

PRACTICE PROBLEMS I: FOURIER ANALYSIS 2025

- (1) Find the volume of an ellipsoid in \mathbb{R}^n with the lengths of its axes a_1, a_2, \dots, a_n .
- (2) Verify if this is true: $L^{p_0, \infty}(\mathbb{R}^n) \cap L^{p_1, \infty}(\mathbb{R}^n) \subset L^p(\mathbb{R}^n)$ for $1 \leq p_0 < p < p_1 \leq \infty$. (Note that $L^{\infty, \infty} = L^\infty$.)
- (3) Suppose $f \in L^1(\mathbb{R})$ satisfies $f(x) = 0$ for $x < 0$. Find the domain in the complex plane where \hat{f} can be extended as a holomorphic function.
- (4) Suppose for a function $f \in L^1(\mathbb{R})$ its Fourier transform \hat{f} satisfies $|\hat{f}(x)| \leq G_t(x)$ for a fixed $t > 0$, for all $x \in \mathbb{R}$. Show that f is infinitely differentiable. Here $G_t(x) = e^{-\pi t|x|^2}$
- (5) Suppose that for two functions $f_1, f_2 \in S(\mathbb{R})$ and a polynomial P , $P(d/dx)f_1 = P(d/dx)f_2$. Then show that $f_1 = f_2$. If instead $f_1, f_2 \in L^p(\mathbb{R})$ for $p \in [1, 2]$ and they satisfy the same condition (where derivatives are in the sense of distribution), what is your conclusion regarding equality of f_1 and f_2 ?
- (6) Find Fourier transform of Af where $A \in \text{GL}(n, \mathbb{R})$ and $f \in S(\mathbb{R}^n)$.
- (7) Use Hausdorff-Young theorem to define Fourier transform of a function $f \in L^p(\mathbb{R})$ where $1 < p < 2$. Recall that Fourier transform of this f can also be defined by writing $f = f_1 + f_2$ where $f_1 \in L^1$ and $f_2 \in L^2$. Show that these two Fourier transforms are same as measurable functions.
- (8) Let T be a tempered distribution and $\psi \in S(\mathbb{R})$. Define the following tempered distributions: dilation T_δ , product ψT and $T * \psi$. Show that $\widehat{T * \psi} = \widehat{T} \widehat{\psi}$.
- (9) Assume that $f \in L^1(\mathbb{R}^n)$ is such that $\hat{f} \in L^1(\mathbb{R}^n)$. Check if the proof of inversion formula of Fourier transform works for this f . (In that formula we used $f \in S(\mathbb{R}^n)$.)
- (10) Let A, B be two measurable subsets of \mathbb{R}^n of finite measures. Suppose $|A + B|^\gamma \geq C|A|^\alpha |B|^\beta$ for some numbers $0 < \alpha, \beta, \gamma < 1$. Show that $\alpha + \beta = \gamma$. Here by $|A|$ we mean Lebesgue measure of A .
- (11) Recall that Fourier transform of a radial function is radial. Suppose $f \in L^1(\mathbb{R}^2)$ satisfies $f(k_\theta x) = e^{im\theta} f(x)$ for all $x \in \mathbb{R}^2$ where $m \in \mathbb{Z}$ is fixed and
$$k_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$
Find $\widehat{f}(k_\theta \xi)$ in terms of $\widehat{f}(\xi)$.