

Assignment 2

Probability Theory (M. Math.)

The assignment is due by **03/10/25**. You may use results proved in class.

1. Let λ_1 and λ_2 denote the uniform measures on $\{0, 1\}$ and $\{0, 1, 2\}$ respectively. Construct a process $(X_i)_{i=1}^\infty$ of independent RVs such that X_i has law λ_1 for odd i and law λ_2 for even i .

(a) Prove that S_n/n converges a.s (where S_n is as usual).
(b) Prove that there exist sequences $(c_n)_{n=1}^\infty$ and $(s_n)_{n=1}^\infty$ with $s_n \rightarrow \infty$ such that

$$\frac{S_n - c_n}{s_n} \xrightarrow{n \rightarrow \infty} N(0, 1) \quad \text{in distribution.} \quad (1)$$

2. Construct a process $(X_i)_{i=1}^\infty$ of independent RVs, each with absolute value of mean and variance bounded by two, such that an almost sure limit $\lim_n S_n/n$ does not exist but the conclusion of a CLT as in (1) with respect to appropriate sequences $(c_n)_n$ and $(s_n)_n$ with $s_n \rightarrow \infty$ holds.

3. Construct a process $(X_i)_{i=1}^\infty$ of independent increments (i.e independent RVs) such that X_i has law given by the probability λ_i , where

$$\lambda_i(\{1/2 - 1/2^i\}) = 1/2 \quad \text{and} \quad \lambda_i(\{1/2 + 1/2^i\}) = 1/2.$$

(a) Prove or disprove that

$$\frac{S_n - n/2}{s_n} \xrightarrow{n \rightarrow \infty} N(0, 1) \quad \text{in distribution,}$$

for some sequence $(s_n)_n$ with $s_n \rightarrow \infty$.

(b) Is there a non-zero function $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $f(S_n - n/2)$ converges in distribution? If so, to what?

4. Suppose $(X_i)_{i=1}^\infty$ is i.i.d. with mean zero, variance one. Let Z be an RV such that Z, X_1, X_2, \dots are independent and Z has a finite exponential moment, that is there is $\lambda > 0$ such that $\mathbb{E}[\exp(\lambda Z)] < \infty$. Show that $Y_i = ZX_i$ form an identically distributed sequence of RVs with mean zero. What is the variance σ^2 of Y_i ? Show that $\mathbb{E}[\prod_{j=1}^n Y_{i_j}] = \prod_{j=1}^n \mathbb{E}[Y_{i_j}]$ for any finite sequence $\{i_1, \dots, i_n\}$. Does $\frac{S_n}{\sigma\sqrt{n}}$ converge in distribution to the standard normal (i.e. $N(0, 1)$)? If not, to what?

5. Prove that convergence in probability implies convergence in distribution.