟨u, Tu⟩.

For the first assertion let {v1, . . . , vn} be an orthonormal basis of S. Suffices
to find a1, . . . ,an+1 with

∑
|aj|

2 = 1 so that u :=
∑
aiei is orthogonal to

vj, ∀j. Because such an u will satisfy

⟨u, Tu⟩ =
n+1∑
j=1

λj(T)|aj|
2 ⩾ λn+1(T)

n+1∑
j=1

|aj|
2 = λn+1(T).

Consider the n × (n + 1) matrix whose (i, j)-th entry is ⟨vi, ej⟩. Rank of
this matrix is at most n. Therefore there exists a vector (a1, · · · ,an+1)

t in
the null space of this matrix. In other words

∑n+1
j=1 aj⟨vi, ej⟩ = 0,∀i, or

equivalently
∑n+1

j=1 ajej ⊥ vi,∀i.

Corollary 7.1.25. Let H be a Hilbert space and T ∈ B0(H) be a compact
operator. For n ∈ N, let sn(T) be the n-th largest singular value of T . Then
for n ∈ N0,

sn+1(T) = min
dim(S)=n

max
u⊥S

∥u∥=1

∥Tu∥.

Proof. Let R = T∗T . Then sn(T)2 = λn(R) and by the Min-max principle,

λn+1(R) = min
dim(S)=n

max
u⊥S

∥u∥=1

⟨u, T∗Tu⟩ = min
dim(S)=n

max
u⊥S

∥u∥=1

∥Tu∥2.

Using monotonicity of the square root function on the non-negative real
axis we get the result.
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Corollary 7.1.26. Let H be a Hilbert space. The mapping

sn : B0(H) ∋ T 7→ sn(T) ∈ R

is continuous for all n ∈ N. Here sn(T) denotes the n-th largest singular
value of T and B0(H) is endowed with the norm topology.

Proof. Let {Tk} ⊆ B0(H) be a sequence converging to T . Then

∀ϵ > 0,∃N such that ∥Tk − T∥ < ϵ,∀k ⩾ N.

Therefore,

∥Tu∥− ϵ < ∥Tku∥ < ∥Tu∥+ ϵ, ∀k ⩾ N, ∀u with ∥u∥ = 1.

Hence by corollary 7.1.25 we get for all n ∈ N, for all k ⩾ N, |sn(T) −
sn(Tk)| < ϵ.

Corollary 7.1.27. Let T be a compact operator and R be a bounded oper-
ator. Then we have already seen that both TR and RT are compact. Also
sn(TR) ⩽ ∥R∥sn(T), sn(RT) ⩽ ∥R∥sn(T), ∀n ∈ N.

Proof. By the min-max principle we have

sn+1(RT) = min
dim(S)=n

max
u⊥S

∥u∥=1

∥RTu∥ ⩽ ∥R∥ min
dim(S)=n

max
u⊥S

∥u∥=1

∥Tu∥ = ∥R∥sn+1(T).

Also,
sn(TR) = sn(R

∗T∗) ⩽ ∥R∗∥sn(T∗) = ∥R∥sn(T).

Definition 7.1.28 (Trace class operators). A compact operator T is said to
be trace class if

∑
sn(T) < ∞. The collection of trace class operators on a

Hilbert space H is denoted by B1(H) or L1(H).

7.2 Practice problems

1. Let H be a Hilbert space. Show that there are dense subspaces of
codimension 1.
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2. Let (Ω,A,P) be a probability space with A countably generated. Then
show that L2((Ω,A,P)) is separable.

3. Consider the normed linear spaces with respective norms given by,

H± = {(cn)n∈N :

∞∑
n=1

n±4|cn|
2 <∞},

∥(cn)∥2± =
∑

|n|
±4

|cn|
2.

Show that (H±, ∥ · ∥±) are Hilbert spaces. Let ϕ ∈ H∗
±. Show that

there exists (dn)n = ψ ∈ H− such that ϕ((cn)n) =
∑
dncn.

4. (*) LetΩ be an open connected subset of the complex plane. Let

B2(Ω) := {f : Ω→ C|f is holomorphic
∫
Ω

|f(z)|2dz <∞}

(a) Show that B2(Ω) is an inner product space with inner product

⟨f,g⟩ :=
∫
Ω

f(z)g(z)dz.

Let ∥f∥B2(Ω) be the associated norm.

(b) Fix w ∈ Ω and choose R > 0 such that closed ball of radius R
centred at w is contained inΩ. Show that |f(w)| ⩽

∥f∥
B2(Ω)

R
√
π

.

(c) Conclude that B2(Ω) is complete.

(d) Show that for all w ∈ Ω, f 7→ f(w) defines a bounded linear
functional on B2(Ω).

5. A reeproducing kernel Hilbert space is a Hilbert space H of functions
on a set,Ω, so that

(i) For any f ̸= 0, there is x ∈ Ω with f(x) ̸= 0.
(ii) For any x ∈ Ω, there is f ∈ H with f(x) ̸= 0.

(iii) For any x ̸= y ∈ Ω, there is f ∈ H with f(x) ̸= f(y).
(iv) For any x ∈ Ω, there is Cx so that |f(x)| ⩽ Cx∥f∥H, ∀f ∈ H.
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Prove that

(a) for any x ∈ Ω, there is kx ∈ H so that ∀f ∈ H, f(x) = ⟨kx, f⟩;
(b) each kx ̸= 0 and x ̸= y =⇒ kx ̸= ky;

(c) finite linear combinations of {kx}x∈Ω is dense in H;

(d) K(y, x) = K(x,y) where K : Ω×Ω→ C is the function

K(x,y) = ⟨ky,kx⟩ = kx(y)

called the reproducing kernel of H;

(e) for any n ∈ N, x1, · · · , xn ∈ Ω, ζ1, · · · , ζn ∈ C, we have

n∑
i,j=1

ζiζjK(xi, xj) ⩾ 0.

Such a function is called a positive definite kernel. This is actu-
ally positive semidefinite though.

6. Let K : Ω × Ω → C be a positive definite kernel. For x ∈ Ω, let
kx : Ω → C be the function kx(y) = K(x,y). Let c0(Ω) be the func-
tions onΩ of the form

∑m
i=1 ζikxi

for finitely many points x1, · · · , xm.
Consider the sesquilinear form ⟨·, ·⟩ : c0(Ω)× c0(Ω) → C

⟨
n∑

i=1

ηikxi
,

n∑
i=1

ζjkxj
⟩ :=

n∑
i,j=1

ηiζjK(xi, xj).

(a) Show that this is a well defined preinner product.

(b) Prove that for all f ∈ c0(Ω), ⟨kx, f⟩ = f(x), ∀x ∈ Ω.

(c) Let H be the Hilbert space associated with the preinner product
space c0(Ω). Show that H is a reproducing kernel Hilbert space.

7. Let T ∈ B(H). Show that the following are equivalent.

(a) T = PT for some finite rank orthogonal projection P.

(b) T = TQ for some finite rank orthogonal projection Q.

(c) T = P′TQ′ for some finite rank orthogonal projections P′,Q′.
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7.3. Banach Algebras 105

(d) T is a finite rank operator.

8. (*) Let T be a finite rank operator. Then show that both kernel and
cokernel of (I − T) have same dimension. Now show the same for
compact operators.

7.3 Banach Algebras

Definition 7.3.1. A Banach algebra A is a Banach space along with an as-
sociative and distributive multiplication denoted (a,b) 7→ a.b such that
∥a.b∥ ⩽ C∥a∥∥b∥ for all a,b ∈ A for some positive C.

Remark 7.3.2. Let A be a Banach algebra. Then there exists an equivalent
norm ∥.∥′ on A such that for all a,b ∈ A, ∥a.b∥′ ⩽ ∥a∥′∥b∥′.

Proof. Suppose ∥a.b∥ ⩽ C∥a∥∥b∥∀a,b ∈ A

Case 1: C < 1, take ∥a∥′ = ∥a∥
Case 2: C > 1, define ∥a∥′ = C∥a∥
In view of the above remark given any Banach algebra we will assume
that the norm satisfies ∥a.b∥ ⩽ ∥a∥∥b∥ for all a,b ∈ A.

Proposition 7.3.3. (1) Let A be a Banach algebra. Then Ã = A ⊕ C is a
Banach algebra provided,

(x,α).(y,β) = (xy+ αy+ βx,αβ)
∥(x,α)∥ = ∥x∥+ |α|

(2) x 7→ (x, 0) gives an isometric embedding of A in Ã as an ideal.
(3) e = (0, 1) satisfies (x,α).e = e.(x,α) = (x,α) and ∥e∥ = 1.

Definition 7.3.4. A Banach algebra A with an element e such that e.x =

x.e = x∀x ∈ A, ∥e∥ = 1 is called a unital Banach algebra.

Remark 7.3.5. The previous proposition says every Banach algebra can be
isometrically embedded into a unital Banach algebra. Henceforth unless
otherwise stated a Banach algebra means a unital Banach algebra.
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106 7.3. Banach Algebras

Example 7.3.6. Let K be a compact Hausdorff space. C(K) be the space of
all continuous complex valued functions on K. For f,g ∈ C(K), Define

(f+ g)(p) = f(p) + g(p)

(f.g)(p) = f(p).g(p)
∥f∥ = supp∈K|f(p)|

C(K) is a commutative Banach algebra.

Example 7.3.7. Let E be a Banach space. Then L(E), the space of all bounded
linear maps from E to itself is a Banach algebra under operator norm.

Example 7.3.8. Let K be a compact subset of C or Cn with nonempty in-
terior. Then A = {f ∈ C(K) : f|interior of K

is holomorphic} is a Banach
algebra.

Proposition 7.3.9. Let G be a locally compact group. Let µ be a Haar mea-
sure on G. Recall that µ satisfies∫

f(gh)dµ(h) =

∫
f(h)dµ(h).

Then A = L1(G,µ) is a Banach algebra with multiplication defined by

(f1 ⋆ f2) =

∫
f1(g)f2(g

−1h)dµ(g).

Proof. (1) f1 ⋆ f2 ∈ L1:∫
|f1 ⋆ f2(h)dµ(h) ⩽

∫ ∫
|f1(g)||f2(g

−1h|dµ(g)dµ(h)

=

∫
|f1(g)|dµ(g)

∫
|f2(h)|dµ(h)

= ∥f1∥1∥f2∥1

Therefore we have proved

f1 ⋆ f2 ∈ L1(G)and
∥f1 ⋆ f2∥1 ⩽ ∥f1∥1∥f2∥1
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(2) (f1 ⋆ f2) ⋆ f3 = f1 ⋆ (f2 ⋆ f3) :

(f1 ⋆ f2) ⋆ f3(u) =

∫
(f1 ⋆ f2)(v)f3(v

−1udv

=

∫ ∫
f1(w)f2(w

−1v)f3(v
−1u)dwdv

=

∫ ∫
f1(w)f2(v)f3(v

−1w−1u)dwdv

= f1 ⋆ (f2 ⋆ f3)(u)

Example 7.3.10. Let C1[0, 1] be the space of once continuously differen-
tiable functions. Define ∥f∥ = supx∈[0,1]|f(x)|+supx∈[0,1]|f

′(x)|. Then under
pointwise multiplication C1[0, 1] is a Banach algebra.

Theorem 7.3.11. Assume that A is a Banach space as well as a complex
algebra with a unit element e ̸= 0, in which multiplication is both left
and right continuous. Then there is a norm on A which induces the same
topology as the given one and makes A a Banach algebra.

Proof. Define π : A → L(A) by, π(x)(z) = xz. Clearly π(x) is linear.
It is continuous because multiplication is given to be right continuous.
∥x∥ = ∥xe∥ = ∥π(x)(e)∥ ⩽ ∥π(x)∥∥e∥, So π is one to one. We also have
∥π(x)π(y)∥ ⩽ ∥π(x)∥∥π(y)∥, ∥π(e)∥ = 1. So π(A) is a Banach algebra pro-
vided it is complete. For that it is enough to show that π(A) is closed. For
that suppose π(xn) → T in L(A). Then xn = π(xn)(e) → T(e) = x.

T(y) = limπ(xn)(y) = limxny = xy = π(x)(y)

by continuity of left multiplication. So T = π(x).

Definition 7.3.12. A linear map ϕ : A → B is called a homomorphism if

ϕ(xy) = ϕ(x)ϕ(y), ∀x,y ∈ A

∥ϕ(x)∥ ⩽ ∥x∥ ∀x ∈ A.

A nonzero homomorphism into the complex numbers is called a complex
homomorphism
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108 7.4. Spectrum

Proposition 7.3.13. If ϕ is a complex homomorphism on a Banach algebra
A then ϕ(e) = 1 and ϕ(x) ̸= 0 for all invertible x ∈ A.

Proof. For some y ∈ A,ϕ(y) ̸= 0, ϕ(y) = ϕ(y)ϕ(e) gives ϕ(e) = 1.
ϕ(x)ϕ(x−1) = ϕ(e) = 1 gives ϕ(x) ̸= 0.

7.4 Spectrum

Proposition 7.4.1. Let x ∈ A with ∥x∥ < 1 then (I− x) is invertible.

Proof. The series
∑∞

n=0 x
n converges and is the inverse of (I− x).

Corollary 7.4.2. Let G(A) be the set of invertible elements of a Banach
algebra A. Then G(A) is an open subset of A.

Proof. Let x ∈ G(A). For y ∈ A with ∥y∥ < 1
∥x∥−1 , (x − y) = x−1(I − x−1y)

is invertible by the previous proposition because ∥x−1y∥ ⩽ ∥x−1∥∥y∥ <
1.

Definition 7.4.3. Let A be a unital Banach algebra and x ∈ A. Then the
spectrum of x is defined as {λ ∈ C : (λ − x) is not invertible}. It is denoted
by σA(x). We often drop the subscript A. For a nonunital Banach algebra A

the spectrum of an element x is defined as σ
Ã
(x) where Ã is the unitization

defined before.

Definition 7.4.4. The spectral radius ρ(x) of x ∈ A is defined as

ρ(x) = sup{|λ| : λ ∈ σ(x)}.

Definition 7.4.5 (The resolvent set). The complement of spectrum of x ∈ A

is called the resolvent of x and is also denoted by ρ(x). We have also used
same notation for spectral radius. Both notations are standard. You have
to make out from the context.

Definition 7.4.6 (The resolvent function). Let x ∈ A. Then for λ ∈ ρ(x), the
function λ 7→ Rλ(x) = (λ1A − x)−1 is called the resolvent function.

Proposition 7.4.7. Let x be an element of a Banach algebra A. Then σ(x) is
a nonempty closed and bounded subset of C.
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Proof. σ(x) is closed:
Enough to show that it’s complement is open. Suppose λ is such that (λ−x)
is invertible. Then by the proof of the previous corollary the ball of radius

1
∥λ−x∥−1 around λ is contained in σ(x)c. Hence σ(x)c is open.
σ(x) is bounded:
If λ is such that |λ| > ∥x∥ then (λ − x) = λ(I − x

λ
) is invertible. Hence σ(x)

is contained in the ball of radius ∥x∥.
σ(x) is nonempty:
If possible let σ(x) be empty. Then f(λ) = (λ − x)−1 is a holomorphic
function defined on the entire plane. For λ > ∥x∥, we have

f(λ) = λ−1
(
I−

x

λ

)−1

= λ−1

∞∑
n=0

xnλ−n, since∥x
λ
∥ < 1

So, ∥f(λ)∥ ⩽ |λ|−1 |λ|

|λ|− ∥x∥

⩽
1

|λ|− ∥x∥

Hence f is a bounded entire function. Therefore it must be constant. From
the previous estimates we see that limλ→∞f(λ) = 0. Hence f is the constant
function 0. But 0 is not invertible so we get a contradiction.

Theorem 7.4.8 (Gelfand-Mazur). Let A be a Banach algebra such that every
nonzero element is invertible then A ∼= C.

Proof. Suppose λ1 ̸= λ2 ∈ σ(x), then (x − λ1) = 0 = (x − λ2). Hence,
σ(x) consists of a single point say λ(x), and x = λ(x)I. x 7→ λ(x) gives an
isomorphism between A and C.

Lemma 7.4.9. Let R be a commutative ring over C. Then ab is invertible
iff a and b are invertible.

Proof. Suppose c = (ab)−1 = (ba)−1. Then a−1 = bc because, (i) abc = 1

(ii) bca = abc = 1, the first equality uses commutativity.
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Proposition 7.4.10. Let p be a polynomial. Then for any x ∈ A, σ(p(x)) =
p(σ(x)).

Proof. Let λ ∈ C.

p(z) − λ = c
∏

(z− λi), for some c ̸= 0, λ1, · · · , λn ∈ C

p(x) − λ = c
∏

(x− λi)

σ(p(x)) ⊆ p(σ(x)):

λ ∈ σ(p(x)) =⇒ λi ∈ σ(x) for some i
=⇒ λ ∈ p(σ(x)) since λ = p(λi)

p(σ(x)) ⊆ σ(p(x)):

λ ∈ p(σ(x)) =⇒ λ = p(µ) for some µ ∈ σ(x)
=⇒ p(x) − λ = (x− µ)q(x) for some polynomial q
=⇒ λ ∈ σ(p(x)) by the lemma above

Proposition 7.4.11. Let x be an element of the Banach algebra A. Then the
spectral radius satisfies ρ(x) = Lim∥xn∥ 1

n = inf∥xn∥1/n

Proof. By the previous lemma ρ(xn) = ρ(x)n,∀n ⩾ 1, also ρ(x) ⩽ ∥x∥.
So, ρ(x)n = ρ(xn) ⩽ ∥x∥n implying ρ(x) ⩽ inf∥xn∥1/n ⩽ Lim∥xn∥ 1

n .
To complete the proof it suffices to show Lim∥xn∥ 1

n ⩽ ρ(x). Let ϕ be a
continuous linear functional on A. Then the resolvent

f(λ) = (λ− x)−1 = λ−1(1− λ−1x)−1

is holomorphic outside the disk of radius ρ(x). So, g(λ) = λ(1 − λx)−1 is
analytic inside the disk of radius 1

ρ(x)
. For |λ| < ∥x∥ we have the power
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series expansion g(λ) =
∑
λn+1xn. The function λ 7→ (ϕ ◦ g)(λ) is holo-

morphic in the disk of radius 1
ρ(x)

. Hence it’s Taylor series
∑
ϕ(xn)λn+1

converges in this disk. Thus

|ϕ(λnxn)| → 0 if |λ|ρ(x) < 1.

For each fixed ϕ and λwe have some constant C(λ,ϕ) such that

Supn|ϕ(λ
nxn)| < C(λ,ϕ).

For each |λ| < 1
ρ(x)

consider the family of linear functionals on A∗ given by
Tn : ϕ 7→ ϕ(λnxn). We know

Supn|Tn(ϕ)| < C(λ,ϕ).

By the uniform boundedness principle we get

sup
n

∥Tn∥ < C(λ) for some constant C(λ).

Clearly ∥Tn∥ = ∥λnxn∥, so

∥xn∥ < C(λ)|λ|−n for |λ| <
1

ρ(x)

=⇒ ∥xn∥1/n < C(λ)1/n|λ|−1 for |λ| <
1

ρ(x)

=⇒ Lim∥xn∥1/n < |λ|−1 for |λ| <
1

ρ(x)

=⇒ Lim∥xn∥1/n ⩽ ρ(x)

7.5 Abelian Banach Algebras

In this section unless otherwise stated we are dealing with a not necessar-
illy unital commutative Banach algebra A.
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Definition 7.5.1. An ideal m of A is called regular the quotient ring A/m is
unital. In other words if there exists e ∈ A such that ∀x ∈ A, ex− x ∈ m.

Proposition 7.5.2. Let m be a proper regular ideal of A. If e is an identity
modulo m, then we have

inf{∥e− x∥ : x ∈ m ⩾ 1.

Proof. Suppose ∥e − x∥ < 1 for some x ∈ m. Then the power series y =∑∞
n=1 (e− x)

n converges. Since (e− x)y =
∑

n⩾2 (e− x)
n, we have

y = (e− x) + (e− x)y

= ey− xy+ e− x.

Hence e = y − ey + xy + x ∈ m. For any a ∈ A,a = ea + (a − ea) ∈ m.
Thus m = A, a contradiction!

Corollary 7.5.3. The closure of any regular proper ideal of an abelian Ba-
nach algebra A is proper and regular. In particular any maximal regular
ideal is closed.

Proposition 7.5.4. Any proper regular ideal is contained in a maximal reg-
ular ideal.

Proof. Let e be an identity modulo m. Then any ideal containing m is reg-
ular. Now apply Zorn’s lemma to ideals containing m and not containing
e.

Proposition 7.5.5. Let m be a closed ideal of a possibly noncommutative
Banach algebra A. The quotient algebra A/m is a Banach algebra.

Proof. Let π : A → A/m be the quotient map. From the definition of the
quotient norm it follows that ∥π(x)∥ = inf{∥x+m∥ : m ∈ m}. Given ϵ > 0
getm,n from m such that ∥x+m∥ ⩽ ∥π(x)∥+ ϵ, ∥y+ n∥ ⩽ ∥π(y)∥+ ϵ.

∥π(x)π(y)∥ = ∥π(xy)∥ = ∥π((x+m)(y+ n))∥
⩽ ∥(x+m)(y+ n)∥
⩽ (∥π(x)∥+ ϵ)(∥π(y)∥+ ϵ)

Since ϵ is arbitrary ∥π(x)π(y)∥ ⩽ ∥π(x)∥∥π(y)∥.

[Lecture Notes of P.S.Chakraborty]



NOT FOR
REDIST

RIB
UTIO

N
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Proposition 7.5.6. Let A be a unital Banach algebra. If an element x ∈ A is
not invertible then x is contained in some maximal ideal.

Proof. Ax is a proper regular ideal. Hence there exists a maximal ideal
containing this.

Proposition 7.5.7. Let ϕ : A → C be a nonzero complex homomorphism.
Then ϕ−1(0) is a regular maximal ideal. ϕ 7→ ϕ−1(0) gives a bijection
between nonzero complex homomorphisms and regular maximal ideals
of A.

Proof. Since A/Ker(ϕ) is isomorphic with a field ker(ϕ) is a regular max-
imal ideal. To show that the correspondence is bijective observe that for
a regular maximal ideal m, A/m is a Banach algebra with every nonzero
element being invertible. This is so because otherwise by the above propo-
sition we will get a contradiction to the maximality of m. Now by the
Gelfand-Mazur theorem A/m ∼= C. Hence m = ker(ϕ) where, ϕ : A →
A/m is the quotient map.

Proposition 7.5.8. Letω be a nonzero complex homomorphism of A. Then
∥ω∥ ⩽ 1.

Proof. We have,

|ω(x)| = |ω(xn)|1/n ⩽ ∥ω∥1/n∥xn∥1/n

Now taking limit as n goes to infinity we get |ω(x)| ⩽ ρ(x) ⩽ ∥x∥. There-
fore ∥ω∥ ⩽ 1.

Proposition 7.5.9. (i) LetΩ(A) be the set of all nonzero complex homomor-
phisms. Then under weak* topologyΩ(A) is a locally compact Hausdorff
space.
(ii) If A is unital, thenΩ(A) is compact.
(iii) For x ∈ A, x̂ : Ω(A) → C defined by x̂(ω) = ω(x) gives a homomor-
phism F : A → C0(Ω(A)), called Gelfand transform.
(iv) For A unital we have σ(x) = {x̂(ω) : ω ∈ Ω(A)}. For A nonunital
σ(x) = {x̂(ω) : ω ∈ Ω(A)} ∪ {0}.
(v) ∥x̂∥ = ρ(x).
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Proof. (i) LetΩ′ = Ω∪{0} andωi be a convergent net inΩ′. Supposeωi →
ω in weak* topology. Then ω(xy) = limωi(xy) = limωi(x)ωi(y) =

ω(x)ω(y). Thereforeω is a homomorphism. It may be the zero homomor-
phism. Being a weak* closed subset of the unit ball of A∗ Ω′ is compact.
Clearly {0} is closed. Hence Ω(A) is locally compact. Suppose ω1 ̸= ω2 ∈
Ω(A). Then there exists x ∈ A such that |ω1(x) − ω2(x)| > ϵ for some
ϵ > 0. Note that {ω : |ω1(x) −ω(x)| < ϵ/3} and {ω : |ω2(x) −ω(x)| < ϵ/3}

are disjoint neighborhoods ofω1 andω2. HenceΩ′ is Hausdorff.
(ii) If A is unital then {0} is an isolated point in Ω′ because for any other
ω ∈ Ω′ω(1) = 1. HenceΩ is compact.
(iii) x̂ ∈ C0(Ω(A)) because for any ϵ ⩾ 0, {ω : |x̂(ω)| ⩾ ϵ} is compact.
Clearly F is a homomorphism.
(iv) Case 1 A Unital : If λ ∈ σ(x) then (x− λ) is not invertible. Hence there
exists ω ∈ Ω(A) such that ω(x − λ) = 0 or equivalently λ = x̂(ω). So,
λ ∈ Range of x̂. Conversely suppose λ = x̂(ω) = ω(x), then ω(x− λ) = 0.
Hence λ ∈ σ(x).
(v) Follows from (iv). Note that this implies that the Gelfand transform is
contractive.

Definition 7.5.10. Let A be a commutative Banach algebra then Ω(A) is
called the space of characters of A or the spectrum of A.

7.6 Characters of L1(G)

Let G be a locally compact abelian group and µ, a left invariant Haar mea-
sure. Then we have seen the abelian Banach algebra L1(G,µ). We wish to
identify its space of characters.

Theorem 7.6.1. Let ω be a character of L1(G), that is to say that it is a nonzero
homomorphism from L1(G) to the complex numbers. Then there is a continuous
homomorphism ϕ : G→ T such thatω(f) =

∫
G
f(g)ϕ(g)dg.

Proof. In particularω is a bounded linear functional on L1(G), hence there
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exists ϕ ∈ L∞(G) such thatω(f) =
∫
G
f(g)ϕ(g)dg.

ω(f1 ⋆ f2) =

∫
G

(f1 ⋆ f2)(h)ϕ(h)dh

=

∫
G

∫
G

f1(g)f2(g
−1h)ϕ(h)dgdh

=

∫
G

f1(g)(

∫
G

Lg(f2)(h)ϕ(h)dh)dg

=

∫
G

f1(g)ω(Lg(f2))dg

On the other hand

ω(f1 ⋆ f2) = ω(f1)ω(f2)

= ω(f2)

∫
G

f1(g)ϕ(g)dg.

Therefore ,

∫
G

ω(f2)f1(g)ϕ(g)dg =

∫
G

f1(g)ω(Lg(f2))dg,∀f1, f2 ∈ L1(G).(7.10)

Since ω is a nonzero homomorphism there exists f2 such that ω(f2) ̸= 0.
It follows from (7.10) that

ϕ(g) =
ω(Lg(f2))

ω(f2)
,a.e (7.11)

Note that ϕ is determined upto a set of measure zero. However Part (3) of
proposition (??) along with (7.11)shows that ϕ is almost everywhere equal
to a continuous function namely ω(Lg(f2))

ω(f2)
and we will take this representa-

tive. In particular ϕ(e) = 1. To see that ϕ is multiplicative note that given
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arbitrary f1, f2 ∈ L1(G),

0 = ω(f1 ⋆ f2) −ω(f1)ω(f2)

=

∫
G

∫
G

f1(g)f2(g
−1h)ϕ(h)dgdh− (

∫
G

f1(g)ϕ(g)dg)(

∫
G

f2(h)ϕ(h)dh)

=

∫
G

∫
G

f1(g)f2(g
−1h)ϕ(gg−1h)dhdg−

∫
G

∫
G

f1(g)f2(h)ϕ(g)ϕ(h)dgdh

=

∫
G

∫
G

f1(g)f2(h
′)ϕ(gh′)dh′dg−

∫
G

∫
G

f1(g)f2(h)ϕ(g)ϕ(h)dgdh,

[ substituiting g−1h = h′, ]

=

∫
G

∫
G

f1(g)f2(h)(ϕ(gh) − ϕ(g)ϕ(h))dgdh.

Since ϕ is continuous this shows that ϕ is a homomorphism, that is

ϕ(gh) = ϕ(g)ϕ(h),∀g,h ∈ G.

It remains to show that |ϕ(g)| = 1, ∀g ∈ G. Suppose there exists α > 1 such
that the open set Aα = {g ∈ G : |ϕ(g)| > α} is non-empty. Fix a compact
subset K of Aα of positive measure. Define

f(g) =

{
ϕ(g)
|ϕ(g)|

if g ∈ K,

0, otherwise
.

Then ∥f∥1 = |K|, where |K| denotes Haar measure of K. Let f̃ = f
∥f∥1

. By
proposition (7.5.8) we have

1 ⩾ ∥ω∥.∥f̃∥ ⩾ |ω(f̃)| =

∫
K

ϕ(g)

|ϕ(g)|

ϕ(g)

|K|
dg

=

∫
K

|ϕ(g)|

|K|
dg > α > 1!

This contradiction shows that Aα must be empty. That is |ϕ(g)| ⩽ 1 for all
g ∈ G. Similarly considering ϕ(g)−1 we conclude that |ϕ(g)| ⩾ 1 for all
g ∈ G. Thus we get range of ϕ is contained in {z ∈ C : |z| = 1}.
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7.7 C∗-algebras

Definition 7.7.1. A Banach algebra A is called involutive if there exists a
map ∗ : A→ A such that a 7→ a∗ satisfies

(a+ λb)∗ = a∗ + λ̄b∗,
(ab)∗ = b∗a∗,
(a∗)∗ = a,
∥x∗∥ = ∥x∥.

An involutive Banach algebra A is called a C∗-algebra if ∥x∗x∥ = ∥x∥2 for
all x ∈ A.

x ∈ A is called hermitian or selfadjoint if x = x∗, normal if xx∗ = x∗x,
unitary if x∗x = xx∗ = I, projection if x = x∗ = x2.

Proposition 7.7.2. Let A be a C∗-algebra. If x ∈ A is normal then ∥x∥ =

ρ(x).

Proof. ∥x2∥2 = ∥(x2)∗x2∥ = ∥(x∗x)2∥ = ∥x∗x∥2 = ∥x∥4. Therefore we have,
∥x2∥ = ∥x∥2, implying ∥x2n∥ = ∥x∥2

n

. So ρ(x) = ∥x∥.

Proposition 7.7.3. Let A be a unital C∗-algebra.

1. σ(u) ⊆ {λ : |λ∥ = 1} for all unitary u.

2. σ(h) ⊆ R for all hermitian h.

Proof. (1) ∥u∥2 = ∥u∗u∥ = ∥I∥ = 1 =⇒ ∥u∥ = 1. Therefore σ(u) is con-
tained in the unit disc. Also u is invertible with u−1 = u∗. Therefore 0
does not belong to σ(u). Therefore by the spectral mapping theorem we
have σ(u−1) ⊆ {z ∈ C : |z| ⩾ 1}. On the otherhand ∥u−1∥ = ∥u∗∥ = 1, hence
σ(u−1) ⊆ {z ∈ C : |z| ⩽ 1}. Therefore σ(u−1) ⊆ {z ∈ C : |z| = 1}. Now by the
spectral mapping theorem we are done.

(2)u = eih is a unitary. Hence by the spectral mapping theorem we
have eiσ(h) ⊆ {z ∈ C : |z| = 1}. The only way this can happen is σ(h) ⊆
R.
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Theorem 7.7.4. Let A be an abelian C∗-algebra. If Ω is the spectrum of A,
then the Gelfand transformation is an isometric isomorphism of A onto C0(Ω),
preserving the ∗-operation.

Proof. We know ∥x̂∥ = ρ(x). On the other hand since A is abelian every
element is normal. So, ∥x∥ = ρ(x). Therefore the Gelfand transform x 7→ x̂

is isometric. Takeω ∈ Ω, for h ∈ Ah,ω(h) ∈ σ(h) ⊆ R. x can be expressed
as x = h+ ik, with h,k ∈ Ah. ω(x∗) = ω(h− ik) = ω(h) − iω(k) = ω(x).
Hence x 7→ x̂ preserves *-operation.
Let F : A → C0(Ω), F(x) = x̂, then F(A) separates points because if ω1 ̸=
ω2 ∈ Ω, then there exists x ∈ A such that ω1(x) ̸= ω2(x). Hence x̂(ω1) ̸=
x̂(ω2). By the Stone-Weirstrass theoremFA = C0(Ω).

Proposition 7.7.5. Let Ω be a locally compact Hausdorff space and A =

C0(Ω). The map ω ∈ Ω 7→ ω̂ ∈ Ω(A) given by ω̂(x) = x(ω) is a homeo-
morphism ofΩ ontoΩ(A).

Proof. Let us assumeΩ to be compact. ThenΩ(A) is compact andω 7→ ω̂

is continuous because if ωα → ω then x(ωα) → x(ω)∀x ∈ A, or equiva-
lently ω̂(x) → ω(x).
ω 7→ ω̂ is one to one: Supposeω1 ̸= ω2, then by Tietze extension theorem
∃f such that f(ω1) = 0 and f(ω2) = 1. ω̂1(f) ̸= ω̂2(f).
ω 7→ ω̂ is onto: Let m be a maximal ideal of A. Then ∃ω such that
m = {x : x(ω) = 0}. Let ϕ be the homomorphism corresponding to m,i.e.,
ϕ : A → A/m,ϕ(x) = x(ω). Then ω̂ = ϕ. So ω 7→ ω̂ is a bijective map
between compact Hausdorff spaces. Hence it is a homeomorphism.

If Ω is locally compact and not compact then argue through one point
compactification.

Proposition 7.7.6. Let B ⊆ A be a C∗-subalgebra of a unital C∗-algebra
containing the identity. Then ∀x ∈ BσB(x) = σA(x).

Proof. Case 1: Let x be self adjoint.
Clearly σA(x) ⊆ σB(x). Suppose λ ∈ R\σA(x) we want to show λ /∈ σB(x).
For ϵ > 0, λϵ = λ + iϵ /∈ σB(x), hence (x − λϵ)

−1 ∈ B. Using continuity of
inverse in G(A), we get (x− λϵ)−1 → (x− λ)−1 in G(A). Since B is closed,
(x− λ)−1 ∈ B, hence λ /∈ σB(x).
Case 2: If x ∈ B is invertible in A then x∗x is invertible in A and so in B (By
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the previous case). Hence x is left invertible in B. Similarly using xx∗ x is
right invertible in B. Hence x is invertible in B. So, λ /∈ σA(x) iff (x− λ) is
invertible in A iff (x− λ) is invertible in B iff λ /∈ σB(x).

Proposition 7.7.7. Let A be a unital C∗-algebra. If x ∈ A is normal then
there exists a unique isomorphism ϕ : C(σ(x)) → C∗(x), the C∗-algebra
generated by x and 1 such that ϕ(i) = 1,ϕ(ι) = xwhere ι : σ(x) → C is the
function ι(λ) = λ.

Proof. Let B = C∗(x) and P = polynomials in x and x∗. P is dense in
B. Let Ω = space of all complex homomorphisms from B to C. Define
ψ : Ω→ σ(x) by ψ(η) = η(x).
ψ(η) ∈ σ(x): η(x− η(x)) = 0, hence x− η(x) is not invertible.
ψ is continuous: Suppose ηα → η in weak∗, then ηα(x) → η(x) in C.
ψ is one to one: Suppose η1 and η2 are two homomorphisms such that
η1(x) = η2(x), then η1|P = η2|P. Since P is dense in B, η1 = η2.
ψ is onto: Suppose λ ∈ σ(x), then ∃η such that λ = η(x). ψ(η) = λ.
ψ is a bijective continuous map between compact Hausdorff spaces and
hence a homeomorphism. ψ induces an isomorphism between C(Ω) and
C(σ(x)). This isomorphism composed with the inverse of the Gelfand
transform gives the required isomorphism. In other words ϕ(f) = F−1(f ◦
ψ) is the isomorphism.

Definition 7.7.8 (Continuous Function Calculus). Let x ∈ A be a normal
element. Let f be a complex valued continuous function on σ(x). Then
ϕ(f) with ϕ as in the previous proposition is denoted by f(x).

Proposition 7.7.9. Let A be a unital C∗-algebra. Then every element of A
is a linear combination of 4 unitary elements.

Proof. Let x ∈ A be selfadjoint and ∥x∥ ⩽ 1. u = x + i(1− x2)
1/2 is a

unitary and x = 1
2
(u+ u∗).

Proposition 7.7.10. Let K ⊆ C be compact. AK = {x ∈ A|x is normal
and σ(x) ⊆ K}. If f : K → C is continuous then x ∈ AL 7→ f(x) ∈ A is
continuous.

Proof. By Stone-Weirstrass there ixists a polynomial p(z, z) such that

Supz∈K|p(z, z) − f(z)| < ϵ
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There exists a constant M such that ∥x∥ < M for x ∈ AK. Also, since p is a
polynomial ∃δ > 0 such that

∥p(x, x∗) − p(y,y∗)∥ < ϵ if ∥x− y∥ < δ, ∥x∥, ∥y∥ < M.

Now if x,y ∈ AK and ∥x− y∥ < δ, then ∥f(x) − f(y)∥ ⩽ ∥f(x) − p(x, x∗)∥+
∥p(x, x∗) − p(y,y∗)∥+ ∥f(y) − p(y,y∗∥ < 3ϵ.

Theorem 7.7.11. For a selfadjoint element x in a C∗ algebra A, the following are
equivalent.
(i) σ(x) ∈ [0,∞).
(ii) x = y∗y for some y ∈ A.
(iii) x = h2 for some h ∈ A.
The set of all selfadjoint elements satisfying any of the above is a closed convex
cone P in A with P ∩ (−P) = {0}
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7.8 Assignment-III due on 28/04/25

1. Let H be a separable Hilbert space. Show that there exists subspaces
{H}s∈[0,1] such that for each 0 ⩽ s < t ⩽ 1,Hs ⊊ Ht.

2. (*) Let E, F be normed linear spaces and T : E × F → K be a bilin-
ear map. Show that T is continuous where E × F is endowed with
the product topology iff ∃C > 0 such that |T(x,y)| ⩽ C∥x∥∥y∥, ∀x ∈
E,y ∈ F.

3. Let H,H′ be Hilbert spaces. Consider the sesquilinear form on the
algebraic tensor product H ⊗alg H′ given by

⟨u⊗ u′, v⊗ v′⟩H⊗H′ := ⟨u, v⟩H · ⟨u′, v′⟩H′ .

Show that this is a preinner product. Is H ⊗alg H′ complete with
respect to the associated norm? The associated Hilbert space is de-
noted by H ⊗H′.

4. (*) Let (Ω,S,P), (Ω′,S′,P′), then show that L2(Ω)⊗L2(Ω′) is unitar-
ily equivalent with L2((Ω×Ω,S⊗S′,P ⊗ P′)).

5. (*) Let ∥·∥1, ∥·∥2 be norms on E such that E is complete with respect to
both the norms and there exists c > 0 such that ∥x∥1 ⩽ c∥x∥2,∀x ∈ E.
Then show that both the norms are equivalent.

6. (*) Show that ℓ1 is not complete in the norm ∥ · ∥∞.

7. Let E, F be Banach spaces and T ∈ L(E; F) be such that ∀x ∈ E,∃nx

such that Tnx(x) = 0. Then show that there exists n such that Tn(x) =
0.

8. (*) For r > 0, let Hr be the Hilbert space given by

Hr = {{xn}n∈Z : ∀n ∈ Z, xn ∈ C, ∥{xn}∥r :=
√∑

n

(1+ n2)r/2|xn|2 <∞}.

Let r > s > 0 and T : Hr ↪→ Hs be the inclusion map. Then show
that T is a compact operator. (Hint: Show that the image of the unit
ball is totally bounded. )
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9. (*) Let (Ω,S,P) be a probability space and K ∈ L2((Ω×Ω,S⊗S,P⊗
P)). Then show that TK : L2(Ω) → L2(Ω) given by

(TKf)(x) :=

∫
K(x,y)f(y)dP(y)

is a compact operator.

10. Let T ∈ L(H). Then show that

(a) ker(T) = Ran(T∗)⊥.

(b) ker(T)⊥ = Ran(T∗).

11. (*) Let T ∈ B(H) be normal. Then show that σr(T) = ∅, where σr(T)
is the residual spectrum of T .

12. (*) (Quasi nilpotent) Let {λn} be a sequence of scalars so that |λn| ↓ 0.
Define T : ℓ2(N) → ℓ2(N) the linear map

T({xn}n∈N := {yn}n∈N, where yn = λnxn+1.

Compute ∥Tn∥ and conclude that limn∥Tn∥1/n = 0. Such operators
are called quasi nilpotent operator. Let A ⊆ B(ℓ2(N)) be the unital
Banach algebra generated by T andω : A → C be a unital homomor-
phism. Show thatω(T) = 0.

13. Let E be a vector space over K and ϕj; 1 ⩽ j ⩽ n,ϕ be linear func-
tionals such that ∩ kerϕj ⊆ kerϕ. Show that there exists scalars
λj; 1 ⩽ j ⩽ n such that ϕ =

∑
λjϕj.

14. Let E be a K vector space and A be a subspace of the space of linear
functionals on E. Note that E is just a vector space and we are con-
sidering linear maps. Show that (E,σ(E;A))∗ = A. (Hint: use (1c) of
assignment II along with the previous problem)

15. Let E, F be Banach spaces and T : (F∗;weak∗) → (E;weak∗) be a con-
tinuous linear map. Show that there exists a norm continuous linear
map S : E → F so that T = S∗. (Hint: Obtain S by the previous
exercise and conclude continuity using closed graph theorem.)
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16. (***) Let (Ω,S) be a measurable space and ξ : S → P(H) be a spec-
tral measure with H separable. For u, v ∈ H, let ξu,v : S → C be the
complex measure ξu,v(A) = ⟨u, ξ(A)v⟩. Let S be the collection of all
simple functions. Show that

Φ : S → B(H), s 7→ ∑
ciξ(Ai)

where s =
∑
ciχAi

defines a *-homomorphism satisfying the follow-
ing properties,

(a) ⟨u,Φ(s)v⟩ =
∫
s(x)dξu,v(x).

(b) ∥Φ(s)v∥2 =
∫
|s(x)|2dξv,v(x).

(c) ∥Φ(s)∥ = infA∈S,ξ(A)=0 supx∈Ac |s(x)| =: ∥s∥∞,ξ.

Let L∞(ξ) be the completion of S in the norm ∥ · ∥∞,ξ. Show that Φ
extends to a *-homomorphism Φ : L∞(ξ) → B(H) satisfying (i)-(iii).
We use the notation

∫
fdξ to denoteΦ(f).

17. Let H be a Hilbert space and {Ut}t∈R ⊆ B(H) be a family of unitaries
so that U0 = I,Ut ◦ Us = Ut+s,∀t, s ∈ R. Such a family is referred
as a one parameter unitary group. Suppose t 7→ Ut is a continuous
map. Then show that limt→0

Ut−I
it

exists and is a bounded self-adjoint
operator.

18. Let TB(H) be a normal operator with its spectral measure ξ. Show
that λ ∈ σp(T) iff ξ({λ}) ̸= 0where σp(T) denotes the point spectrum
of T .
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