Practice problems 3

Probability Theory (M. Math.)

1. Consider the Markov chain with state space R, transition probability (P, )cr, where P,
is the distribution of a normal random variable with mean = and variance one, and ini-
tial distribution &y. Compute the conditional characteristic function Eq[e®Xi+1|o(X;)],
for j > 1.

2. (Stationary measures) Let S be a Polish space. Let P = (P,),es be a transition
probability for a Markov chain.

(a) If P has a stationary distribution then given K C S compact, and n € N,

sup P (K) = sup P, [{Z, € K}] > cx,

€S z€eS

for some cx > 0.

(b) Let P be the transition density of the simple random walk in Z, that is P, =
%((596,1 +0,41). Show that if (Z,,)2, is the simple random walk with Z; = 0 almost
surely, then for ¢« > 1, Z; has the same distribution as the sum of 7 independent
random variables with law 1(6_; + 0;).

(c) Use the inequality P\ (y) < Cn~'/2, which holds for some C' > 0 and all n € N,
to show that the simple random walk has no stationary distribution.

(d) Show for the simple random walk that (ZY° Py, T') is a measure preserving system,
where A is the counting measure, and T is the left shift.

(e) Let z € S be such that for any € > 0, there exists K. C S compact such that

Px(”)(Kf) < ¢, for all n € N. Show that P has a stationary measure. (Use
Prokhorov’s theorem: if in a Polish space (u,)52, is a sequence of probability
measures such that for any e > 0, there exists K. compact with pu, (K¢) < €, then
i, weakly converges to a probability measure.)

(f) Conclude that if S is compact then a stationary distribution always exists.

(g) Show without using the inequality of Problem (2c) that the simple random walk
in Z can not have a stationary probability.



(h) (Inward drift) Let ¢ > 0. Consider the Markov chain in Z with transition proba-
bility
1—
PI = 660 + ¢

((51_1 + 5m+1) forx € S.

Show that P has a stationary probability, find it.
(i) Let #S < 0o and P be irreducible and aperiodic. Use Gelfand’s formula p(A) =

n—oo

lim,, o0 ||A%]|Y/™ to conclude that (P"),, —— 7(y) exponentially. (Apply the
formula to P|..)

(j) Let #S < oo and P be irreducible and aperiodic. Show that 7 is unique: if 7’ is
another stationary measure, then 0 # 7’ — 7 € L.

3. (Invariant sigma algebra) Let (X, T, F, ) be a probability preserving dynamical sys-
tem. Set
Ir=c({A| T 'A = A}).

(a) Show that for ¢ € L*(X,F, ),
B, [p o (Id - T)|T:] = 0.
Conclude that
Ci={g—goT|ge L*(X,F,u)} C Ker(L*(X,F, u) = L*(X,Ir, ),

the latter kernel of the projection.

(b) Show that if f L C, then f € L*(X,Zr, 1) (compute || f — f o T||z2). Conclude
that
Lz(X’F’M) = Lz(X?ITnu) @6

4. Let S be countable and (P, )sesyes be a symmetric stochastic matrix. Show the
following.
(a) (P?),, >0foralze S, neNlN.
(b) SUPy,zeS(—PQn)yz < SqueS<P2n)m'
(c) SuPy,zeS(PQnH)yz < SqueS(Pzn)m-

5. Give an example of an irreducible aperiodic P on a finite state space S such that
vP € A, where v € A, where A = {(x1,...,245) | .75 2, = 1,2, > 0Vj} is the set
of probability measures on S.

6. Let #S < oo and P irreducible and aperiodic. Show that lim,,_,, E,[exp(itZ,)] exists
for each x € S. What is the limit? Does the limit as a function of z determine the
stationary probability?



