

Indian Statistical Institute
Second Semester Final Examination: 2022-23

Course Name: M. Math, 1st year

Subject Name : Topology II

Maximum Marks: 50, Duration: 3 hours

Date: 08.05.2023

- Answer as many questions as you can.
- Maximum marks is 50.
- You may use any results proved in class. Any other results (including those in homework problem sets) require proof.
- Credit for the solutions will be given only when proper justifications are provided for them.

1. Let $\mathbb{C}P^n \rightarrow \mathbb{C}P^{n+k}$ be the standard inclusion. Compute the homology groups of $\mathbb{C}P^{n+k}/\mathbb{C}P^n$. 9

2. Let $f_k : S^n \rightarrow S^n$ be a map of degree k , and let $\text{Cyl}(f_k)$ denote the mapping cylinder of f_k .

a) Prove that $H_n \text{Cyl}(f_k) \cong \mathbb{Z}$. 2

b) Construct a map $g_k : \text{Cyl}(f_k) \rightarrow S^n$ which induces multiplication by k on H_n . 3

c) Compute the degree of the composite

$$S^n \rightarrow \text{Cyl}(f_k) \xrightarrow{g_k} S^n,$$

where $S^n \rightarrow \text{Cyl}(f_k)$ is the standard inclusion. 4

3. Let C_2 act on $S^n \times S^n$ by the formula $\sigma(x, y) = (-x, -y)$. Let $P = (S^n \times S^n)/C_2$.

a) Prove that $S^n \times S^n \rightarrow P$ is a covering space. 4

b) Prove that every map from P to S^1 is null-homotopic. 5

4. Let X be a simply connected CW complex of dimension $< n$, and $f : X \rightarrow \mathbb{R}P^n$ be a map. Show that $f_* : \tilde{H}_*(X) \rightarrow \tilde{H}_*(\mathbb{R}P^n)$ is the 0-map. 9

5. For a map $f : X \rightarrow X$, let $T_f = X \times [0, 1]/((x, 0) \sim (f(x), 1))$ denote the mapping torus. For a reflection $\rho : S^2 \rightarrow S^2$, calculate the homology of T_ρ . 9

6. Let $f : S^m \rightarrow S^n$ be a map, with $m > n$. Let $Y = C(f)$, the mapping cone of f .

a) Compute the homology groups of Y . 3

b) For a CW complex X , prove that $H_k(X \times Y) \cong H_k(X) \oplus H_{k-n}(X) \oplus H_{k-m-1}(X)$. 6