CobpING THEORY: ASsSIGNMENT II
16TH AucGust 2025

N

. Due date: 20th November 2025
. Write the solutions in IXTEX.

. All statements proven in the class, given on the exercise sheet, or in the appendix of the assignment
can be used without proof. Other than that, anything you use needs to be proven.

. Although strongly discouraged, if you do use an external source (for example, other than the main
text book and problems in the exercise sheet, lecture notes, or any material available online),
acknowledge all your sources in your writeup. This will not affect your grades; failure to
acknowledge sources will be treated as a serious case of academic dishonesty.

. Allowed to discuss with others but write the solutions independently, and acknowledge your
collaborators. Failure to do so will be treated as a serious case of academic dishonesty.

. Total marks: 70

—

. For any positive integer p, we use Zp to denote the set of integers {0,1,2,...,p —1}. For two
positive integers 1 and p, let [m], denote the unique positive integer in Z, we get as a remainder
after dividing m by p.

Let 1 < k < nbe positive integers and p; < p, < p3 <--- < p,, be n distinct primes. Let K = ]_[ile pi
and N =[], p;. Let CCZ, xZ, x---xZ, be acode defined as follows:
Message space: Zy, that is, every message word is treated as an integer in Z.

Encoding: The encoding function E: Zyg — Z, xZ,, x---xZ, isdefined in the following way:
For any m € Zg,

E(m) = ([m]plf [Wl]pz, [m]p3r ceey [m]pn )

This code can be seen as the number-theoretic counterpart of Reed-Solomon codes. It is known as
the Chinese Remainder code and is based on the Chinese Remainder Theorem (CRT) in number
theory (see Appendix).

For any two distinct messages my # m, € Zg, let

A(E(my ), E(my)) = #{i € [n] | [m ], = [ma, }.
Then show the following:

(i) (S marks) min A(E(m;),E(my))=n—-k+1.

my#m,€Zy
(ii) (3 marks) For any m, # m, € Zg, I1 pi > 2.

i€[n]:[m;]p,#[m,],,

In the next part of the problem, we prove that there exists an efficient error correction algorithm for
E. The setup of the error-correction algorithm is the following:



Input: As input, we are giveny = (Y1,92,93,.-.,¥n) € Zp, X Zp, X --- X Z,, with the promise that
there exists a message m € Zg such that

[T pi<yeer (1)

i€[n]:[m],, #y;
Output: An m € Zg satisfying Equation 1.
Then, show the following:

(a) (4marks) Givenay = (y1,v2,V3,...,Vy) € Zp1 me Xoeo prn, there exists a unique m € Zg
satisfying Equation 1.

(b) (4 marks) Design an poly(logp,,, n)-time error detection algorithm for E. That is, given any
Y =19293 V) €EZy X Zp, X~ X Z, ,in time poly(logp,, n), decide whether y € C.

(¢) (2 marks) There exists a positive integer 1 < r < ,/% such that for every i € [n], [r],, =0

if and only if [m], # ;. Itis analogous to the “error-locator”” polynomial in Reed-Solomon
decoding.

(d) (4 marks) There exists 1 <R <,/ % and 0 < M < /N (K - 1) integers such that
y;-R=M mod p; forall i € [n]. ()

This is analogous to setting the system of linear equations in the Reed-Solomon decoding
algorithm.

(e) (4 marks) For any (R;, M;) and (R,, M) satisfying Equation 2, show that Alf—ll = Alf—;

(f) (4 marks) Given an (R, M) satisfying Equation 2, we can compute the message m in time
poly(n,logp,).

logp,

Note: Using the above problem, you can show that E can correct up to Togp; +logp, (n — k) many

errors. You can try it as an exercise.

As an exercise, you can also describe the RS codes and its decoding algorithm in language of
Chinese Remainder Theorem (for univariate polynomials).

. In this problem, we design a polynomial time decoding algorithm for Reed-Muller code. More
specifically, we show a reduction of the decoding of Reed-Muller codes to the decoding of
Reed-Solomon codes. As you remember, for positive integers r, 11, q with g is a prime power, the
Reed-Muller code RM(m, 7, q) is defined as follows:

Message space: The set of all m-variate polynomials f(xy,xy,...,%,,) € Fy[x1,x5,...,x,,] of
degree at most r and individual degree < g, that is, degxi( f)<gqforallie[m].

Encoding: Forevery polynomial f(xy,x,,...,X,,) in the message space, the encoding of f(x1,x,,...,%x,,)
is the evaluations of f at all the points in IF", that is,

f = (f(a))aequ”’ .

We also assume the low degree set up of the Reed-Muller code, that is, r < g. As discussed in the
class, the Polynomial Zero Lemma (low-degree case), that is Lemma 9.2.2 in Essential Coding
Theory, implies the distance of RM(m, r,q) is (g —r)-q™'. In the following problems, we design a
polynomial time decoding algorithm for RM(m, r, q) that can correct less than (q—;r) -g"™1 many
errors. Let [F;» be an degree m extension of the finite field IF,.
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https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf

(a) Observe that both IF;» and Iqu form vector spaces over IF, of dimension m. Let @ : [Fym — Iqu
be a IF,-linear bijection, that is, @ is a bijection map and for all a, 8 € IF, and u,v € Fym,
D(au+ pv) = a®(u)+ pP(v). Then, show the following:

i. (3 marks) For any IF,-linear bijection P : [F;n — IFq’” can be viewed as tuple of m linear
functions (®y, D, ..., Py,) with @; : Fyn — T, so that @ (u) = (Oy (u),..., Dy, (u)) for all
u € Fom.
q

ii. (7 marks) If ® = (Py,..., D) : F,

can be represented as a polynomial of degree at most g1,
(b) (10 marks) Show that RM(m1,1,q) € RS(q™, k,q™), where RS(q™, k, q™) is the Reed-Solomon
codes of block length g, dimension k < r-g"~! + 1, the alphabet set IF;n and [Fjn is the set
of evaluation points.

n — IE" is an [F-linear bijection, then each @;(y)

Observe that we now can apply the decoding algorithm for the Reed-Solomon codes and can correct
less than % -q™~! many errors of RM(m, 1, q).

. Recall, in the exam, we have seen that the construction of certain kind of good linear codes
over IF, implies the construction of good e-biased sample spaces. Recalling the definition, a set
S CIE)" of vectors is called e-biased sample space if the following property holds: Pick a vector
X = (x1,x,...,%,,) uniformly at random from S. Then, X has bias at most €, that is, for every
nonempty subset I C [m],

<e€,

Pr[in:OJ—Pr(inzl]

iel iel
where the sum is over [F,.

Let C be an [n,k], code such that all non-zero codewords have Hamming weight in the range
[(1%6) n, (%)n] Let Ge IszX” be a generator matrix of C. Then, we have seen that the set of
columns of G form an e-biased sample space of size n. In this problem, using code concatenation,

we see a construction of explicit e-biased sample space.

(a) (6 marks) Show that there exists an e-biased space of size O(E—”Z).

(b) (7 marks) Let t be a positive integer. Let RS(2?, k, 2") be the Reed-Solomon code of block
length 2!, dimension k = €2/, the alphabet set IF,:, and the set of evaluation points is IF,:. Let
Had, be the Hadamard code of dimension t, that is, its generator matrix G; is a f x 2 matrix
over IF, whose columns are the set of all ¢ length binary strings. Let C,,; = RS(2, k, 2!) with
k = €2! and C;,, = Had,. Then, show that the concatenation code Cg o C;y is a [4,tk,d],
code where d € [(1%6)4t,(1—f)4t].

(c) (7 marks) Show that for all sufficiently large m, we can construct an e-biased sample space

over IF)" of size
of —™
&2 1og*(2)

Observe that the size bound of e-biased sample space we get at Problem 3c is much larger the
size bound promised at Problem 3a. After a series of works, the paper Explicit, almost optimal,
epsilon-balanced codes by Amnon Ta-Shma gives a construction of e-biased sample space which is
asymptotically almost equal to the bound promised by Problem 3a.
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Appendix

Trace function in finite field. Let IFq be a finite field and Iqu be an extension of IFq. Forall o € Iqu, let

2 -1
Tr(a) =a+al+a® +---+af

Then, the following hold:

1. Tr is a surjective linear function from [F¢ to IF,.

2. Forany B € Fy, let Lg : [F,e — IF; be the linear function defined as Lg(a) = Tr(ap) for all a € Fy.
Then, for any two distinct 1, f € Fye, L, # Lg,. Furthermore, {Lﬁ | B € Iqu} is the set of all
linear transformations from IF,c to IF,.

Chinese Remainder Theorem (CRT): Let py,p,,...,pe be £ distinct primes. Let L = ]_[f:1 p;. Then,
the mapping @ : Z; —» Z, XZ,, X+ X Z,, defined as

D(m) = ([m]pl,[m]pz,...,[m]pé) forallme Z

is a bijection. Furthermore, for any m € Z, the image ®(m) can be computed in time poly(¢,logp,).
Similarly, given a point v € Z, xZ, X---xZ,,, the preimage ®~1(v) can be computed in time

poly(¢,logpy).
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