
ASSIGNMENT 2

Problems

1. If 0 < b < a, show that the number of steps to find (a, b) by the Euclidean
algorithm is at most 2(log2 b+ 1).
2. (a) Suppose a, b, c > 0 and (a, b)|c. Show that the number of positive integral
solutions (i.e., both x and y are positive) to the Diophantine equation ax+ by = c

is
[
c(a,b)
ab

]
+ 1.

(b) Does the linear equation 1961x + 2257y = 37370 have an integer solution? If
it does, describe the set of all integer solutions and determine how many of the
solutions have both the coordinates positive.
3. Show that the following equations have no solution in integers:
(i) x3 − x+ 320 = 0,
(ii) x3 + 7y + 4 = 0,
(iii) x4 + 66 = 10y2 + 55,
(iv) 6x3 − y2 − 312 = 0,
4. Consider the curve C : y2 − x3 − 24x = 0. Determine three rational points on C
by inspection. Obtain a new rational points on C using these points.
5. Consider the curve C : y + x3 − 4x = 0. Determine the equation of the tangent
to this curve at the point (2, 0). Find the x-corrdinate of the point at which this
tangent line intersect the curve C.
6. Suppose C : (x − x0)2 + (y − y0)2 − r2 = 0 is a circle on the plane so that the
centre both x0 and y0 are irrational numbers. Nothing is given about r. Show that
C can have at most two rational points.
7. Is there any prime p such that 6x3 − p2 − y2 = 0 has an integer solution?
8. Describe the set of all integer solutions to 2x2 + xy − y2 = 0
9. Find all integers a, b, c such that a ≡ b(mod c), b ≡ c(mod a), c ≡ a(mod b).
10. Show that for any prime p > 2,
(a)

(
p
k

)
≡ 0(mod p) for 1 ≤ k ≤ p− 1,

(b)
(
p−1
k

)
≡ (−1)k(mod p) for 0 ≤ k ≤ p− 1,

(c)(p− 2)! ≡ 1(mod p),

(d)
(
pr

k

)
≡ 0(mod p) for r ≥ 1 and 1 ≤ k ≤ pr − 1.

11. Show that for positive integers a and n with a ≥ 2, φ(ap − 1) ≡ 0(mod p).
12. Find the smallest positive integer n such that 2n − 1 is divisible by 2025.
13. Show that for any integer n, n5/5 + n3/3 + 7n/15 is an integer.
14. Show that if a, b, c satisfy the equation a2 + b2 = c2 then 60 | abc.
15. Show that if ap ≡ bp (mod p), then ap ≡ bp (mod p2).

16. Show that for a odd, a2
n−2 ≡ 1 (mod 2n) for n ≥ 3.

17. Suppose n is odd. Prove that it is not possible that n | (3n + 1).
18. Suppose p | (a2r + 1) for some a. Show that p ≡ 1 (mod 2r+1).
19. Show that the system of congruences aix ≡ bi (mod mj), i = 1, 2, · · · , k
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has a solution if and only if for every pair (i, j), one has di | bi, where di := (ai,mi)
and (bjai−biaj)/didj ≡ 0 mod

(
(mi/di,mj/dj)

)
. Show that in the above situation

the solution is unique modulo
[m1/d1,m2/d2, · · · ,mk/dk].
20. For i = 1, 2, · · · , k, let there be positive integers mi, nonnegative integers di
and polynomials fi(x) ∈ Z[x] such that the number of distinct solutions modulo
mi to the congruence fi(x) ≡ 0 (mod mi) is di. Assume, moreover, that mi’s
are pairwise coprime. Show that the system of simultaneous congruences fi(x) ≡
0 (mod mi), i = 1, 2, · · · , k admits exactly d1d2 · · · dk distinct solutions modulo
m1m2 · · ·mk.
21. Let S be the sum of the integers from 1 to 999 which are prime to 999. Write
the prime power factorization of S. Explain your method.
22. Let p be an odd prime and let

ek(X1, X2, · · · , Xn) =
∑

1≤i1<i2<···<ik≤n

Xi1Xi2 · · ·Xik ,

for k = 1, 2, · · · , n denote the elementary symmetric polynomials. Show that
ek(1, 2, · · · , p− 1) is divisible by p for k = 1, 2, · · · , p− 2.
23. Let p be an odd prime and let

Sk(X1, X2, · · · , Xn) =
∑

1≤i≤n

Xi
k

for k = 1, 2, · · · . Show that Sk(1, 2, · · · , p− 1) ≡ 0 (mod p) if k is not a multiple of
p− 1 and Sk(1, 2, · · · , p− 1) ≡ −1 (mod p) otherwise.
24. Show that ∏

1≤a≤pα
(a,p)=1

a ≡ −1 (mod pα).

25. Show that for any integer n > 1, the odd prime divisors of n4 + 1 are congruent
to 1 modulo 8.
26. Let, for any integer q > 1,

cq =
∑

1≤a≤q−1
(a,q)=1

e2πi
a
q .

Show that cq1q2 = cq1cq2 for (q1, q2) = 1. Hint: Use the explicit description of the
reduced (i.e., coprime) residue classes modulo q1q2.
27. Show that x4 + y4 = z2 has no non-trivial solution using Fermat’s method of
descent and the explicit description of the Pythagorean triplets.
28. Prove that νf (n) is a multiplicative function, where, for a polynomial f ∈ Z[x],
νf (n) denotes the number of zeros of f modulo n.
29. Show that in Fermat’s two square theorem, the representation of a prime as a
sum of two squares is unique up to ordering.
30. Formulate a theorem describing a necessary and sufficient condition for exis-
tence of solutions (over Z) to a congruence of the form

aX + bY + cZ = e,

where a, b, c, e are integers, and prove it.
Using the above find all integer solutions to 6X + 15Y + 35Z = 1.


