
Practice problems 3

Probability Theory (M. Math.)

1. Consider the Markov chain with state space R, transition probability (Px)x∈R, where Px
is the distribution of a normal random variable with mean x and variance one, and ini-
tial distribution δ0. Compute the conditional characteristic function E0[e

itXj+1|σ(Xj)],
for j ≥ 1.

2. (Stationary measures) Let S be a Polish space. Let P = (Px)x∈S be a transition
probability for a Markov chain.

(a) If P has a stationary distribution then given K ⊂ S compact, and n ∈ N,

sup
x∈S

P (n)
x (K) = sup

x∈S
Px[{Zn ∈ K}] > cK ,

for some cK > 0.

(b) Let P be the transition density of the simple random walk in Z, that is Px =
1
2
(δx−1+δx+1). Show that if (Zn)∞n=0 is the simple random walk with Z0 = 0 almost

surely, then for i ≥ 1, Zi has the same distribution as the sum of i independent
random variables with law 1

2
(δ−1 + δ1).

(c) Use the inequality P
(n)
x (y) ≤ Cn−1/2, which holds for some C > 0 and all n ∈ N,

to show that the simple random walk has no stationary distribution.

(d) Show for the simple random walk that (ZN0 ,Pλ, T ) is a measure preserving system,
where λ is the counting measure, and T is the left shift.

(e) Let x ∈ S be such that for any ε > 0, there exists Kε ⊂ S compact such that

P
(n)
x (Kc

ε ) < ε, for all n ∈ N. Show that P has a stationary measure. (Use
Prokhorov’s theorem: if in a Polish space (µn)∞n=1 is a sequence of probability
measures such that for any ε > 0, there exists Kε compact with µn(Kc

ε ) < ε, then
µn weakly converges to a probability measure.)

(f) Conclude that if S is compact then a stationary distribution always exists.

(g) Show without using the inequality of Problem (2c) that the simple random walk
in Z can not have a stationary probability.
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(h) (Inward drift) Let c > 0. Consider the Markov chain in Z with transition proba-
bility

Px = cδ0 +
1− c

2
(δx−1 + δx+1) for x ∈ S.

Show that P has a stationary probability, find it.

(i) Let #S <∞ and P be irreducible and aperiodic. Use Gelfand’s formula ρ(A) =
limn→∞ ‖An‖1/n to conclude that (P n)xy

n→∞−−−→ π(y) exponentially. (Apply the
formula to P |L.)

(j) Let #S <∞ and P be irreducible and aperiodic. Show that π is unique: if π′ is
another stationary measure, then 0 6= π′ − π ∈ L.

3. (Invariant sigma algebra) Let (X,T,F , µ) be a probability preserving dynamical sys-
tem. Set

IT = σ({A | T−1A = A}).

(a) Show that for ϕ ∈ L2(X,F , µ),

Eµ[ϕ ◦ (Id− T )|IT ] = 0.

Conclude that

C := {g − g ◦ T | g ∈ L2(X,F , µ)} ⊂ Ker(L2(X,F , µ)→ L2(X, IT , µ)),

the latter kernel of the projection.

(b) Show that if f ⊥ C, then f ∈ L2(X, IT , µ) (compute ‖f − f ◦ T‖L2). Conclude
that

L2(X,F , µ) = L2(X, IT , µ)⊕ C.

4. Let S be countable and (Pxy)x∈S,y∈S be a symmetric stochastic matrix. Show the
following.

(a) (P 2n)xx > 0 for all x ∈ S, n ∈ N.

(b) supy,z∈S(P 2n)yz ≤ supx∈S(P 2n)xx.

(c) supy,z∈S(P 2n+1)yz ≤ supx∈S(P 2n)xx.

5. Give an example of an irreducible aperiodic P on a finite state space S such that
vP ∈ ∂∆, where v ∈ ∆, where ∆ = {(x1, . . . , x#S) |

∑#S
i=1 xi = 1, xj ≥ 0∀j} is the set

of probability measures on S.

6. Let #S <∞ and P irreducible and aperiodic. Show that limn→∞ Ex[exp(itZn)] exists
for each x ∈ S. What is the limit? Does the limit as a function of x determine the
stationary probability?
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