
Coding Theory: Assignment II
16th August 2025

1. Due date: 20th November 2025

2. Write the solutions in LATEX.

3. All statements proven in the class, given on the exercise sheet, or in the appendix of the assignment
can be used without proof. Other than that, anything you use needs to be proven.

4. Although strongly discouraged, if you do use an external source (for example, other than the main
text book and problems in the exercise sheet, lecture notes, or any material available online),
acknowledge all your sources in your writeup. This will not affect your grades; failure to
acknowledge sources will be treated as a serious case of academic dishonesty.

5. Allowed to discuss with others but write the solutions independently, and acknowledge your
collaborators. Failure to do so will be treated as a serious case of academic dishonesty.

6. Total marks: 70

1. For any positive integer p, we use Zp to denote the set of integers {0,1,2, . . . ,p − 1}. For two
positive integers m and p, let [m]p denote the unique positive integer in Zp we get as a remainder
after dividing m by p.
Let 1 ≤ k ≤ n be positive integers and p1 < p2 < p3 < · · · < pn be n distinct primes. Let K =

∏k
i=1pi

and N =
∏n

i=1pi . Let C ⊆Zp1 ×Zp2 × · · · ×Zpn be a code defined as follows:

Message space: ZK , that is, every message word is treated as an integer in ZK .
Encoding: The encoding function E :ZK →Zp1 ×Zp2 × · · · ×Zpn is defined in the following way:

For any m ∈ZK ,
E(m) =

(
[m]p1 , [m]p2 , [m]p3 , . . . , [m]pn

)
.

This code can be seen as the number-theoretic counterpart of Reed-Solomon codes. It is known as
the Chinese Remainder code and is based on the Chinese Remainder Theorem (CRT) in number
theory (see Appendix).
For any two distinct messages m1 ,m2 ∈ZK , let

∆ (E(m1),E(m2)) = #
{
i ∈ [n]

∣∣∣ [m1]pi , [m2]pi
}
.

Then show the following:

(i) (5 marks) min
m1,m2∈ZK

∆ (E(m1),E(m2)) = n− k +1.

(ii) (3 marks) For any m1 ,m2 ∈ZK ,
∏

i∈[n]:[m1]pi,[m2]pi

pi ≥ N
K−1 .

In the next part of the problem, we prove that there exists an efficient error correction algorithm for
E. The setup of the error-correction algorithm is the following:
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Input: As input, we are given y = (y1, y2, y3, . . . , yn) ∈Zp1 ×Zp2 × · · · ×Zpn with the promise that
there exists a message m ∈ZK such that∏

i∈[n] : [m]pi,yi

pi <

√
N

K − 1
. (1)

Output: An m ∈ZK satisfying Equation 1.

Then, show the following:

(a) (4 marks) Given a y = (y1, y2, y3, . . . , yn) ∈Zp1×Zp2×· · ·×Zpn , there exists a unique m ∈ZK

satisfying Equation 1.
(b) (4 marks) Design an poly(logpn,n)-time error detection algorithm for E. That is, given any

y = (y1, y2, y3, . . . , yn) ∈Zp1 ×Zp2 × · · · ×Zpn , in time poly(logpn,n), decide whether y ∈ C.

(c) (2 marks) There exists a positive integer 1 ≤ r <
√

N
K−1 such that for every i ∈ [n], [r]pi = 0

if and only if [m]pi , yi . It is analogous to the “error-locator” polynomial in Reed-Solomon
decoding.

(d) (4 marks) There exists 1 ≤ R <
√

N
K−1 and 0 ≤M <

√
N (K − 1) integers such that

yi ·R =M mod pi for all i ∈ [n]. (2)

This is analogous to setting the system of linear equations in the Reed-Solomon decoding
algorithm.

(e) (4 marks) For any (R1,M1) and (R2,M2) satisfying Equation 2, show that M1
R1

= M2
R2

.
(f) (4 marks) Given an (R,M) satisfying Equation 2, we can compute the message m in time

poly(n, logpn).

Note: Using the above problem, you can show that E can correct up to logp1
logp1+logpn

· (n− k) many
errors. You can try it as an exercise.
As an exercise, you can also describe the RS codes and its decoding algorithm in language of
Chinese Remainder Theorem (for univariate polynomials).

2. In this problem, we design a polynomial time decoding algorithm for Reed-Muller code. More
specifically, we show a reduction of the decoding of Reed-Muller codes to the decoding of
Reed-Solomon codes. As you remember, for positive integers r,m,q with q is a prime power, the
Reed-Muller code RM(m,r,q) is defined as follows:

Message space: The set of all m-variate polynomials f (x1,x2, . . . ,xm) ∈ Fq[x1,x2, . . . ,xm] of
degree at most r and individual degree < q, that is, degxi (f ) < q for all i ∈ [m].

Encoding: For every polynomial f (x1,x2, . . . ,xm) in the message space, the encoding of f (x1,x2, . . . ,xm)
is the evaluations of f at all the points in F

m
q , that is,

f 7→ (f (ααα))ααα∈F m
q
.

We also assume the low degree set up of the Reed-Muller code, that is, r < q. As discussed in the
class, the Polynomial Zero Lemma (low-degree case), that is Lemma 9.2.2 in Essential Coding
Theory, implies the distance of RM(m,r,q) is (q− r) ·qm−1. In the following problems, we design a
polynomial time decoding algorithm for RM(m,r,q) that can correct less than (q−r)

2 · q
m−1 many

errors. Let Fqm be an degree m extension of the finite field Fq.
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(a) Observe that both Fqm and F m
q form vector spaces over Fq of dimensionm. LetΦ : Fqm → F

m
q

be a Fq-linear bĳection, that is, Φ is a bĳection map and for all α,β ∈ Fq and u,v ∈ Fqm ,
Φ(αu + βv) = αΦ(u) + βΦ(v). Then, show the following:

i. (3 marks) For any Fq-linear bĳection Φ : Fqm → F
m
q can be viewed as tuple of m linear

functions (Φ1,Φ2, . . . ,Φm) with Φi : Fqm → Fq so that Φ(u) = (Φ1(u), . . . ,Φm(u)) for all
u ∈ Fqm .

ii. (7 marks) If Φ = (Φ1, . . . ,Φm) : Fqm → F
m
q is an Fq-linear bĳection, then each Φi(y)

can be represented as a polynomial of degree at most qm−1.
(b) (10 marks) Show that RM(m,r,q) ⊆ RS(qm, k,qm), where RS(qm, k,qm) is the Reed-Solomon

codes of block length qm, dimension k ≤ r · qm−1 +1, the alphabet set Fqm and Fqm is the set
of evaluation points.

Observe that we now can apply the decoding algorithm for the Reed-Solomon codes and can correct
less than q−r

2 · q
m−1 many errors of RM(m,r,q).

3. Recall, in the exam, we have seen that the construction of certain kind of good linear codes
over F2 implies the construction of good ϵ-biased sample spaces. Recalling the definition, a set
S ⊆ F

m
2 of vectors is called ϵ-biased sample space if the following property holds: Pick a vector

X = (x1,x2, . . . ,xm) uniformly at random from S. Then, X has bias at most ϵ, that is, for every
nonempty subset I ⊆ [m], ∣∣∣∣∣∣∣Pr

∑
i∈I

xi = 0

−Pr
∑
i∈I

xi = 1


∣∣∣∣∣∣∣ ≤ ϵ,

where the sum is over F2.
Let C be an [n,k]2 code such that all non-zero codewords have Hamming weight in the range[(

1−ϵ
2

)
n,
(
1+ϵ
2

)
n
]
. Let G ∈ F k×n

2 be a generator matrix of C. Then, we have seen that the set of
columns of G form an ϵ-biased sample space of size n. In this problem, using code concatenation,
we see a construction of explicit ϵ-biased sample space.

(a) (6 marks) Show that there exists an ϵ-biased space of size O(mϵ2 ).
(b) (7 marks) Let t be a positive integer. Let RS(2t , k,2t) be the Reed-Solomon code of block

length 2t , dimension k = ϵ2t , the alphabet set F2t , and the set of evaluation points is F2t . Let
Hadt be the Hadamard code of dimension t, that is, its generator matrix Gt is a t × 2t matrix
over F2 whose columns are the set of all t length binary strings. Let Cout = RS(2t , k,2t) with
k = ϵ2t and Cin = Hadt . Then, show that the concatenation code Cout ◦Cin is a [4t , tk,d]2
code where d ∈

[(
1−ϵ
2

)
4t ,

(
1+ϵ
2

)
4t
]
.

(c) (7 marks) Show that for all sufficiently large m, we can construct an ϵ-biased sample space
over F m

2 of size

O

 m2

ϵ2 · log2(mϵ )

 .
Observe that the size bound of ϵ-biased sample space we get at Problem 3c is much larger the
size bound promised at Problem 3a. After a series of works, the paper Explicit, almost optimal,
epsilon-balanced codes by Amnon Ta-Shma gives a construction of ϵ-biased sample space which is
asymptotically almost equal to the bound promised by Problem 3a.
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Appendix

Trace function in finite field. Let Fq be a finite field and Fqℓ be an extension of Fq. For all α ∈ Fqℓ , let

Tr(α) := α +αq +αq2 + · · ·+αqℓ−1 .

Then, the following hold:

1. Tr is a surjective linear function from Fqℓ to Fq.

2. For any β ∈ Fpℓ , let Lβ : Fqℓ → Fq be the linear function defined as Lβ(α) = Tr(αβ) for all α ∈ Fqℓ .
Then, for any two distinct β1,β2 ∈ Fqℓ , Lβ1 , Lβ2 . Furthermore, {Lβ | β ∈ Fqℓ } is the set of all
linear transformations from Fqℓ to Fq.

Chinese Remainder Theorem (CRT): Let p1,p2, . . . ,pℓ be ℓ distinct primes. Let L =
∏ℓ

i=1pi . Then,
the mapping Φ :ZL→Zp1 ×Zp2 × · · · ×Zpℓ defined as

Φ(m) =
(
[m]p1 , [m]p2 , . . . , [m]pℓ

)
for all m ∈ZL

is a bĳection. Furthermore, for any m ∈ZL, the image Φ(m) can be computed in time poly(ℓ, logpℓ).
Similarly, given a point v ∈ Zp1 ×Zp2 × · · · ×Zpℓ , the preimage Φ−1(v) can be computed in time
poly(ℓ, logpℓ).
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