ASSIGNMENT 2

Problems

1. If 0 < b < a, show that the number of steps to find (a,b) by the Euclidean
algorithm is at most 2(log, b+ 1).
2. (a) Suppose a,b,c¢ > 0 and (a,b)|c. Show that the number of positive integral
solutions (i.e., both x and y are positive) to the Diophantine equation ax + by = ¢
c(a, b)i| +1.
(b) Does the linear equation 1961z + 2257y = 37370 have an integer solution? If
it does, describe the set of all integer solutions and determine how many of the
solutions have both the coordinates positive.
3. Show that the following equations have no solution in integers:
(i) 2® —2+320=0,
(i) 23 + Ty + 4 =0,
(iii) z* + 66 = 10y + 55,
(iv) 62 —y? — 312 =0,
4. Consider the curve C : y? — 23 — 24z = 0. Determine three rational points on C
by inspection. Obtain a new rational points on C using these points.
5. Consider the curve C : y + 2% — 4z = 0. Determine the equation of the tangent
to this curve at the point (2,0). Find the z-corrdinate of the point at which this
tangent line intersect the curve C.
6. Suppose C : (x — x9)? + (y — yo)> — 72 = 0 is a circle on the plane so that the
centre both =y and yq are irrational numbers. Nothing is given about r. Show that
C can have at most two rational points.
7. Is there any prime p such that 6x> — p? — y? = 0 has an integer solution?
8. Describe the set of all integer solutions to 222 4+ zy —y? =0
9. Find all integers a, b, ¢ such that a = b(mod ¢), b = ¢(mod a), ¢ = a(mod b).
10. Show that for any prime p > 2,
(a) ()—O(modp)for1<k:<p—1
(b) (P )f( 1)*(mod p) for 0 <k <p—1,
(¢)(p —2)! = 1(mod p),
( ) (') = 0(mod p) for r > 1and 1 < k < p" — 1.

. Show that for positive integers a and n with a > 2, ¢(a? — 1) = 0(mod p).
12. Find the smallest positive integer n such that 2™ — 1 is divisible by 2025.
13. Show that for any integer n, n®/5 +n®/3 4+ Tn/15 is an integer.
14. Show that if a, b, c satisfy the equation a? + b? = ¢? then 60 | abc.
15. Show that if a? = bP (mod p), then a? = b (mod p?).
16. Show that for @ odd, a2"~ =1 (mod 2") for n > 3.
17. Suppose n is odd. Prove that it is not possible that n | (3™ + 1).
18. Suppose p | (a*" + 1) for some a. Show that p =1 (mod 2"*1).
19. Show that the system of congruences a;x = b; (mod m;), i=1,2,---,k

1

is



2 ASSIGNMENT 2

has a solution if and only if for every pair (¢, j), one has d; | b;, where d; := (a;,m;)
and (bja;—b;a;)/d;d; =0 mod((m;/d;, m;/d;)). Show that in the above situation
the solution is unique modulo

[ml/dhmg/dg, tee ,mk/dk}.

20. For i = 1,2,--- .k, let there be positive integers m;, nonnegative integers d;
and polynomials f;(z) € Z[z] such that the number of distinct solutions modulo
m; to the congruence f;(x) = 0 (mod m;) is d;. Assume, moreover, that m;’s
are pairwise coprime. Show that the system of simultaneous congruences f;(z) =
0 (mod m;), i = 1,2,--- ,k admits exactly dids---dj distinct solutions modulo
mimso - - -Mg.

21. Let S be the sum of the integers from 1 to 999 which are prime to 999. Write
the prime power factorization of S. Explain your method.

22. Let p be an odd prime and let

en(X1, Xo, -+, X)) = Z Xiy Xiy - Xy,
1<i1<i2<---<ix<n
for K = 1,2,--- ,n denote the elementary symmetric polynomials. Show that
er(1,2,--- ,p—1) is divisible by p for k=1,2,--- ;p— 2.
23. Let p be an odd prime and let

Sk(X17X27"' 7Xn) = Z X»Lk
1<i<n
for k=1,2,---. Show that Sk(1,2,--- ,p—1) =0 (mod p) if k is not a multiple of
p—1and Sk(1,2,--- ,p—1) = —1 (mod p) otherwise.

24. Show that
H a=-1 (mod p%).

1<a<p®

(a,p)=1
25. Show that for any integer n > 1, the odd prime divisors of n* 41 are congruent
to 1 modulo 8.
26. Let, for any integer ¢ > 1,

_ § 27
Cq— e a,

1<a<qg—1

(a,9)=1
Show that ¢4, 4, = ¢4 ¢q, for (g1,¢2) = 1. Hint: Use the explicit description of the
reduced (i.e., coprime) residue classes modulo ¢;¢s.
27. Show that z* + y* = 22 has no non-trivial solution using Fermat’s method of
descent and the explicit description of the Pythagorean triplets.
28. Prove that v¢(n) is a multiplicative function, where, for a polynomial f € Z[z],
vi(n) denotes the number of zeros of f modulo n.
29. Show that in Fermat’s two square theorem, the representation of a prime as a
sum of two squares is unique up to ordering.
30. Formulate a theorem describing a necessary and sufficient condition for exis-
tence of solutions (over Z) to a congruence of the form

aX +bY +cZ =e,

where a, b, ¢, e are integers, and prove it.
Using the above find all integer solutions to 6X + 15Y + 3572 = 1.



