
Coding Theory: Exercises

Many of the following problems are taken from the following sources:

1. Introduction to Coding Theory, a book by J. H. van Lint

2. Essential Coding Theory, a book by Venkatesan Guruswami, Atri Rudra, and Madhu Sudan

1 Exercises on the basics of error-correcting codes

1. Let Σ be a finite set of alphabets. A function on d : Σn ×Σn→R is called a metric (or, distance
function) if the following conditions are satisfied: For all u,v ∈ Σn

(a) d(u,v) ≥ 0.
(b) d(u,v) = 0 if and only if u = v.
(c) d(u,v) = d(v,u).
(d) For any w ∈ Σ, d(u,w) ≤ d(u,v) + d(v+w) (Triangular Inequality).

For any u,v ∈ Σn, the Hamming distance between u and v, denoted by ∆(u,V), is the number of
positions in which u and v differ. Show that Hamming distance is a metric.

2. Let C be a code with distance d for even d. Then argue that C can correct up to d/2− 1 many
errors but cannot correct d/2 errors. Using this, show that if a code C can correct at most t errors
then it has a distance 2t +1 or 2t +2.

3. In the following, we will see that one can convert arbitrary codes into code with slightly different
parameters:

(a) Let C be an (n,k,d)2 code with d odd. Then it can be converted into an (n+1, k,d+1)2 code.
(b) Let C be an (n,k,d)Σ code. Then it can be converted into an (n− 1, k,d − 1)Σ code.

4. In this problem we will consider a noise model that has both errors and erasures. In particular,
let C be an (n,k,d)q code over an alphabet Σ. As usual a codeword c ∈ C is transmitted over a
noisy channel, and the received word y ∈ (Σ∪ {?})n, where as before the special symbol ? denotes
an erasure. We will use s to denote the number erasures in y and e to denote the number of
(non-erasure) errors that occurred during transmission. To decode such a vector means, given y as
input, to output a codeword c ∈ C such that the number positions where c disagree with y is the
n− s non-erased positions is at most e. For the rest of the problem assume that

2e+ s < d (1)

(a) Argue that the output of the decoder for any C under Equation 1 is unique.
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(b) For the code C, assume that there exists a decoder D that can correct from < d/2 many error
in T (n) time. Then under Equation 1, one can perform decoding in time O(T (n)).

5. (Guessing hat problem) There are n people in a room, each of whom is given a black/white hat
chosen uniformly at random (and independent of the choices of all other people). Each person can
see the hat color of all other persons, but not their own. Each person is asked if they wish to guess
their own hat color. They can either guess, or abstain. Each person makes their choice without
knowledge of what the other people are doing. They either win collectively, or lose collectively.
They win if at least one person does not abstain and all people who do not abstain guess their hat
color correctly. They lose if all people abstain, or if some person guess their color incorrectly.
Your goal below is to come up with a strategy that will allow the n people to win with pretty high
probability. We begin with a simple warm-up.

(a) Argue that n people can win with probability ate least 1
2 .

Next we will see how one can really bump up the probability of success with some careful
modeling, and some knowledge of Hamming codes.

(b) Let us say that a directed graph G is a subgraph of the n-dimensional hypercube if its vertex
set is {0,1}n and u→ v is an edge in G, then u and v must differ in at most one coordinate.
Let K(G) be the number of vertices of G with in-degree at least one, and out-degree zero.
Show that the probability of winning the hat problem equals the maximum, over directed
subgraphs G of the n-dimensional hypercube, of K(G)/2n.

(c) Using the fact that the out-degree of any vertex is at most n, show that K(G)/2n is at most
n

n+1 for any directed subgraph G of the n-dimensional hypercube.
(d) Show that if n = 2r−1, then there exists a directed subgraph G of the n-dimensional hypercube

with K(G)/2n = n
n+1 .

Hint:This is where the Hamming code comes in.

2 Exercises on the basics of probability

In the following probability problems, the sample space D of a random event is a finite set, the events are
the subsets of the sample space D, a probability distribution p :D→ [0,1] is a function such that∑

e∈D
p(e) = 1.

A random variable X is a function X : D→R, and the expectation of X is defined as

E[X] =
∑
x∈D

p(x) ·X(x),

and the variance of X is defined as

Var[X] = E[(X −E[X])2].

For an event E ⊆D, Pr[E] denotes the probability of happening that event, that is,

Pr[E] =
∑
e∈E

p(e).
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1. Let E1,E2, . . . ,En be n events on a finite domain D with the probability distribution p. Then, show
the following.

(a) (Inclusion-Exclusion principle)

Pr[∪ni=1Ei] =
n∑
i=1

Pr[Ei]−
∑

1≤i<j≤n
Pr[Ei ∩Ej ] + · · ·+ (−1)n−1Pr[∩ni=1Ei].

(b) (Union bound)

Pr[∪ni=1Ei] ≤
n∑
i=1

Pr[Ei].

2. Let E1,E2 be two events on a finite domain D with the probability distribution p. Then show that

Pr[E1] = Pr[E1 | E2] ·Pr[E2] + Pr[E1 | E2] ·Pr[E2].

3. For a finite domainD, let uD denotes the uniform distribution onD, i.e., for all x ∈D, uD(x) = 1/ |D |.
Let p1 and p2 be two probability distributions on the finite domains D1 and D2, respectively. Then,
p1 × p2 is a probability distribution on the domain D1 ×D2 defined as follows: For all x ∈ D1
and y ∈ D2, p1 × p2(x,y) is the probability of picking x from D1 according to p1 and picking y
independently from D2 according to p2.
Two distributions p1 and p2 over a finite domainD are called identical if for all x ∈D, p1(x) = p2(x).
Then, show that for any positive integer m, the distribution uD1×D2×···×Dm

is identical to the
distribution uD1

×uD2
× · · · ×uDm

.

4. (Linearity of Expectation) Let X1,X2, . . .Xn be n random variables over a finite domain D with
the probability distribution p. Then, show that

E[X1 + · · ·+Xn] =
n∑
i=1

E[Xi].

5. (Indicator Random Variable) Let D be a finite domain with the probability distribution p. A
random variable X : D→ {0,1} is called indicator random variable. For any event E on D, let 1E
denotes the following indicator random variable: For all x ∈D,

1E(x) =

1 if x ∈ E
0 otherwise .

Then for any event E, show that E[1E] = Pr[E].

6. Let x1,x2, . . .xk are k random numbers picked uniformly and independently from the set [n] =
{1,2, . . . ,n}. What is the expected number of collisions, i.e., unordered pairs {i, j} such that xi = xj?

7. (Markov Inequality) Let D be a finite domain with the probability distribution p, and X is a
nonnegative random variable on D. Then, show that for any a > 0,

Pr[X ≥ a] ≤ E[X]
a
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8. (Chebyshev Inequality) Let D be a finite domain with the probability distribution p, and X is a
random variable on D. Then,

Pr[|X −E[X]| ≥ a] ≤ Var[X]
a2

.

In particular,
Pr[|X −E[X]| ≥ k ·

√
Var[X]] ≤ 1

k2
.

9. (Chernoff Bound) Let X1,X2, . . . ,Xn be independent and identically distributed (i.i.d) binary
random variables (i.e., the range of each of the random variable Xi is {0,1}) and X =

∑n
i=1Xi .

Then, for all ϵ ∈ (0,1], the multiplicative Chernoff bound states that,

Pr[|X −E[X]| > ϵE[X]] < 2e−
ϵ2E[X]

3 ,

and the additive Chernoff bound states that

Pr[|X −E[X]| > ϵn] < 2e−
ϵ2m
2 .

10. Let G(V ,E) be a random graph on n vertices constructed as follows: For all {u,v}, with probability
1/2, {u,v} ∈ E. Let X be the random variable denoting the number of triangles in G. Compute the
E[X] and Var[X]. Calculate the best possible upper bound for Pr[X ≥ (1 + ϵ)E[X]].

11. For a biased coin, let
|Pr[HEAD]−Pr[TAIL]| = ϵ,

for some ϵ ∈ (0,1/2). Using as minimum as possible coin tosses, design a random procedure such
that it tells whether Pr[HEAD] > Pr[TAIL] with probability 1/100. Justify your answer.

12. Let G(V ,E) be an undirected graph 2n vertices and m edges. Then the vertex V can be partitioned
into two setsA andB such that the number of edges across these two sets is at leastm/2. Furthermore,
show that V can even be partitioned into two sets A and B such that the number of edges across
these two sets is at least

n
2n− 1

m.

13. A 3-CNF formula over variables x1,x2, . . .xn is of the form

Φ(x1,x2, . . . ,xn) = ∧mi=1
(
vi1 ∨ vi1 ∨ vi3

)
,

where each vij is either a variable xi or its negation xi . The terms (vi1 ∨ vi1 ∨ vi3) in the formula Φ
are called clauses. Show that given any such 3-CNF Φ over n-variables and m clauses, there exists
an assignment a ∈ {0,1}n on the variables such that it satisfies at least 7m/8 clauses of Φ .

14. Let C be a coin such that the probability of showing head is p. Suppose that C is tossed m times,
and ∆p is the probability of obtaining an odd number of heads. Then, show the following:

(a) ∆p =
1
2 · (1− (1− 2p)

m).
(b) If m is odd, then ∆p is a non-decreasing function of p.
(c) Over p ∈ [0,1/2], ∆p is a non-decreasing function of p.

Note: Observe that ∆p = Pr[TAIL]−Pr[HEAD] = 1−2p, which can be thought as the bias of the
coin, and the above problem describes a procedure to reduce that bias.
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3 Exercises on the basics of finite fields and linear spaces

1. This exercise aims to prove that the multiplicative group of a finite field is cyclic. We will prove
this via the following sequence of exercises.

(a) For every element a in a finite group G, a|G| = 1 1.
(b) Let G be a finite commutative abelian group. Let a and b be two elements in G such that

the order2 of a and b are m and n, respectively. Then, show that G has an element of order
lcm(m,n).

(c) Let G be a finite commutative abelian group such that for every positive integer n, the number
of elements a with an = 1 is at most n. Then, G is cyclic.

(d) Prove that the multiplicative group of any finite field is cyclic. Hence, for any element α in
finite field Fq, αq = α.

2. Let F be a field and let f (x) be an irreducible polynomial in F [x] of degree d. Then, show that for
every polynomial g(x) of degree less than d, there exists a polynomial h(x) of degree less than d
such that g(x) ·h(x) = 1 mod f (x). Using this, show that the set of all polynomials of degree less
than d forms a field under polynomial addition and multiplication modulo f (x).

3. For any prime q with q ≡ 1 mod 4, show that Fq has an element α ∈ Fq such that α2 = −1.

4. Over a finite field Fq, an element α ∈ Fq is called quadratic residue if α = β2 for some β ∈ Fq.
Otherwise, α is called quadratic non-residue in Fq. Then, for any prime q with q ≡ 3 mod 4,
show that there exists two quadratic residues α and β in Fq such that α + β = −1

4 Exercises on the basics of linear codes

1. Let G be a generator matrix of an [n,k,d]2 code. Then, show that G has at least kd ones in it.

2. For any [n,k,d]2 code, either all of the codewords begin with a zero or exactly half of the codewords
begin with a zero.

3. For some fixed c ≥Z>2, let {Gn}n∈Z>c
be a family of c-regular connected graphs with the number

of vertices of Gn is n and the girth 3 is ℓn. Then, using the graph family, construct a code family
C = {Ci}i∈Z>c

where each Ci is an [ni , ki ,di]2 code with

ni =
ci
2
, ki =

( c
2
− 1

)
i +1, and di = ℓi .

Now we show that such a code family Ci∈Z>c
can not be asymptotically good. In particular, we will

show that ℓn =O(logn) 4, which will imply that the relative distance of C is zero.

When ℓn = 2t +1: Show the following.
(a) For any vertex u of Gn, the induced subgraph by all the vertices within distance at most

t − 1 from u is a tree.
1Here, 1 denotes the identity element in G.
2The order of an element in G is the smallest positive integer i such that ai is the identity element in G
3The length of the shortest cycle in a graph is called its girth.
4This is known as Moore bound.
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(b) n ≥ 1+ cΣt−1
k=1(c − 1)

k .
(c) ℓn =O(logn).

When ℓn = 2t: Show the following.
(a) For any edge {u,v} of G, let Tu be the induced subgraph in the graph in the G − v 5

formed by all the vertices within distance at most t − 1. Similarly, define Tv . Then, both
Tu and Tv are tree. Furthermore, the vertex sets of Tu and Tv are disjoint.

(b) n ≥ 2
∑t−1

k=0(c − 1)
k .

(c) ℓn =O(logn).

4.1 Exercises on derived codes

4. The set of all n2 ×n1 matrices over F2 forms a vector space V of dimension n1n2. For i = 1,2, let
Ci be an [ni , ki ,di]2 linear code over F2. Let C be the subsets of V consisting of those matrices for
which every column, respectively every row, is a codeword in C1, respectively C2. Show that C is
an [n1n2, k1k2,d1d2]2 code. The code C is called direct product of C1 and C2.

5. Let C be an [n,k]q code. Define a function f : C→ F
nm
q as follows: For c = (c1, c2, . . . , cn),

f (c) =
(
ci1 + ci2 + · · ·+ cim

)
i1,i2,...,im∈[n]

.

Then, show that
f (C) = {f (c) | c ∈ C}

is an [nm, k]q code. Furthermore, given a generator matrix G, describe a generator matrix for f (C).

4.2 Exercises on dual codes

6. For any [n,k,n− k +1]q code, show that its dual is an [n,n− k,k +1]q code.

7. Let S ⊆ F
n
q . For any I ⊆ [n]with |I | = t,φI : S→ F

t
q is defined as follows: for all (c1, c2, . . . , cn) ∈ S,

φI : (ci)i∈[n] 7→ (ci)i∈I .

The set S is called t-wise independent if for all I ⊆ [n] with |I | = t and for all a,b ∈ F t
q ,

|φ−1I (a)| = |φ−1I (b)|.

In other words, if one picks a vector (s1, s2, . . . , sn) from S uniformly at random, then for any
I = {i1, i2, . . . , it} ⊆ [n], the si1 , si2 , . . . , sit are uniformly and independently random over Fq.
For that for any C whose dual C⊥ has distance d⊥ is (d⊥ − 1)-wise independent.

5It denotes the graph we obtain after deleting the vertex v from the graph G.
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